This function runs the EcoDiet model using a Markov chain Monte Carlo approximation through the 'jagsUI' package to provide an approximated distribution for the variables of interest.

Depending on the nb_iter entered, this function may take hours, or even days to run. We advise you to first test whether your model is compiling properly with the by-default parameters, as this should take 1-2 min to run depending on your data size.

To save time, this function can solicit several cores (if available) to parallelize chains. Note that progress bars won't be displayed if chains are parallelized.

A warning message is printed if the model has not converged in the end (if the Gelman-Rubin diagnostic of at least one variable is > 1.1). For each run, the default 'jagsUI' package messages summarize the '.txt' file used for the definition of the BUGS model, the configuration of the model (iteration, adaptation, burnin, thin rate), the time required to run the model, and main statistics for the variables.

You need to have run the preprocess_data and the write_model functions before using this function, as their outputs are used as the inputs for run_model.

run_model(
  model_file,
  data,
  inits = NULL,
  run_param = "test",
  variables_to_save = c("eta", "PI"),
  parallelize = FALSE,
  DIC.out = TRUE
)

Arguments

model_file

The file containing the BUGS definition of the EcoDiet model output by the write_model function

data

The preprocessed data list output by the preprocess_data() function

inits

A list containing the initial values of the variables. By default the initialisation values are NULL, which means that the chain initial values are drawn from the prior distributions.

run_param

A object that can be a list of the parameters to configure the JAGS model or a string acting as a shortcut characterizing the overall length of the run requested (e.g. "short" or "long"). If run_param is provided as a list, the user should provide at least nb_iter, i.e. the number of iterations to run (the more iterations, the better are the chances that the model will converge; very small by default to test if the model compiles properly), and nb_burnin, i.e. the number of burn-in steps to run (so that the variable approximations are not too influenced by the first initial random values). nb_thin, the thinning rate, is by default defined by the function. The number of adaptation steps nb_adapt can be specified but is not required (see jasgUI documentation for more details). If set manually, it should be at least set at 1000.

variables_to_save

A vector of variable names defining the variables to output. The number has a big number of variables but by default we only save the variables of interest that are the trophic link probabilities eta and the diet proportions PI. Only these saved variables are used to compute the Gelman-Rubin statistics that indicate whether the model has converged or not.

parallelize

Indicates whether chains should be parallelized using several cores. Recommended in case of complex models.

DIC.out

Indicates whether the DIC (Deviance Information Criterion) should be reported.

Value

A MCMC output formatted as a jagsUI object.

See also

preprocess_data to preprocess the data, and write_model to define the model.

Examples


# \donttest{
realistic_biotracer_data <- read.csv(system.file("extdata", "realistic_biotracer_data.csv",
                                               package = "EcoDiet"))
realistic_stomach_data <- read.csv(system.file("extdata", "realistic_stomach_data.csv",
                                             package = "EcoDiet"))

data <- preprocess_data(biotracer_data = realistic_biotracer_data,
                        trophic_discrimination_factor = c(0.8, 3.4),
                        literature_configuration = FALSE,
                        stomach_data = realistic_stomach_data)
#> The model will investigate the following trophic links:
#>               Bivalves Cod Crabs Detritus Phytoplankton Pout Sardine Shrimps
#> Bivalves             0   0     1        0             0    1       0       0
#> Cod                  0   0     0        0             0    0       0       0
#> Crabs                0   1     0        0             0    1       0       0
#> Detritus             1   0     1        0             0    0       0       1
#> Phytoplankton        1   0     0        0             0    0       1       1
#> Pout                 0   1     0        0             0    0       0       0
#> Sardine              0   1     0        0             0    0       0       0
#> Shrimps              0   1     1        0             0    1       1       0
#> Worms                0   1     1        0             0    1       0       1
#> Zooplankton          0   0     0        0             0    1       1       1
#>               Worms Zooplankton
#> Bivalves          0           0
#> Cod               0           0
#> Crabs             0           0
#> Detritus          1           0
#> Phytoplankton     0           1
#> Pout              0           0
#> Sardine           0           0
#> Shrimps           0           0
#> Worms             0           0
#> Zooplankton       0           0
                        
