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Introduction

What I cannot create, I do not understand.
–Richard P. Feynman

Mathematics is not just an abstract pursuit; it is an essential tool that powers a vast array
of applications. From weather forecasting to black hole simulations, from urban planning to
medical research, from ecology to epidemiology, the application of mathematics has become
indispensable. Central to this applied force is Numerical Analysis.

What Is Numerical Analysis?

Numerical Analysis is the discipline that bridges continuous mathematical theories with their
concrete implementation on digital computers. These computers, by design, work with dis-
crete quantities, and translating continuous problems into this discrete realm is not always
straightforward.

In this module, we will explore some key techniques, algorithms, and principles of Numerical
Analysis that enable us to translate mathematical problems into computational solutions. We
will delve into the challenges that arise in this translation, the strategies to overcome them,
and the interaction of theory and practice.

Many mathematical problems cannot be solved analytically in closed form. In Numerical
Analysis, we aim to find approximation algorithms for mathematical problems, i.e., schemes
that allow us to compute the solution approximately. These algorithms use only elementary
operations (+,−,×, /) but often a long sequence of them, so that in practice they need to be
run on computers.

Example from Algebra

Solve the equation log(𝑥) = sin(𝑥) for 𝑥 in the interval 𝑥 ∈ (0, 𝜋). Stop and try using all of
the algebra that you ever learned to find 𝑥. You will quickly realize that there are no by-hand
techniques that can solve this problem! A numerical approximation, however, is not so hard
to come by. The following graph shows that there is a solution to this equation somewhere
between 2 and 2.5.
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# plot the function cos(x) and the line y=x
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1, 4, 100)
plt.plot(x, np.log(x), label="log(x)")
plt.plot(x, np.sin(x), label="sin(x)")
plt.legend()
plt.grid(True)
plt.show()

Figure 1: The functions log(𝑥) and sin(𝑥) intersect at exactly one point, giving the solution to
the equation log(𝑥) = sin(𝑥).

Example from Calculus

What if we want to evaluate

∫
𝜋

0
sin(𝑥2)𝑑𝑥?

import matplotlib.pyplot as plt
import numpy as np
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def f(x):
return np.sin(x**2)

a = 0
b = np.pi
n = 1000 # Number of points for numerical integration

x = np.linspace(a, b, n)
y = f(x)

# Calculate the numerical integral using the trapezoidal rule
integral = np.trapz(y, x)

# Shade the positive and negative regions differently
plt.fill_between(x, y, where=y>=0, color='green', alpha=0.5, label="Positive")
plt.fill_between(x, y, where=y<0, color='red', alpha=0.5, label="Negative")

# Plot the curve
plt.plot(x, y, color='black', label=r"$\sin(x^2)$")

# Set labels and title
plt.xlabel("x")
plt.ylabel("y")
plt.title(r"Integral of $\sin(x^2)$ from 0 to $\pi$")

# Add legend
plt.legend()

# Show the plot
plt.grid()
plt.show()

/tmp/ipykernel_13380/1036798515.py:15: DeprecationWarning:

`trapz` is deprecated. Use `trapezoid` instead, or one of the numerical integration functions in `scipy.integrate`.
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Figure 2: Visual representation of the integral of sin(𝑥2) from 0 to 𝜋.

Again, trying to use any of the possible techniques for using the Fundamental Theorem of
Calculus, and hence finding an antiderivative, on the function sin(𝑥2) is completely hopeless.
Substitution, integration by parts, and all of the other techniques that you know will all fail.
Again, a numerical approximation is not so difficult and is very fast and gives the value

# Use Simpson's rule to approximate the integral of sin(x^2) from 0 to pi
from scipy.integrate import simpson
simpson(y, x = x)

np.float64(0.7726517138019184)

By the way, this integral (called the Fresnel Sine Integral) actually shows up naturally in the
field of optics and electromagnetism, so it is not just some arbitrary integral that was cooked
up just for fun.

Example from Differential Equations

Say we needed to solve the differential equation
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𝑑𝑦
𝑑𝑡 = sin(𝑦2) + 𝑡.

The nonlinear nature of the problem precludes us from using most of the typical techniques
(e.g. separation of variables, undetermined coefficients, Laplace Transforms, etc). However,
computational methods that result in a plot of an approximate solution can be made very
quickly. Here is a plot of the solution up to time 𝑡 = 2.5 with initial condition 𝑦(0) = 0.1:

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def f(t, y):
return np.sin(y**2) + t

# Initial condition
y0 = 0.1

# Time span for the solution
t_span = (0, 2.5)

# Solve the differential equation using SciPy's solver
sol = solve_ivp(f, t_span, [y0], max_step=0.1, dense_output=True)

# Extract the time values and solution
t = sol.t
y = sol.sol(t)[0]

# Plot the numerical solution
plt.plot(t, y)

# Labels and title
plt.xlabel('t')
plt.ylabel('y')

# Show the plot
plt.grid(True)
plt.show()
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Figure 3: Plot of numerical solution of 𝑑𝑦/𝑑𝑡 = sin(𝑦2) + 𝑡 with 𝑦(0) = 0.1.

This was an artificial example, but differential equations are central to modelling the real world
in order to predict the future. They are the closest thing we have to a crystal ball. Here is a
plot of a numerical solution of the SIR model of the evolution of an epidemic over time:

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

# SIR model differential equations
def sir_model(y, t, N, beta, gamma):

S, I, R = y
dSdt = -beta * S * I / N
dIdt = beta * S * I / N - gamma * I
dRdt = gamma * I
return dSdt, dIdt, dRdt

# Total population, N
N = 1000
# Initial number of infected and recovered individuals
I0, R0 = 1, 0
# Everyone else is susceptible to infection initially
S0 = N - I0 - R0
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# Contact rate, beta, and mean recovery rate, gamma, (in 1/days)
beta, gamma = 0.25, 1./20
# A grid of time points (in days)
t = np.linspace(0, 160, 160)

# Initial conditions vector
y0 = S0, I0, R0
# Integrate the SIR equations over the time grid, t
ret = odeint(sir_model, y0, t, args=(N, beta, gamma))
S, I, R = ret.T

# Plot the data on three separate curves for S(t), I(t) and R(t)
plt.figure(figsize=(10,6))
plt.plot(t, S, 'b', alpha=0.7, linewidth=2, label='Susceptible')
plt.plot(t, I, 'y', alpha=0.7, linewidth=2, label='Infected')
plt.plot(t, R, 'g', alpha=0.7, linewidth=2, label='Recovered')
plt.xlabel('Time /days')
plt.ylabel('Number (1000s)')
plt.ylim(0, N)
plt.title('SIR Model Simulation')
plt.legend()
plt.show()
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Figure 4: Plot of a numerical solution of the SIR model

Reasons to study Numerical Analysis

So why should you want to venture into Numerical Analysis rather than just use the computer
as a black box?

1. Precision and Stability: Computers, despite their power, can introduce significant
errors if mathematical problems are implemented without care. Numerical Analysis
offers techniques to ensure we obtain results that are both accurate and stable.

2. Efficiency: Real-world applications often demand not just correctness, but efficiency.
By grasping the methods of Numerical Analysis, we can design algorithms that are both
accurate and resource-efficient.

3. Broad Applications: Whether your interest lies in physics, engineering, biology, fi-
nance, or many other scientific fields, Numerical Analysis provides the computational
tools to tackle complex problems in these areas.

4. Basis for Modern Technologies: Core principles of Numerical Analysis are founda-
tional in emerging fields such as artificial intelligence, quantum computing, and data
science.
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The prerequisites for this material include a firm understanding of calculus and linear algebra
and a good understanding of the basics of differential equations.

By the end of this module, you will not merely understand the methods of Numerical Analysis;
you will be equipped to apply them efficiently and effectively in diverse scenarios: you will be
able to tackle problems in physics, engineering, biology, finance, and many other fields; you
will be able to design algorithms that are both accurate and resource-efficient; you will be able
to ensure that your computational solutions are both accurate and stable; you will be able to
leverage the power of computers to solve complex problems.

The Inquiry-Based Approach

This material is written with an Inquiry-Based Learning (IBL) flavor. In that sense, these notes
are not a traditional textbook containing all of the expected theorems, proofs, code, examples,
and exposition. You are encouraged to work through exercises, problems and projects, present
your findings, and work together when appropriate.

In our first session we will start off right away with an exercise designed for groups, discussion,
disagreement, and deep critical thinking. This exercise is inspired by Dana Ernst’s first day
IBL activity titled: Setting the Stage.

Exercise 0.1.

• Get in groups of size 3 or 4.
• Introduce yourself to each other.
• For each of the questions that follow I will ask you to:

1. Think about a possible answer on your own

2. Discuss your answers with the rest of the group

3. Share a summary of each group’s discussion

Questions:

Question 1: What are the goals of a university education?

Question 2: How does a person learn something new?

Question 3: What do you reasonably expect to remember from your courses in 20 years?

Question 4: What is the value of making mistakes in the learning process?

Question 5: How do we create a safe environment where risk taking is encouraged and produc-
tive failure is valued?
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How this module works

There are 4 one-hour whole-class sessions every week. Three of these are listed on your
timetable as “Lecture” and one as “Computer Practical”. However, in all these sessions you,
the student, are the one that is doing the work; discovering methods, writing code, working
problems, leading discussions, and pushing the pace. I, the lecturer, will act as a guide who
only steps in to redirect conversations or to provide necessary insight. You will use the whole-
class sessions to share and discuss your work with the other members of your group. There
will also be some whole-class discussions moderated by your lecturer.

You will find that this text is not a set of lecture notes. Instead it mostly just contains
collections of exercises with minimal interweaving exposition. It is expected that you do
every one of the exercises in the main body of each chapter and use the sequencing of the
exercises to guide your learning and understanding.

Therefore the whole-class sessions form only a very small part of your work on this module.
For each hour of whole-class work you should timetable yourself about two and a half hours
of work outside class for working through the exercises on your own. I strongly recommend
that you put those two and a half hours (ten hours spread throughout the week) into your
timetable.

In order to enable you to get immediate feedback on your work also in between class sessions,
I have made feedback quizzes where you can test your understanding of the material and your
results from some of the exercises. Exercises that have an associated question in the feedback
quiz are marked with a �.

At the end of each chapter there is a section entitled “Problems” that contains additional
exercises aimed at consolidating your new understanding and skills. Of these you should aim
to do as many as you can but you will not have time to do them all. As the module progresses I
will give advice on which of those problems to attack. There are no traditional problem sheets
in this module. In this module you will be working on exercises continuously throughout the
week rather than working through a problem sheet only every other week.

Many of the chapters also have a section entitled “Projects”. These projects are more open-
ended investigations, designed to encourage creative mathematics, to push your coding skills
and to require you to write and communicate mathematics. These projects are entirely optional
and perhaps you will like to return to one of these even after the module has finished. If you
do work on one of the projects, be sure to share your work with your lecturer at gustav.deliu
s@york.ac.uk who will be very interested, also after the end of the module.

If you notice any mistakes or unclear things in the learning guide, please let me know. Many
thanks go to Ben Mason and Toby Cheshire for the corrections they had sent in last year.
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You will need two notebooks for working through the exercises in this guide: one in paper
form and one electronic. Some of the exercises are pen-and-paper exercises while others are
coding exercises and some require both writing or sketching and coding. The two notebooks
will be linked through the numbering of the exercises.

For the coding notebook I highly recommend using Google Colab (or Jupyter Notebook).
This will be discussed more in Chapter 1 that introduces Python. Most students find it easiest
to have one dedicated Colab notebook (or Jupyter notebook) per section, but some students
will want to have one per chapter. You are highly encouraged to write explanatory text into
your Google Colab notebooks as you go so that future-you can tell what it is that you were
doing, which problem(s) you were solving, and what your thought processes were.

In the end, your collection of notebooks will contain solutions to every exercise in the guide
and can serve as a reference manual for future numerical analysis problems. At the end of
each of your notebooks you may also want to add a summary of what you have learned, which
will both consolidate your learning and make it easier for you to remind yourself of your new
skills later.

One request: do not share your notebooks publicly on the internet because that would create
temptation for future students to not put in the work themselves, thereby robbing them of the
learning experience.

If you have a notebook computer, bring it along to the class sessions. However this is not
a requirement. Your lecturer will bring along some spare machines to make sure that every
group has at least one computer to use during every session. The only requirements for a
computer to be useful for this module is that it can connect to the campus WiFi, can run
a web browser, and has a physical keyboard (typing code on virtual keyboards is too slow).
The “Computer Practical” takes place in a PC classroom, so there will of course be plenty of
machines available then.

Assessment

Unfortunately, your learning in the module also needs to be assessed. The final mark will be
made up of 40% coursework and 60% final exam.

The 40% coursework mark will come from 10 short quizzes that will take place during the
“Computer practical” in weeks 2 to 11. Answering each quiz should take less than 5 minutes
but you will be given 10 minutes to complete the first two quizzes and 16 minutes each to
complete the next 8 quizzes in order to give you a large safety margin and remove stress. The
quizzes will be based on exercises that you will already have worked through and for which
you will have had time to discuss them in class, so they will be really easy if you have engaged
with the exercises as intended. Each quiz will be worth 5 points. There will be a practice quiz
in the computer practical in week 1 and another one at the start of the practical in week 2.
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During the assessment quizzes you will be required to work exclusively on a classroom PC
rather than your own machine. You will do your work in a Colab notebook in which the AI
features have been switched off. You can find more info on the use of Colab notebooks in this
module in the Essential Python chapter of the Numerical Analysis Learning Guide.

While working on the quiz on the classroom PC you are only allowed to use a web browser,
and the only pages you are allowed to have open are this guide, the quiz page on Moodle and
any of your notebooks on Google Colab, with the AI features switched off. You are not allowed
to use any AI assistants or other web pages. Besides your online notebooks you may also use
any hand-written notes as long as you have written them yourself.

To allow for the fact that there may be weeks in which you are ill or otherwise prevented
from performing to your best in the assessment quizzes, your final coursework mark will be
calculated as the average over your 8 best marks. If exceptional circumstances affect more than
two of the 10 quizzes then you would need to submit an exceptional circumstances claim.

There will be a practice assessment quiz in week 1 that will not count for anything.

The 60% final exam will be a 2 hour exam of the usual closed-book form in an exam room
during the exam period. I will make a practice exam available at the end of the module.

Textbooks

In this module we will only scratch the surface of the vast subject that is Numerical Analysis.
The aim is for you at the end of this module to be familiar with some key ideas and to have
the confidence to engage with new methods when they become relevant to you.

There are many textbooks on Numerical Analysis. Standard textbooks are (Burden and Faires
2010) and (Kincaid and Cheney 2009). They contain much of the material from this module.
A less structured and more opinionated account can be found in (Acton 1990). Another well
known reference that researchers often turn to for solutions to specific tasks is (Press et al.
2007). You will find many others in the library. They may go also under alternative names
like “Numerical Methods” or “Scientific Computing”.

You may also want to look at textbooks for specific topics covered in this module, like for
example (Butcher 2016) for methods for ordinary differential equations.

Your jobs

You have the following jobs as a student in this module:

1. Fight! You will have to fight hard to work through this material. The fight is exactly
what we are after since it is ultimately what leads to innovative thinking.
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2. Screw Up! More accurately, do not be afraid to screw up. You should write code, work
problems, and develop methods, then be completely unafraid to scrap what you have
done and redo it from scratch.

3. Collaborate! You should collaborate with your peers, both within your group and
across the whole class. Discuss exercises, ask questions, help others.

4. Enjoy! Part of the fun of inquiry-based learning is that you get to experience what it
is like to think like a true mathematician / scientist. It takes hard work but ultimately
this should be fun!

© Gustav Delius. Some Rights Reserved.

This learning guide, adapted from the original text by Eric Sullivan, is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You may copy,
distribute, display, remix, rework, and perform this copyrighted work, as long as you give
credit to both Gustav Delius for the adaptations and Eric Sullivan for the original work.

Please attribute the original work to Eric Sullivan, formerly Mathematics Faculty at Carroll
College, esullivan@carroll.edu, and the adapted work to Gustav Delius, Department of
Mathematics, University of York, gustav.delius@york.ac.uk.

The original work by Eric Sullivan is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/. The adaptations by Gustav Delius are
also published under the same Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.

For inquiries regarding the use of this learning guide, please contact gustav.delius@york.ac.
uk.
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1 Essential Python

Simple is better than complex.
–Guido van Rossum

In this chapter we will walk through some of the basics of using Python - the powerful general-
purpose programming language that we will use throughout this module.

For some of you this material may not be new. For example you may have seen the Python
Programming material that was shared with you in the “2nd year Info” site on Moodle. But
for some of you this may be entirely new. You will have some notion of what a programming
language “is” and “does”, but you may never have written any code. That is alright.

If you are new to Python, don’t feel that you need to work through this chapter in one go.
Instead, spread the work over the first two weeks of the course and intermingle it with your
work on the next two chapters. There is a lot of material in this chapter. Do not feel that you
need to learn it all by hard. The idea is just that you should have seen the various language
constructs once. Your familiarity with them will come automatically later when you use them
throughout the course.

1.1 Why Python?

We are going to be using Python since

• Python is free,

• Python is very widely used,

• Python is flexible,

• Python is relatively easy to learn,

• and Python is quite powerful.

It is important to keep in mind that Python is a general purpose language that we will be
using for Scientific Computing. The purpose of Scientific Computing is not to build apps,
build software, manage databases, or develop user interfaces. Instead, Scientific Computing is
the use of a computer programming language (like Python) along with mathematics to solve
scientific and mathematical problems. For this reason it is definitely not our purpose to write
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an all-encompassing guide for how to use Python. We will only cover what is necessary for
our computing needs. You will learn more as the course progresses so use this chapter just to
get going with the language.

We are also definitely not saying that Python is the best language for scientific computing under
all circumstances. The reason there are so many scientific programming languages coexisting
is that each has particular strengths that make it the best option for particular applications.
But we are saying that Python is so widely used that every scientist should know Python.

There is an overwhelming abundance of information available about Python and the suite of
tools that we will frequently use.

• Python https://www.python.org/,

• numpy (numerical Python) https://www.numpy.org/,

• matplotlib (a suite of plotting tools) https://matplotlib.org/,

• scipy (scientific Python) https://www.scipy.org/.

These tools together provide all of the computational power that we will need. And they are
free!

1.2 Google Colab

Every computer is its own unique flower with its own unique requirements. Hence, we will not
spend time here giving you all of the ways that you can install Python and all of the associated
packages necessary for this module. Unless you are already familiar with using Python on your
own computer, I highly recommend that you use the Google Colab notebook tool for writing
your Python code: https://colab.research.google.com.

Google Colab allows you to keep all of your Python code on your Google Drive. The Co-
lab environment is a free and collaborative version of the popular Jupyter notebook project.
Jupyter notebooks allow you to write and test code as well as to mix writing (including LaTeX
formatting) in along with your code and your output. I recommend that if you are new to
Google Colab, you start by watching the brief introductory video.

Exercise 1.1. Spend a bit of time poking around in Colab. Figure out how to

• Create new Colab notebooks.

• Add and delete code cells.

• Type a simple calculation like 1+1 into a code cell and evaluate it.

• Add and delete text cells.
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• Add an equation to a text cell using LaTeX notation.

• Save a notebook to your Google Drive.