write_model(literature_configuration = FALSE)

mcmc_output <- run_model("EcoDiet_model.txt", data, run_param="test")
#> 
#> Processing function input....... 
#> 
#> Done. 
#>  
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 316
#>    Unobserved stochastic nodes: 125
#>    Total graph size: 1104
#> 
#> Initializing model
#> 
#> Adaptive phase, 500 iterations x 3 chains 
#> If no progress bar appears JAGS has decided not to adapt 
#>  
#> 
#>  Burn-in phase, 500 iterations x 3 chains 
#>  
#> 
#> Sampling from joint posterior, 500 iterations x 3 chains 
#>  
#> 
#> Calculating statistics....... 
#> 
#> Done. 
#> 
#>   /!\ Convergence warning:
#> Out of the 51 variables, 14 variables have a Gelman-Rubin statistic > 1.1.
#> You may consider modifying the model run settings.
#> The variables with the poorest convergence are: PI[4,3], PI[10,8], PI[10,7], PI[8,6], PI[8,2], PI[6,2], PI[7,2], PI[9,8], PI[9,3], PI[8,7].
#> JAGS output for model 'EcoDiet_model.txt', generated by jagsUI.
#> Estimates based on 3 chains of 1000 iterations,
#> adaptation = 500 iterations (sufficient),
#> burn-in = 500 iterations and thin rate = 1,
#> yielding 1500 total samples from the joint posterior. 
#> MCMC ran for 0.24 minutes at time 2024-07-10 10:07:40.642848.
#> 
#>              mean     sd    2.5%     50%   97.5% overlap0 f  Rhat n.eff
#> eta[4,1]    0.648  0.084   0.481   0.648   0.800    FALSE 1 1.002   649
#> eta[5,1]    0.592  0.086   0.419   0.593   0.756    FALSE 1 1.001  1500
#> eta[3,2]    0.091  0.059   0.012   0.080   0.233    FALSE 1 1.000  1500
#> eta[6,2]    0.088  0.059   0.012   0.076   0.240    FALSE 1 1.011   200
#> eta[7,2]    0.425  0.101   0.233   0.425   0.624    FALSE 1 1.002   877
#> eta[8,2]    0.220  0.085   0.082   0.213   0.403    FALSE 1 1.013   153
#> eta[9,2]    0.734  0.092   0.536   0.742   0.888    FALSE 1 1.000  1500
#> eta[1,3]    0.389  0.087   0.225   0.384   0.565    FALSE 1 1.005   449
#> eta[4,3]    0.639  0.085   0.467   0.641   0.801    FALSE 1 1.019   107
#> eta[8,3]    0.808  0.069   0.664   0.813   0.924    FALSE 1 1.000  1500
#> eta[9,3]    0.811  0.069   0.657   0.819   0.927    FALSE 1 0.999  1500
#> eta[1,6]    0.126  0.058   0.036   0.119   0.257    FALSE 1 1.011   241
#> eta[3,6]    0.788  0.070   0.638   0.793   0.908    FALSE 1 1.000  1500
#> eta[8,6]    0.156  0.062   0.054   0.151   0.293    FALSE 1 1.005   404
#> eta[9,6]    0.969  0.029   0.893   0.978   0.999    FALSE 1 1.002  1385
#> eta[10,6]   0.876  0.056   0.751   0.884   0.963    FALSE 1 1.001  1500
#> eta[5,7]    0.491  0.087   0.335   0.487   0.667    FALSE 1 1.001  1161
#> eta[8,7]    0.970  0.029   0.893   0.979   0.999    FALSE 1 1.001  1500
#> eta[10,7]   0.225  0.076   0.096   0.220   0.379    FALSE 1 1.007   289
#> eta[4,8]    0.608  0.108   0.393   0.611   0.810    FALSE 1 1.000  1500
#> eta[5,8]    0.525  0.107   0.314   0.525   0.726    FALSE 1 1.003   540