• Open a notebook from Google Drive.

• Share a notebook with other members of your group and see if you can collaboratively
edit it.

Exercise 1.2.

• Click on this link to a Colab notebook. It should open it in Colab.

• Save a copy of it to your Google Drive. You need a copy because you will not have
permission to edit the original.

• Follow the instructions in the notebook.

• Share that notebook with your lecturer gustav.delius@york.ac.uk, giving him at least
“Commenter” privileges.

1.2.1 The use of AI

You will have gathered from the previous exercise that in this module you are not only allowed
to use AI, you are encouraged to use AI. However you have probably already discovered
that you get more out of an AI if you are already familiar with the basic concepts of a subject.
You will need to be able to understand and check any answer an AI gives you. If there is
something in an AI answer that is not totally clear or not obviously correct, always ask the
AI to explain the details of its answer and ask follow-on questions until everything is crystal-
clear.

During the 10 assessment quizzes you will not be allowed to use any AI. In particular you will
be required to switch off the AI features in Google Colab. It is thus a good idea when working
on practice exercises to also switch off the AI features to make sure you know what you are do-
ing even when there is no AI assistance. To switch off the AI features you should tick the “Hide
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generative AI” checkbox on the “AI assistance” tab of the “Settings” page in Google Colab.

1.3 Python Programming Basics

If you are already very practised in using Python then you can jump straight to Section 1.7
with the coding exercises. But if you are new to Python or your Python skills are a bit rusty,
then you will benefit from working through all the examples and exercises below, making sure
you copy and paste all the code into your Colab notebook and run it there, and then critically
evaluate and understand the output. To copy the code from this guide to your notebook you
can use the “Copy to Clipboard” icon that pops up in the top right corner of a code block in
this guide when you hover over that code block.
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1.3.1 Variables

Variable names in Python can contain letters (lower case or capital), numbers 0-9, and some
special characters such as the underscore. Variable names must start with a letter. There are
a bunch of reserved words that you can not use for your variable names because they have a
special meaning in the Python syntax. Python will let you know with a syntax error if you
try to use a reserved word for a variable name.

You can do the typical things with variables. Assignment is with an equal sign (be careful R
users, we will not be using the left-pointing arrow here!).

Warning: When defining numerical variables you do not always get floating point numbers.
In some programming languages, if you write x=1 then automatically x is saved as 1.0; a
floating point number, not an integer. In Python however, if you assign x=1 it is defined as
an integer (with no decimal digits) but if you assign x=1.0 it is assigned as a floating point
number.

# assign some variables
x = 7 # integer assignment of the integer 7
y = 7.0 # floating point assignment of the decimal number 7.0
print("The variable x has the value", x, " and has type", type(x), ". \n")
print("The variable y has the value", y, " and has type", type(y), ". \n")

Remember to copy each code block to your own notebook, execute it and look at the output.

# multiplying by a float will convert an integer to a float
x = 7 # integer assignment of the integer 7
print("Multiplying x by 1.0 gives", 1.0*x)
print("The type of this value is", type(1.0*x), ". \n")

The allowed mathematical operations are:

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Integer Division (modular division): // and %

• Exponents: **
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That’s right, the caret key, ^, is NOT an exponent in Python (sigh). Instead we have to get
used to ** for exponents.

x = 7.0
y = x**2 # square the value in x
y

Exercise 1.3. Write code to define positive integers 𝑎, 𝑏 and 𝑐 of your own choosing. Then
calculate 𝑎2, 𝑏2 and 𝑐2. When you have all three values computed, check to see if your three
values form a Pythagorean Triple so that 𝑎2 + 𝑏2 = 𝑐2. Have Python simply say True or False
to verify that you do, or do not, have a Pythagorean Triple defined. Hint: You will need to
use the == Boolean check just like in other programming languages.

1.3.2 Indexing and Lists

Lists are a key component to storing data in Python. Lists are exactly what the name says:
lists of things (in our case, usually the entries are floating point numbers).

Warning: Python indexing starts at 0 whereas some other programming languages have
indexing starting at 1. In other words, the first entry of a list has index 0, the second entry
as index 1, and so on. We just have to keep this in mind.

We can extract a part of a list using the syntax name[start:stop] which extracts elements
between index start and stop-1. Take note that Python stops reading at the second to last
index. This often catches people off guard when they first start with Python.

Example 1.1 (Lists and Indexing). Let us look at a few examples of indexing from lists. In
this example we will use the list of numbers 0 through 8. This list contains 9 numbers indexed
from 0 to 8.

• Create the list of numbers 0 through 8

MyList = [0,1,2,3,4,5,6,7,8]

• Output the list
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MyList

• Select only the element with index 0.

MyList[0]

• Select all elements up to, but not including, the third element of MyList.

MyList[:2]

• Select the last element of MyList (this is a handy trick!).

MyList[-1]

• Select the elements indexed 1 through 4. Beware! This is not the first through fifth
element.

MyList[1:5]

• Select every other element in the list starting with the first.

MyList[0::2]

• Select the last three elements of MyList

MyList[-3:]

In Python, elements in a list do not need to be the same type. You can mix integers, floats,
strings, lists, etc.

Example 1.2. In this example we see a list of several items that have different data types:
float, integer, string, and complex. Note that the imaginary number 𝑖 is represented by 1𝑗
in Python. This is common in many scientific disciplines and is just another thing that we
will need to get used to in Python. (For example, 𝑗 is commonly used as the symbol for the
imaginary unit

√
−1) in electrical engineering since 𝑖 is the symbol commonly used for electric

current, and using 𝑖 for both would be problematic).
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MixedList = [1.0, 7, 'Bob', 1-1j]
print(MixedList)
print(type(MixedList[0]))
print(type(MixedList[1]))
print(type(MixedList[2]))
print(type(MixedList[3]))
# Notice that we use 1j for the imaginary number "i".

Exercise 1.4. In this exercise you will put your new list skills into practice.

1. Create the list of the first several Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. (1.1)

2. Print the first four elements of the list.

3. Print every third element of the list starting from the first.

4. Print the last element of the list.

5. Print the list in reverse order.

6. Print the list starting at the last element and counting backward by every other element.

1.3.3 List Operations

Python is awesome about allowing you to do things like appending items to lists, removing
items from lists, and inserting items into lists. Note in all of the examples below that we are
using the code
variable.method
where you put the variable name, a dot, and the thing that you would like to do to that
variable. For example, MyList.append(7) will append the number 7 to the list MyList. We
say that append is a “method” of the list MyList. This is a common programming feature in
Python and we will use it often.

Example 1.3. The .append method can be used to append an element to the end of a list.
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MyList = [0,1,2,3]
print(MyList)
# Append the string 'a' to the end of the list
MyList.append('a')
print(MyList)
# Do it again ... just for fun
MyList.append('a')
print(MyList)
# Append the number 15 to the end of the list
MyList.append(15)
print(MyList)

Example 1.4. The .remove method can be used to remove an element from a list.

# Let us remove the 3
MyList.remove(3)
print(MyList)

Example 1.5. The .insert method can be used to insert an element at a location in a list.

# insert the letter `A` at the 0-indexed spot
MyList.insert(0,'A')
# insert the letter `B` at the spot with index 3
MyList.insert(3,'B')
# remember that index 3 means the fourth spot in the list
print(MyList)

Exercise 1.5. In this exercise you will go a bit further with your list operation skills.

1. Create the list of the first several Lucas Numbers: 1, 3, 4, 7, 11, 18, 29, 47.
2. Add the next three Lucas Numbers to the end of the list.

3. Remove the number 3 from the list.
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4. Insert the 3 back into the list in the correct spot.

5. Print the list in reverse order.

6. Do a few other list operations to this list and report your findings.

1.3.4 Tuples

In Python, a “tuple” is like an ordered pair (or ordered triple, or ordered quadruple, ...) in
mathematics. We will occasionally see tuples in our work in numerical analysis so for now let
us just give a couple of code snippets showing how to store and read them.

We can define the tuple of numbers (10, 20) in Python as follows:

Example 1.6.

point = 10, 20
print(point, type(point))

We can also define a tuple with parenthesis if we like. Python does not care.

point = (10, 20) # now we define the tuple with parenthesis
print(point, type(point))

We can then unpack the tuple into components if we wish:

x, y = point
print("x = ", x)
print("y = ", y)

There are other important data structures in Python that we will not cover in this module.
These include dictionaries and sets. We will not cover these because they are not necessary
for our work in numerical analysis. We are trying to keep things simple. If you are interested
in learning more about these data structures, you can find a lot of information about them in
the Python documentation.
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1.3.5 Control Flow: Loops and If Statements

Any time you need to do some repetitive task with a programming language you can use a
loop. Just like in other programming languages, we can do loops and conditional statements
in very easy ways in Python. The thing to keep in mind is that the Python language is very
white-space-dependent. This means that your indentations need to be correct in order for a
loop to work. You could get away with sloppy indention in other languages but not so in
Python. Also, in some languages (like R and Java) you need to wrap your loops in curly
braces. Again, not so in Python.

Caution: Be really careful of the white space in your code when you write loops.

1.3.5.1 for Loops

A for loop is designed to do a task a certain number of times and then stop. This is a great tool
for automating repetitive tasks, but it also nice numerically for building sequences, summing
series, or just checking lots of examples. The following are several examples of Python for
loops. Take careful note of the syntax for a for loop as it is the same as for other loops and
conditional statements:

• a control statement,

• a colon, a new line,

• indent four spaces,

• some programming statements

When you are done with the loop, just back out of the indention. There is no need for an
end command or a curly brace. All of the control statements in Python are white-space-
dependent.

Example 1.7. Print the first 6 perfect squares.

for x in [1,2,3,4,5,6]:
print(x**2)

Often instead of writing the list of integers explicitly one uses the range() function, so that
this example would be written as
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for x in range(1,7):
print(x**2)

Note that range(1,7) produces the integers from 1 to 6, not from 1 to 7. This is another
manifestation of Python’s weird 0-based indexing. Of course it is only weird to people who
are new to Python. For Pythonists it is perfectly natural.

Example 1.8. Print the names in a list.

NamesList = ['Alice','Billy','Charlie','Dom','Enrique','Francisco']
for name in NamesList:

print(name)

In Python you can use a more compact notation for for loops sometimes. This takes a bit of
getting used to, but is super slick!

Example 1.9. Create a list of the perfect squares from 1 to 9.

# create a list of the perfect squares from 1 to 9
CoolList = [x**2 for x in range(1,10)]
print(CoolList)
# Then print the sum of this list
print("The sum of the first 9 perfect squares is",sum(CoolList))

for loops can also be used to build sequences as can be seen in the next couple of examples.

Example 1.10. In the following code we write a for loop that outputs a list of the first 7
iterations of the sequence 𝑥𝑛+1 = −0.5𝑥𝑛 + 1 starting with 𝑥0 = 3. Notice that we are using
the command x.append instead of 𝑥[𝑛+1] to append the new term to the list. This allows us
to grow the length of the list dynamically as the loop progresses.
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x=[3.0]
for n in range(0,7):

x.append(-0.5*x[n] + 1)
print(x) # print the whole list x at each step of the loop

Example 1.11. As an alternative to the code from the previous example we can pre-allocate
the memory in an array of zeros. This is done with the clever code x = [0] * 10. Literally
multiplying a list by some number, like 10, says to repeat that list 10 times.

Now we will build the sequence with pre-allocated memory.

x = [0] * 7
x[0] = 3.0
for n in range(0,6):

x[n+1] = -0.5*x[n]+1
print(x) # This print statement shows x at each iteration

Exercise 1.6. We want to sum the first 100 perfect cubes. Let us do this in two ways.

1. Start off a variable called Total at 0 and write a for loop that adds the next perfect
cube to the running total.

2. Write a for loop that builds the sequence of the first 100 perfect cubes. After the list
has been built find the sum with the sum() function.

The answer is: 25,502,500 so check your work.

Exercise 1.7. Write a for loop that builds the first 20 terms of the sequence 𝑥𝑛+1 = 1 − 𝑥2
𝑛

with 𝑥0 = 0.1. Pre-allocate enough memory in your list and then fill it with the terms of the
sequence. Only print the list after all of the computations have been completed.
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1.3.5.2 while Loops

A while loop repeats some task (or sequence of tasks) while a logical condition is true. It
stops when the logical condition turns from true to false. The structure in Python is the same
as with for loops.

Example 1.12. Print the numbers 0 through 4 and then the word “done.” we will do this by
starting a counter variable, i, at 0 and increment it every time we pass through the loop.

i = 0
while i < 5:

print(i)
i += 1 # increment the counter

print("done")

Example 1.13. Now let us use a while loop to build the sequence of Fibonacci numbers and
stop when the newest number in the sequence is greater than 1000. Notice that we want to
keep looping until the condition that the last term is greater than 1000 – this is the perfect
task for a while loop, instead of a for loop, since we do not know how many steps it will take
before we start the task

Fib = [1,1]
while Fib[-1] <= 1000:

Fib.append(Fib[-1] + Fib[-2])
print("The last few terms in the list are:\n",Fib[-3:])

Exercise 1.8. Write a while loop that sums the terms in the Fibonacci sequence until the
sum is larger than 1000
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1.3.5.3 if Statements

Conditional (if) statements allow you to run a piece of code only under certain conditions.
This is handy when you have different tasks to perform under different conditions.

Example 1.14. Let us look at a simple example of an if statement in Python.

Name = "Alice"
if Name == "Alice":

print("Hello, Alice. Isn't it a lovely day to learn Python?")
else:

print("You're not Alice. Where is Alice?")

Name = "Billy"
if Name == "Alice":

print("Hello, Alice. Isn't it a lovely day to learn Python?")
else:

print("You're not Alice. Where is Alice?")

Example 1.15. For another example, if we get a random number between 0 and 1 we could
have Python print a different message depending on whether it was above or below 0.5. Run
the code below several times and you will see different results each time.

Note: We have to import the numpy package to get the random number generator in Python.
Do not worry about that for now. we will talk about packages in a moment.

import numpy as np
x = np.random.rand(1,1) # get a random 1x1 matrix using numpy
x = x[0,0] # pull the entry from the first row and first column
if x < 0.5:

print(x," is less than a half")
else:

print(x, "is NOT less than a half")

(Take note that the output will change every time you run it)
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Example 1.16. In many programming tasks it is handy to have several different choices
between tasks instead of just two choices as in the previous examples. This is a job for the
elif command.

This is the same code as last time except we will make the decision at 0.33 and 0.67

import numpy as np
x = np.random.rand(1,1) # get a random 1x1 matrix using numpy
x = x[0,0] # pull the entry from the first row and first column
if x < 0.33:

print(x," < 1/3")
elif x < 0.67:

print("1/3 <= ",x,"< 2/3")
else:

print(x, ">= 2/3")

(Take note that the output will change every time you run it)

Exercise 1.9. Write code to give the Collatz Sequence

𝑥𝑛+1 = { 𝑥𝑛/2, 𝑥𝑛 is even
3𝑥𝑛 + 1, otherwise (1.2)

starting with a positive integer of your choosing. The sequence will converge1 to 1 so your
code should stop when the sequence reaches 1.

Hints: To test whether a number x is even you can test whether the remainder after dividing
by 2 is zero with (x % 2) == 0. Also you will want to use the integer division // when
calculating 𝑥𝑛/2.

1Actually, it is still an open mathematical question whether every integer seed will converge to 1. The Collatz
sequence has been checked for many millions of initial seeds and they all converge to 1, but there is no
mathematical proof that it will always happen. You will check the conjecture numerically in Exercise 1.27
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1.3.6 Functions

Mathematicians and programmers talk about functions in very similar ways, but they are not
exactly the same. When we say “function” in a programming sense we are talking about a
chunk of code that you can pass parameters and expect an output of some sort. This is not
unlike the mathematician’s version, but unlike a mathematical function can also have side
effects, like plotting a graph for example. So Python’s definition of a function is a bit more
flexible than that of a mathematician.

In Python, to define a function we start with def, followed by the function’s name, any input
variables in parenthesis, and a colon. The indented code after the colon is what defines the
actions of the function.

Example 1.17. The following code defines the polynomial 𝑓(𝑥) = 𝑥3+3𝑥2+3𝑥+1 and then
evaluates the function at a point 𝑥 = 2.3.

def f(x):
return(x**3 + 3*x**2 + 3*x + 1)

f(2.3)

Take careful note of several things in the previous example:

• To define the function we cannot just type it like we would see it one paper. This is not
how Python recognizes functions.

• Once we have the function defined we can call upon it just like we would on paper.

• We cannot pass symbols into this type of function.2

Exercise 1.10. Define the function 𝑔(𝑛) = 𝑛2 + 𝑛 + 41 as a Python function. Write a loop
that gives the output for this function for integers from 𝑛 = 0 to 𝑛 = 39. Euler noticed that
each of these outputs is a prime number (check this on your own). Will the function produce
a prime for 𝑛 = 40? For 𝑛 = 41?

2There is the sympy package if you want to do symbolic computations, but we will not use that in this module.

35



Example 1.18. One cool thing that you can do with functions is call them recursively. That
is, you can call the same function from within the function itself. This turns out to be really
handy in several mathematical situations.

Let us define a function for the factorial. This function is naturally going to be recursive in
the sense that it calls on itself!

def Fact(n):
if n==0:

return(1)
else:

return(n*Fact(n-1))
# Note: we are calling the function recursively.

When you run this code there will be no output. You have just defined the function so you
can use it later. So let us use it to make a list of the first several factorials. Note the use of a
for loop in the following code.

FactList = [Fact(n) for n in range(0,10)]
FactList

Example 1.19. For this next example let us define the sequence

𝑥𝑛+1 = { 2𝑥𝑛, 𝑥𝑛 ∈ [0, 0.5]
2𝑥𝑛 − 1, 𝑥𝑛 ∈ (0.5, 1] (1.3)

as a function and then build a loop to find the first several iterates of the sequence starting at
any real number between 0 and 1.

# Define the function
def MySeq(xn):

if xn <= 0.5:
return(2*xn)

else:
return(2*xn-1)

# Now build a sequence with this function
x = [0.125] # arbitrary starting point
for n in range(0,5): # Let us only build the first 5 terms

x.append(MySeq(x[-1]))
print(x)
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Example 1.20. A fun way to approximate the square root of two is to start with any positive
real number and iterate over the sequence

𝑥𝑛+1 = 1
2𝑥𝑛 + 1

𝑥𝑛
(1.4)

until we are within any tolerance we like of the square root of 2. Write code that defines the
sequence as a function and then iterates in a while loop until we are within 10−8 of the square
root of 2.

We import the math package so that we get the square root function. More about packages in
the next section.

from math import sqrt
def f(x):

return(0.5*x + 1/x)
x = 1.1 # arbitrary starting point
print("approximation \t\t exact \t\t abs error")
while abs(x-sqrt(2)) > 10**(-8):

x = f(x)
print(x, sqrt(2), abs(x - sqrt(2)))

Exercise 1.11. The previous example is a special case of the Babylonian Algorithm for cal-
culating square roots. If you want the square root of 𝑆 then iterate the sequence

𝑥𝑛+1 = 1
2 (𝑥𝑛 + 𝑆

𝑥𝑛
) (1.5)

until you are within an appropriate tolerance.