#> eta[9,8]    0.100  0.065   0.014   0.089   0.251    FALSE 1 1.002   666
#> eta[10,8]   0.194  0.083   0.062   0.183   0.370    FALSE 1 1.005   384
#> eta[4,9]    0.948  0.050   0.815   0.964   0.998    FALSE 1 1.001  1034
#> eta[5,10]   0.953  0.045   0.836   0.967   0.999    FALSE 1 1.005   516
#> PI[4,1]     0.394  0.286   0.000   0.361   0.966    FALSE 1 1.014   138
#> PI[5,1]     0.606  0.286   0.034   0.639   1.000    FALSE 1 1.014   138
#> PI[3,2]     0.217  0.296   0.000   0.053   0.951    FALSE 1 1.059    60
#> PI[6,2]     0.167  0.231   0.000   0.024   0.766    FALSE 1 1.460     8
#> PI[7,2]     0.122  0.210   0.000   0.000   0.718    FALSE 1 1.364    11
#> PI[8,2]     0.284  0.335   0.000   0.124   0.998    FALSE 1 1.489     8
#> PI[9,2]     0.209  0.204   0.000   0.152   0.770    FALSE 1 1.032   281
#> PI[1,3]     0.163  0.232   0.000   0.040   0.795    FALSE 1 1.208    17
#> PI[4,3]     0.163  0.202   0.000   0.000   0.583    FALSE 1 2.878     4
#> PI[8,3]     0.277  0.210   0.000   0.253   0.719    FALSE 1 1.050    66
#> PI[9,3]     0.397  0.305   0.002   0.330   0.997    FALSE 1 1.291    11
#> PI[1,6]     0.069  0.133   0.000   0.001   0.493    FALSE 1 1.239    15
#> PI[3,6]     0.320  0.193   0.011   0.304   0.741    FALSE 1 1.069    36
#> PI[8,6]     0.051  0.120   0.000   0.001   0.467    FALSE 1 1.520    10
#> PI[9,6]     0.291  0.200   0.011   0.258   0.732    FALSE 1 1.003  1429
#> PI[10,6]    0.269  0.192   0.005   0.239   0.708    FALSE 1 1.033    75
#> PI[5,7]     0.328  0.180   0.000   0.340   0.653    FALSE 1 1.147    24
#> PI[8,7]     0.578  0.196   0.101   0.602   0.905    FALSE 1 1.279    13
#> PI[10,7]    0.094  0.234   0.000   0.000   0.882    FALSE 1 1.705     7
#> PI[4,8]     0.213  0.206   0.000   0.159   0.728    FALSE 1 1.021   143
#> PI[5,8]     0.301  0.216   0.001   0.283   0.777    FALSE 1 1.185    15
#> PI[9,8]     0.219  0.191   0.000   0.162   0.642    FALSE 1 1.331    10
#> PI[10,8]    0.266  0.271   0.000   0.169   0.857    FALSE 1 1.770     6
#> PI[4,9]     1.000  0.000   1.000   1.000   1.000    FALSE 1    NA     1
#> PI[5,10]    1.000  0.000   1.000   1.000   1.000    FALSE 1    NA     1
#> deviance  866.400 11.003 846.223 865.943 887.645    FALSE 1 1.019   106
#> 
#> **WARNING** Some Rhat values could not be calculated.
#> **WARNING** Rhat values indicate convergence failure. 
#> Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
#> For each parameter, n.eff is a crude measure of effective sample size. 
#> 
#> overlap0 checks if 0 falls in the parameter's 95% credible interval.
#> f is the proportion of the posterior with the same sign as the mean;
#> i.e., our confidence that the parameter is positive or negative.
#> 
#> DIC info: (pD = var(deviance)/2) 
#> pD = 59.5 and DIC = 925.854 
#> DIC is an estimate of expected predictive error (lower is better).
# }