Modify the code given in the previous example to give a list of approximations of the square
roots of the natural numbers 2 through 20, each to within 10−8. This problem will require
that you build a function, write a ‘for’ loop (for the integers 2-20), and write a ‘while’ loop
inside your ‘for’ loop to do the iterations.

37



1.3.7 Lambda Functions

Using def to define a function as in the previous subsection is really nice when you have a
function that is complicated or requires some bit of code to evaluate. However, in the case of
mathematical functions we have a convenient alternative: lambda Functions.

The basic idea of a lambda Function is that we just want to state what the variable is and what
the rule is for evaluating the function. This is closest to the way that we write mathematical
functions. For example, we can define the mathematical function 𝑓(𝑥) = 𝑥2+3 in two different
ways.

• Using def:

def f(x):
return(x**2+3)

• Using lambda:

f = lambda x: x**2+3

You can see that in the Lambda Function we are explicitly stating the name of the variable
immediately after the word lambda, then we put a colon, and then the function definition.

No matter whether we use def or lambda to define the function f, if we want to evaluate the
function at a point, say 𝑥 = 1.5, then we can write code just like we would mathematically:
𝑓(1.5)

f(1.5) # evaluate the function at x=1.5

We can also define Lambda Functions of several variables. For example, if we want to define
the mathematical function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦3 we could write the code

f = lambda x, y: x**2 + x*y + y**3

If we wanted the value 𝑓(2, 4) we would now write the code f(2,4).

Exercise 1.12. Go back to Exercise 1.10 and repeat this exercise using a lambda function.

Exercise 1.13. Go back to Exercise 1.11 and repeat this exercise using a lambda function.
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1.3.8 Packages

Python was not created as a scientific programming language. The reason Python can be used
for scientific computing is that there are powerful extension packages that define additional
functions that are needed for scientific calculations.

Let us start with the math package.

Example 1.21. The code below imports the math package into your instance of Python and
calculates the cosine of 𝜋/4.

import math
x = math.cos(math.pi / 4)
print(x)

The answer, unsurprisingly, is the decimal form of
√
2/2.

You might already see a potential disadvantage to Python’s packages: there is now more typing
involved! Let us fix this. When you import a package you could just import all of the functions
so they can be used by their proper names.

Example 1.22. Here we import the entire math package so we can use every one of the
functions therein without having to use the math prefix.

from math import * # read this as: from math import everything
x = cos(pi / 4)
print(x)

The end result is exactly the same: the decimal form of
√
2/2, but now we had less typing to

do.

39



Now you can freely use the functions that were imported from the math package. There is
a disadvantage to this, however. What if we have two packages that import functions with
the same name. For example, in the math package and in the numpy package there is a cos()
function. In the next block of code we will import both math and numpy, but instead we will
import them with shortened names so we can type things a bit faster.

Example 1.23. Here we import math and numpy under aliases so we can use the shortened
aliases and not mix up which functions belong to which packages.

import math as ma
import numpy as np
# use the math version of the cosine function
x = ma.cos( ma.pi / 4)
# use the numpy version of the cosine function
y = np.cos( np.pi / 4)
print(x, y)

Both x and y in the code give the decimal approximation of
√
2/2. This is clearly pretty

redundant in this really simple case, but you should be able to see where you might want to
use this and where you might run into troubles.

Example 1.24 (Contents of a package). Once you have a package imported you can see what
is inside of it using the dir command. The following block of code prints a list of all of the
functions inside the math package.

import math
print(dir(math))

By the way: you only need to import a package once in a session. The only reason we are
repeating the import statement in each code block is to make it easier to come back to this
material later in a new session, where you will need to import the packages again.

Of course, there will be times when you need help with a function. You can use the help
function to view the help documentation for any function. For example, you can run the code
help(math.acos) to get help on the arc cosine function from the math package.
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Exercise 1.14. Import the math package, figure out how the log function works, and write
code to calculate the logarithm of the number 8.3 in base 10, base 2, base 16, and base 𝑒 (the
natural logarithm).

1.4 Numerical Python with NumPy

The base implementation of Python includes the basic programming language, the tools to
write loops, check conditions, build and manipulate lists, and all of the other things that we
saw in the previous section. In this section we will explore the package numpy that contains
optimized numerical routines for doing numerical computations in scientific computing.

Example 1.25. To start with, let us look at a really simple example. Say you have a list of
real numbers and you want to take the sine of every element in the list. If you just try to take
the sine of the list you will get an error. Try it yourself.

from math import pi, sin
MyList = [0,pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]
sin(MyList)

You could get around this error using some of the tools from base Python, but none of them
are very elegant from a programming perspective.

from math import pi, sin
MyList = [0,pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]
SineList = [sin(n) for n in MyList]
SineList

from math import pi, sin
MyList = [0,pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]
SineList = [ ]
for n in range(0,len(MyList)):

SineList.append(sin(MyList[n]))
SineList
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Perhaps more simply, say we wanted to square every number in a list. Just appending the
code **2 to the end of the list will fail!

MyList = [1,2,3,4]
MyList**2 # This will produce an error

If, instead, we define the list as a numpy array instead of a Python list then everything will
work mathematically exactly the way that we intend.

import numpy as np
MyList = np.array([1,2,3,4])
MyList**2 # This will work as expected!

Exercise 1.15. See if you can take the sine of a full list of numbers that are stored in a numpy
array.

Hint: you will now see why the numpy package provides its own version of the sine function.

The package numpy is used in many (most) mathematical computations in numerical analysis
using Python. It provides algorithms for matrix and vector arithmetic. Furthermore, it is
optimized to be able to do these computations in the most efficient possible way (both in
terms of memory and in terms of speed).

Typically when we import numpy we use import numpy as np. This is the standard way to
name the numpy package. This means that we will have lots of function with the prefix “np”
in order to call on the numpy functions. Let us first see what is inside the package with the
code print(dir(np)) after importing numpy as np. A brief glimpse through the list reveals
a huge wealth of mathematical functions that are optimized to work in the best possible way
with the Python language. (We are intentionally not showing the output here since it is quite
extensive, run it so you can see.)

1.4.1 Numpy Arrays, Array Operations, and Matrix Operations

In the previous section you worked with Python lists. As we pointed out, the shortcoming of
Python lists is that they do not behave well when we want to apply mathematical functions
to the vector as a whole. The “numpy array”, np.array, is essentially the same as a Python
list with the notable exceptions that
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• In a numpy array every entry is a floating point number

• In a numpy array the memory usage is more efficient (mostly since Python is expecting
data of all the same type)

• With a numpy array there are ready-made functions that can act directly on the array as
a matrix or a vector

Let us just look at a few examples using numpy. What we are going to do is to define a matrix
𝐴 and vectors 𝑣 and 𝑤 as

𝐴 = (1 2
3 4) , 𝑣 = (5

6) and 𝑤 = 𝑣𝑇 = (5 6) . (1.6)

Then we will do the following

• Get the size and shape of these arrays

• Get individual elements, rows, and columns from these arrays

• Treat these arrays as with linear algebra to

– do element-wise multiplication

– do matrix a vector products

– do scalar multiplication

– take the transpose of matrices

– take the inverse of matrices

Example 1.26 (numpy Matrices). The first thing to note is that a matrix is a list of lists
(each row is a list).

import numpy as np
A = np.array([[1,2],[3,4]])
print("The matrix A is:\n",A)
v = np.array([[5],[6]]) # this creates a column vector
print("The vector v is:\n",v)
w = np.array([[5,6]]) # this creates a row vector
print("The vector w is:\n",w)
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Example 1.27 (.shape). The .shape attribute can be used to give the shape of a numpy
array. Notice that the output is a tuple showing the size (rows, columns).

print("The shape of the matrix A is ", A.shape)
print("The shape of the column vector v is ", v.shape)
print("The shape of the row vector w is ", w.shape)

Example 1.28 (.size). The .size attribute can be used to give the size of a numpy array.
The size of a matrix or vector will be the total number of elements in the array. You can think
of this as the product of the values in the tuple coming from the shape method.

print("The size of the matrix A is ", A.size)
print("The size of the column vector v is ", v.size)
print("The size of the row vector w is ", w.size)

Reading individual elements from a numpy array is the same, essentially, as reading elements
from a Python list. We will use square brackets to get the row and column. Remember that
the indexing all starts from 0, not 1!

Example 1.29. Let us read the top left and bottom right entries of the matrix 𝐴.

import numpy as np
A = np.array([[1,2],[3,4]])
print(A[0,0]) # top left
print(A[1,1]) # bottom right

Example 1.30. Let us read the first row from that matrix 𝐴.

import numpy as np
A = np.array([[1,2],[3,4]])
print(A[0,:])
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Example 1.31. Let us read the second column from the matrix 𝐴.

import numpy as np
A = np.array([[1,2],[3,4]])
print(A[:,1])

Notice when we read the column it was displayed as a row. Be careful. Reading a row or a
column from a matrix will automatically flatten it into a 1-dimensional array.

If we try to multiply either 𝐴 and 𝑣 or 𝐴 and 𝐴 we will get some funky results. Unlike in some
programming languages like MATLAB, the default notion of multiplication is NOT matrix
multiplication. Instead, the default is element-wise multiplication. You may be familiar with
this from R.

Example 1.32. If we write the code A*A we do NOT do matrix multiplication. Instead we
do element-by-element multiplication. This is a common source of issues when dealing with
matrices and Linear Algebra in Python.

import numpy as np
A = np.array([[1,2],[3,4]])
print("Element-wise multiplication:\n", A * A)
print("Matrix multiplication:\n", A @ A)

Example 1.33. If we write A * v Python will do element-wise multiplication across each
column since 𝑣 is a column vector. If we want the matrix A to act on v we write A @ v.

import numpy as np
A = np.array([[1,2],[3,4]])
v = np.array([[5],[6]])
print("Element-wise multiplication on each column:\n", A * v)
# A @ v will do proper matrix multiplication
print("Matrix A acting on vector v:\n", A @ v)
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It is up to you to check that these products are indeed correct from the definitions of matrix
multiplication from Linear Algebra.

It remains to show some of the other basic linear algebra operations: inverses, determinants,
the trace, and the transpose.

Example 1.34 (Transpose). Taking the transpose of a matrix (swapping the rows and
columns) is done with the .T attribute.

A.T # The transpose is relatively simple

Example 1.35 (Trace). The trace is done with matrix.trace()

A.trace() # The trace is pretty darn easy too

Oddly enough, the trace returns a matrix, not a scalar Therefore you will have to read the
first entry (index [0,0]) from the answer to just get the trace.

Example 1.36 (Determinant). The determinant function is hiding under the linalg sub-
package inside numpy. Therefore we need to call it as such.

np.linalg.det(A)

You notice an interesting numerical error here. You can do the determinant easily by hand
and so know that it should be exactly −2. We’ll discuss the source of these kinds of errors in
Chapter 2.

Example 1.37 (Inverse). In the linalg subpackage there is also a function for taking the
inverse of a matrix.
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Ainv = np.linalg.inv(A)
Ainv

We can check that we get the identity matrix back:

A @ Ainv

Exercise 1.16. Now that we can do some basic linear algebra with numpy it is your turn.
Define the matrix 𝐵 and the vector 𝑢 as

𝐵 = ⎛⎜
⎝

1 4 8
2 3 −1
0 9 −3

⎞⎟
⎠

and 𝑢 = ⎛⎜
⎝

6
3
−7

⎞⎟
⎠

. (1.7)

Then find

1. 𝐵𝑢
2. 𝐵2 (in the traditional linear algebra sense)

3. The size and shape of 𝐵
4. 𝐵𝑇𝑢
5. The element-by-element product of 𝐵 with itself

6. The dot product of 𝑢 with the first row of 𝐵

1.4.2 arange, linspace, zeros, ones, and meshgrid

There are a few built-in ways to build arrays in numpy that save a bit of time in many scientific
computing settings.

Example 1.38. The np.arange (array range) function is great for building sequences.
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import numpy as np
x = np.arange(0,0.6,0.1)
x

np.arange builds an array of floating point numbers with the arguments start, stop, and
step. Note that the stop value itself is not included in the result.

Example 1.39. The np.linspace function builds an array of floating point numbers starting
at one point, ending at the next point, and have exactly the number of points specified with
equal spacing in between: start, stop, number of points.

import numpy as np
y = np.linspace(0,5,11)
y

In a linear space you are always guaranteed to hit the stop point exactly, but you do not have
direct control over the step size.

Example 1.40. The np.zeros function builds an array of zeros. This is handy for pre-
allocating memory.

import numpy as np
z = np.zeros((3,5)) # create a 3x5 matrix of zeros
z

Example 1.41. The np.ones function builds an array of ones.

import numpy as np
u = np.ones((3,5)) # create a 3x5 matrix of ones
u
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Example 1.42. The np.meshgrid function builds two arrays that when paired make up the
ordered pairs for a 2D (or higher D) mesh grid of points. This is handy for building 2D
(or higher dimensional) arrays of data for multi-variable functions. Notice that the output is
defined as a tuple.

import numpy as np
x, y = np.meshgrid(np.linspace(0, 5, 6), np.linspace(0, 5, 6))
print("x = ", x)
print("y = ", y)

The thing to notice with the np.meshgrid() function is that when you lay the two arrays on
top of each other, the matching entries give every ordered pair in the domain.

If the purpose of this is not clear to you yet, don’t worry. You will see it used a lot later in
the module.

Exercise 1.17. Now it is time to practice with some of these numpy functions.

a. Create a numpy array of the numbers 1 through 10 and square every entry in the list
without using a loop.

b. Create a 10 × 10 identity matrix and change the top right corner to a 5. Hint:
np.identity()

c. Find the matrix-vector product of the answer to part (b) and the answer to part (a).

d. Change the bottom row of your matrix from part (b) to all 3’s, then change the third
column to all 7’s, and then find the 5𝑡ℎ power of this matrix.

1.5 Plotting with Matplotlib

A key part of scientific computing is plotting your results or your data. The tool in Python
best-suited to this task is the package matplotlib. As with all of the other packages in
Python, it is best to learn just the basics first and then to dig deeper later. One advantage
to using matplotlib in Python is that it is modelled off of MATLAB’s plotting tools. People
coming from a MATLAB background should feel pretty comfortable here, but there are some
differences to be aware of.
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1.5.1 Basics with plt.plot()

We are going to start right away with an example. In this example, however, we will walk
through each of the code chunks one-by-one so that we understand how to set up a proper
plot.

Below we will mention some tricks for getting the plots to render that only apply to Jupyter
Notebooks. If you are using Google Colab then you may not need some of these little tricks.

Example 1.43 (Plotting with matplotlib). In the first example we want to simply plot the
sine function on the domain 𝑥 ∈ [0, 2𝜋], colour it green, put a grid on it, and give a meaningful
legend and axis labels. To do so we first need to take care of a couple of housekeeping items.

• Import numpy so we can take advantage of some good numerical routines.

• Import matplotlib’s pyplot module. The standard way to pull it in is with the nick-
name plt (just like with numpy when we import it as np).

import numpy as np
import matplotlib.pyplot as plt

In Jupyter Notebooks the plots will not show up unless you tell the notebook to put them
“inline.” Usually we will use the following command to get the plots to show up. You do not
need to do this in Google Colab. The percent sign is called a magic command in Jupyter
Notebooks. This is not a Python command, but it is a command for controlling the Jupyter
IDE specifically.

%matplotlib inline

Now we will build a numpy array of 𝑥 values (using the np.linspace function) and a numpy
array of 𝑦 values from the sine function.

# 100 equally spaced points from 0 to 2pi
x = np.linspace(0,2*np.pi, 100)
y = np.sin(x)

• Next, build the plot with plt.plot(). The syntax is: plt.plot(x, y, ’color’,
...) where you have several options that you can pass (more on that later).

• We send the plot label directly to the plot function. This is optional and we could set
the legend up separately if we like.
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• Then we will add the grid with plt.grid()

• Then we will add the legend to the plot

• Finally we will add the axis labels

• We end the plotting code with plt.show() to tell Python to finally show the plot. This
line of code tells Python that you are done building that plot.

plt.plot(x,y, 'green', label='The Sine Function')
plt.grid()
plt.legend()
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.show()

Figure 1.1: The sine function

Example 1.44. Now let us do a second example, but this time we want to show four different
plots on top of each other. When you start a figure, matplotlib is expecting all of those plots
to be layered on top of each other. (Note:For MATLAB users, this means that you do not
need the hold on command since it is automatically “on.”)
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In this example we will plot

𝑦0 = sin(2𝜋𝑥) 𝑦1 = cos(2𝜋𝑥) 𝑦2 = 𝑦0 + 𝑦1 and 𝑦3 = 𝑦0 − 𝑦1 (1.8)

on the domain 𝑥 ∈ [0, 1] with 100 equally spaced points. we will give each of the plots a
different line style, built a legend, put a grid on the plot, and give axis labels.

import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline # you may need this in Jupyter Notebooks

# build the x and y values
x = np.linspace(0,1,100)
y0 = np.sin(2*np.pi*x)
y1 = np.cos(2*np.pi*x)
y2 = y0 + y1
y3 = y0 - y1

# plot each of the functions
# (notice that they will be on the same axes)
plt.plot(x, y0, 'b-.', label=r"$y_0 = \sin(2\pi x)$")
plt.plot(x, y1, 'r--', label=r"$y_1 = \cos(2\pi x)$")
plt.plot(x, y2, 'g:', label=r"$y_2 = y_0 + y_1$")
plt.plot(x, y3, 'k-', label=r"$y_3 = y_0 - y_1$")

# put in a grid, legend, title, and axis labels
plt.grid()
plt.legend()
plt.title("Awesome Graph")
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.show()
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Figure 1.2: Plots of the sine, cosine, and sums and differences.

Notice the r in front of the strings defining the legend. This prevents the backslash that is
used a lot in LaTeX to be interpreted as an escape character. These strings are referred to as
raw strings.

The legend was placed automatically at the lower left of the plot. There are ways to control
the placement of the legend if you wish, but for now just let Python and matplotlib have
control over the placement.

Example 1.45. Now let us create the same plot with slightly different code. The plot function
can take several (𝑥, 𝑦) pairs in the same line of code. This can really shrink the amount of
coding that you have to do when plotting several functions on top of each other.

# The next line of code does all of the plotting of all
# of the functions. Notice the order: x, y, color and
# line style, repeat
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,1,100)
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y0 = np.sin(2*np.pi*x)
y1 = np.cos(2*np.pi*x)
y2 = y0 + y1
y3 = y0 - y1
plt.plot(x, y0, 'b-.', x, y1, 'r--', x, y2, 'g:', x, y3, 'k-')

plt.grid()
plt.legend([r"$y_0 = \sin(2\pi x)$",r"$y_1 = \cos(2\pi x)$",\

r"$y_2 = y_0 + y_1$",r"$y_3 = y_0 - y_1$"])
plt.title("Awesome Graph")
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.show()

Figure 1.3: A second plot of the sine, cosine, and sums and differences.

Exercise 1.18. Plot the functions 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥3, and ℎ(𝑥) = 𝑥4 on the same axes.
Use the domain 𝑥 ∈ [0, 1]. Put a grid, a legend, a title, and appropriate labels on the axes.
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1.5.2 Subplots

It is often very handy to place plots side-by-side or as some array of plots. The subplots
command allows us that control. The main idea is that we are setting up a matrix of blank
plots and then populating the axes with the plots that we want.

Example 1.46. Let us repeat the previous exercise, but this time we will put each of the
plots in its own subplot. There are a few extra coding quirks that come along with building
subplots so we will highlight each block of code separately.

• First we set up the plot area with plt.subplots(). The first two inputs to the subplots
command are the number of rows and the number of columns in your plot array. For the
first example we will do 2 rows of plots with 2 columns – so there are four plots total.

• Then we build each plot individually telling matplotlib which axes to use for each of
the things in the plots.

• Notice the small differences in how we set the titles and labels

• In this example we are setting the 𝑦-axis to the interval [−2, 2] for consistency across all
of the plots.

# set up the blank matrix of plots
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,1,100)
y0 = np.sin(2*np.pi*x)
y1 = np.cos(2*np.pi*x)
y2 = y0 + y1
y3 = y0 - y1

fig, axes = plt.subplots(nrows = 2, ncols = 2)

# Build the first plot
axes[0,0].plot(x, y0, 'b-.')
axes[0,0].grid()
axes[0,0].set_title(r"$y_0 = \sin(2\pi x)$")
axes[0,0].set_ylim(-2,2)
axes[0,0].set_xlabel("x")
axes[0,0].set_ylabel("y")

# Build the second plot
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axes[0,1].plot(x, y1, 'r--')
axes[0,1].grid()
axes[0,1].set_title(r"$y_1 = \cos(2\pi x)$")
axes[0,1].set_ylim(-2,2)
axes[0,1].set_xlabel("x")
axes[0,1].set_ylabel("y")

# Build the first plot
axes[1,0].plot(x, y2, 'g:')
axes[1,0].grid()
axes[1,0].set_title(r"$y_2 = y_0 + y_1$")
axes[1,0].set_ylim(-2,2)
axes[1,0].set_xlabel("x")
axes[1,0].set_ylabel("y")

# Build the first plot
axes[1,1].plot(x, y3, 'k-')
axes[1,1].grid()
axes[1,1].set_title(r"$y_3 = y_0 - y_1$")
axes[1,1].set_ylim(-2,2)
axes[1,1].set_xlabel("x")
axes[1,1].set_ylabel("y")

fig.tight_layout()
plt.show()

56



Figure 1.4: An example of subplots

The fig.tight_layout() command makes the plot labels a bit more readable in this instance
(again, something you can play with).

Exercise 1.19. Put the functions 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥3 and ℎ(𝑥) = 𝑥4 in a subplot environ-
ment with 1 row and 3 columns of plots. Use the unit interval as the domain and range for all
three plot. Make sure that each plot has a grid, appropriate labels, an appropriate title, and
the overall figure has a title.

1.5.3 Logarithmic Scaling with semilogy, semilogx, and loglog

It is occasionally useful to scale an axis logarithmically. This arises most often when we are
examining an exponential function, or some other function, that is close to zero for much of
the domain. Scaling logarithmically allows us to see how small the function is getting in orders
of magnitude instead of as a raw real number. we will use this often in numerical methods.
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Example 1.47. In this example we will plot the function 𝑦 = 10−0.01𝑥 on a regular (linear)
scale and on a logarithmic scale on the 𝑦 axis. We use the interval [0, 500] on the 𝑥 axis.

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,500,1000)
y = 10**(-0.01*x)
fig, axis = plt.subplots(1,2)

axis[0].plot(x,y, 'r')
axis[0].grid()
axis[0].set_title("Linearly scaled y axis")
axis[0].set_xlabel("x")
axis[0].set_ylabel("y")

axis[1].semilogy(x,y, 'r')
axis[1].grid()
axis[1].set_title("Logarithmically scaled y axis")
axis[1].set_xlabel("x")
axis[1].set_ylabel("Log(y)")

fig.tight_layout()
plt.show()
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Figure 1.5: An example of using logarithmic scaling.

It should be noted that the same result can be achieved using the yscale command along
with the plot command instead of using the semilogy command. So you could replace

axis[1].semilogy(x,y, 'r')

by

axis[1].plot(x,y, 'r')
axis[1].set_yscale("log")

to produce identical results.

Exercise 1.20. Plot the function 𝑓(𝑥) = 𝑥3 for 𝑥 ∈ [0, 1] on linearly scaled axes, logarith-
mic axis in the 𝑦 direction, logarithmically scaled axes in the 𝑥 direction, and a log-log plot
with logarithmic scaling on both axes. Use subplots to put your plots side-by-side. Give
appropriate labels, titles, etc.
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1.6 Dataframes with Pandas

The Pandas package provides Python with the ability to work with tables of data similar to
what R provides via its dataframes. As we will not work with data in this module, we do
not need to dive deep into the Pandas package. We will only use it to collect computational
results into tables for easier display.

Example 1.48. In this example we will build a simple dataframe with Pandas. We will build
a table of the first 10 natural numbers and their squares and cubes. We will then display the
table.

import numpy as np
import pandas as pd

# Calculate the columns for the table
n = np.arange(1,11)
n2 = n**2
n3 = n**3

# Combine the columns into a data frame with headers
df = pd.DataFrame({'n': n, 'n^2': n2, 'n^3': n3})
df

n n^2 n^3
0 1 1 1
1 2 4 8
2 3 9 27
3 4 16 64
4 5 25 125
5 6 36 216
6 7 49 343
7 8 64 512
8 9 81 729
9 10 100 1000

1.7 Problems

These problem exercises here are meant for you to practice and improve your coding skills.
Please refrain from relying too much on Gemini or any other AI for solving these exercises.
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The point is to struggle through the code, get it wrong many times, debug, and then to
eventually have working code. So I recommend switching off the AI features in Google Colab
for the purpose of these exercises.

Exercise 1.21. (This problem is modified from (“Project Euler” n.d.))
If we list all of the numbers below 10 that are multiples of 3 or 5 we get 3, 5, 6, and 9. The sum
of these multiples is 23. Write code to find the sum of all the multiples of 3 or 5 below 1000.
Your code needs to run error free and output only the sum. There are of course many ways
you could approach this exercise. Compare your approach to that of others in your group.

Exercise 1.22. (This problem is modified from (“Project Euler” n.d.))
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By
starting with 1 and 2, the first 10 terms will be:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… (1.9)

By considering the terms in the Fibonacci sequence whose values do not exceed four million,
write code to find the sum of the even-valued terms. Your code needs to run error free and
output only the sum.

Exercise 1.23. Write computer code that will draw random numbers from the unit interval
[0, 1], distributed uniformly (using Python’s np.random.rand()), until the sum of the numbers
that you draw is greater than 1. Keep track of how many numbers you draw. Then write a
loop that does this process many many times. On average, how many numbers do you have
to draw until your sum is larger than 1?

Hint #1: Use the np.random.rand()command to draw a single number from a uniform dis-
tribution with bounds (0, 1).

Hint #2: You should do this more than 1,000,000 times to get a good average … and the
number that you get should be familiar!
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Exercise 1.24. (This problem is modified from (“Project Euler” n.d.))
The sum of the squares of the first ten natural numbers is,

12 + 22 +⋯+ 102 = 385 (1.10)

The square of the sum of the first ten natural numbers is,

(1 + 2 + ⋯+ 10)2 = 552 = 3025 (1.11)

Hence the difference between the square of the sum of the first ten natural numbers and the
sum of the squares is 3025 − 385 = 2640.
Write code to find the difference between the square of the sum of the first one hundred natural
numbers and the sum of the squares. Your code needs to run error free and output only the
difference.

Exercise 1.25. (This problem is modified from (“Project Euler” n.d.))
The prime factors of 13195 are 5, 7, 13 and 29. Write code to find the largest prime factor
of the number 600851475143? Your code needs to run error free and output only the largest
prime factor.

Exercise 1.26. (This problem is modified from (“Project Euler” n.d.))
The number 2520 is the smallest number that can be divided by each of the numbers from 1
to 10 without any remainder. Write code to find the smallest positive number that is evenly
divisible by all of the numbers from 1 to 20?

Hint: You will likely want to use modular division for this problem.

Exercise 1.27. The following iterative sequence is defined for the set of positive integers:

𝑛 → 𝑛
2 (𝑛 is even)

𝑛 → 3𝑛 + 1 (𝑛 is odd)
(1.12)

Using the rule above and starting with 13, we generate the following sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 (1.13)
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It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although
it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at
1. This has been verified on computers for massively large starting numbers, but this does not
constitute a proof that it will work this way for all starting numbers.

Write code to determine which starting number, under one million, produces the longest chain.
NOTE: Once the chain starts, the terms are allowed to go above one million.

Footnotes

63



2 Numbers

We think in generalities, but we live in details.
–Alfred North Whitehead

Have you ever wondered how computers, which operate in a realm of zeros and ones, manage
to perform mathematical calculations with real numbers? The secret lies in approximation.

In this chapter and the next we will investigate the foundations that allow a computer to do
mathematical calculations at all. How can it store real numbers? How can it calculate the
values of mathematical functions? We will understand that the computer can do these things
only approximately and will thus always make errors. Numerical Analysis is all about keeping
these errors as small as possible while still being able to do efficient calculations.

We will meet the two kinds of errors that a computer makes: rounding errors and trun-
cation errors. Rounding errors arise from the way the computer needs to approximate real
numbers by binary floating point numbers, which are the numbers it know how to add, sub-
tract, multiply and divide. We’ll discuss this in this chapter. Truncation errors arise from
the way the computer needs to reduce all calculations to a finite number of these four basic
arithmetic operations. We will see that for the first time in Chapter 3 when we discuss how
computers approximate functions by power series and then have to truncate these at some
finite order.

Let’s start with a striking example of how bad computers actually are at doing even simple
calculations:

Exercise 2.1. By hand (no computers!) compute the first 50 terms of this sequence with the
initial condition 𝑥0 = 1/10.

𝑥𝑛+1 = { 2𝑥𝑛, 𝑥𝑛 ∈ [0, 1
2 ]

2𝑥𝑛 − 1, 𝑥𝑛 ∈ (12 , 1]
(2.1)

Exercise 2.2. Now use a spreadsheet to do the computations. Do you get the same answers?
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Exercise 2.3. Finally, solve this problem with Python. Some starter code is given to you
below.

x = 1.0/10
for n in range(50):

if x<= 0.5:
# put the correct assignment here

else:
# put the correct assigment here

print(x)

(Even if you don’t know Python, you should be able to do this exercise after having read up
to Section 1.3.1 in the chapter on Essential Python.)

Exercise 2.4. It seems like the computer has failed you! What do you think happened on the
computer and why did it give you a different answer? What, do you suppose, is the cautionary
tale hiding behind the scenes with this problem?

Exercise 2.5. Now what happens with this problem when you start with 𝑥0 = 1/8? Why
does this new initial condition work better?

2.1 Binary Numbers

A computer circuit knows two states: on and off. As such, anything saved in computer memory
is stored using base-2 numbers. This is called a binary number system. To fully understand a
binary number system it is worthwhile to pause and reflect on our base-10 number system for
a few moments.

What do the digits in the number “735” really mean? The position of each digit tells us
something particular about the magnitude of the overall number. The number 735 can be
represented as a sum of powers of 10 as

735 = 700 + 30 + 5 = 7 × 102 + 3 × 101 + 5 × 100 (2.2)
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and we can read this number as 7 hundreds, 3 tens, and 5 ones.

Now let us switch to the number system used by computers: the binary number system. In
a binary number system the base is 2 so the only allowable digits are 0 and 1 (just like in
base-10 the allowable digits were 0 through 9). In binary (base-2), the number “101,101” can
be interpreted as

101, 1012 = 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 (2.3)

(where the subscript “2” indicates the base). If we put this back into base 10, so that we can
read it more comfortably, we get

101, 1012 = 32 + 0 + 8 + 4 + 0 + 1 = 4510.

(The commas in the numbers are only to allow for greater readability – we can easily see groups
of three digits and mentally keep track of what we are reading.)

Exercise 2.6. Express the following binary numbers in base-10.

1. 1112
2. 10, 1012
3. 1, 111, 111, 1112

Exercise 2.7. Explain the joke: There are 10 types of people. Those who understand binary
and those who do not.

Exercise 2.8. Discussion: With your group, discuss how you would convert a base-10 number
into its binary representation. Once you have a proposed method put it into action on the
number 23710 to show that the base-2 expression is 11, 101, 1012.

Exercise 2.9. Convert the following numbers from base 10 to base 2 or visa versa.
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• Write 1210 in binary

• Write 1110 in binary

• Write 2310 in binary �

• Write 112 in base 10
• What is 1001012 in base 10? �

Exercise 2.10. Now that you have converted several base-10 numbers to base-2, summarize
an efficient technique to do the conversion.

Next we will work with fractions and decimals.

Example 2.1. Let us take the base 10 number 5.34110 and expand it out to get

5.34110 = 5 + 3
10 + 4

100 + 1
1000 = 5 × 100 + 3 × 10−1 + 4 × 10−2 + 1 × 10−3.

The position to the right of the decimal point is the negative power of 10 for the given position.

We can do a similar thing with binary decimals.

Exercise 2.11. The base-2 number 1, 101.012 can be expanded in powers of 2. Fill in the
question marks below and observe the pattern in the powers.

1, 101.012 = ? × 23 + 1 × 22 + 0 × 21 + ? × 20 + 0 × 2? + 1 × 2−2.

67



Example 2.2. Convert 11.010112 to base 10.
Solution:

11.010112 = 2 + 1 + 0
2 + 1

4 + 0
8 + 1

16 + 1
32

= 1 × 21 + 1 × 20 + 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1 × 2−4 + 1 × 2−5

= 3.3437510.

Exercise 2.12. Convert the following numbers from base 10 to binary.

1. What is 1/2 in binary?

2. What is 1/8 in binary?

3. What is 4.125 in binary?

4. What is 0.15625 in binary? �

Exercise 2.13. Convert the base 10 decimal 0.635 to binary using the following steps.

1. Multiply 0.635 by 2. The whole number part of the result is the first binary digit to the
right of the decimal point.

2. Take the result of the previous multiplication and ignore the digit to the left of the
decimal point. Multiply the remaining decimal by 2. The whole number part is the
second binary decimal digit.

3. Repeat the previous step until you have nothing left, until a repeating pattern has
revealed itself, or until your precision is close enough.

Explain why each step gives the binary digit that it does.

Exercise 2.14. Convert the base 10 fraction 0.1 into binary. Use this to explain why errors
arose in Exercise 2.3.
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2.2 Floating Point Numbers

Everything stored in the memory of a computer is a number, but how does a computer actually
store a number. More specifically, since computers only have finite memory we would really
like to know the full range of numbers that are possible to store in a computer. Clearly, given
the uncountable nature of the real numbers, there will be gaps between the numbers that can
be stored. We would like to know what gaps in our number system to expect when using a
computer to store and do computations on numbers.

Exercise 2.15. Let us start the discussion with a very concrete example. Consider the
number 𝑥 = −123.15625 (in base 10). As we have seen this number can be converted into
binary. Indeed

𝑥 = −123.1562510 = −1111011.001012

(you should check this).

a. If a computer needs to store this number then first they put in the binary version of
scientific notation. In this case we write

𝑥 = −1. × 2

b. Based on the fact that every binary number, other than 0, can be written in this way,
what three things do you suppose a computer needs to store for any given number?

c. Using your answer to part (b), what would a computer need to store for the binary
number 𝑥 = 10001001.11001100112?

Definition 2.1. For any non-zero base-2 number 𝑥 we can write

𝑥 = (−1)𝑠 × (1 +𝑚) × 2𝐸

where 𝑠 ∈ {0, 1} and 𝑚 is a binary number such that 0 ≤ 𝑚 < 1.
The number 1 + 𝑚 is called the significand, 𝑠 is known as the sign bit, and 𝐸 is known as
the exponent. We will refer to 𝑚, the fractional part of the significand that actually contains
the information, as the mantissa, but this use is not universal.
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Example 2.3. What are the mantissa, sign bit, and unbiased exponent for the numbers
710, −710, and (0.1)10?
Solution:

• For the number 710 = 1112 = 1.11 × 22 we have 𝑠 = 0,𝑚 = 0.11 and 𝐸 = 2.
• For the number −710 = 1112 = −1.11 × 22 we have 𝑠 = 1,𝑚 = 0.11 and 𝐸 = 2.
• For the number 1

10 = 0.000110011001100⋯ = 1.100110011⋯ × 2−4 we have 𝑠 = 0,𝑚 =
0.100110011⋯, and 𝐸 = −4.

In the last part of the previous example we saw that the number (0.1)10 is actually a repeating
decimal in base-2. This means that in order to completely represent the number (0.1)10 in
base-2 we need infinitely many decimal places. Obviously that cannot happen since we are
dealing with computers with finite memory. Each number can only be allocated a finite number
of bits. Thus the number needs to be rounded to the nearest number that can be represented
with that number of bits. That leads to an error called the rounding error (sometimes also
called roundoff error). We’ll look into these in more detail in Section 2.3 below.

Over the course of the past several decades there have been many systems developed to prop-
erly store numbers. The IEEE standard that we now use is the accumulated effort of many
computer scientists, much trial and error, and deep scientific research. We now have two stan-
dard precisions for storing numbers on a computer: single and double precision. The double
precision standard is what most of our modern computers use.

Definition 2.2. According to the IEEE 754 standard:

• A single-precision number consists of 32 bits, with 1 bit for the sign, 8 for the exponent,
and 23 for the mantissa.

• A double-precision number consists of 64 bits with 1 bit for the sign, 11 for the
exponent, and 52 for the mantissa.
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Definition 2.3. Machine precision is the gap between the number 1 and the next larger
floating point number. Often it is represented by the symbol 𝜖. To clarify: the number 1 can
always be stored in a computer system exactly and if 𝜖 is machine precision for that computer
then 1 + 𝜖 is the next largest number that can be stored with that machine.

For all practical purposes the computer cannot tell the difference between two numbers if the
relative difference is smaller than machine precision. It is important to remember this when
you want to check the equality of two numbers in a computer.

Exercise 2.16. To make all of these ideas concrete let us play with a small computer system
where each number is stored in the following format:

𝑠𝐸 𝑏1 𝑏2 𝑏3

The first entry is a bit for the sign (0 = + and 1 = −). The second entry, 𝐸 is for the exponent,
and we will assume in this example that the exponent can be 0, 1, or −1. The three bits on
the right represent the significand of the number. Hence, every number in this number system
takes the form

(−1)𝑠 × (1 + 0.𝑏1𝑏2𝑏3) × 2𝐸

• What is the smallest positive number that can be represented in this form?

• What is the largest positive number that can be represented in this form?

• What is the machine precision in this number system?

• What would change if we allowed 𝐸 ∈ {−2,−1, 0, 1, 2}? �

Exercise 2.17. What are the largest numbers that can be stored in single and double preci-
sion?

Exercise 2.18. What is machine precision for the single and double precision standard?
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Exercise 2.19. What is the gap between 2𝑛 and the next largest number that can be stored
in double precision? �

Exercise 2.20. The gap between consecutive floating-point numbers gets larger as the num-
bers get larger.

a) Explain why this makes sense from a practical perspective.

b) Why might this be problematic when adding a very small number to a very large number?

c) How could you rewrite the calculation (108 + 0.1 − 108) to get a more accurate result?

Much more can be said about floating point numbers such as how we store infinity, how we
store NaN, and how we store 0. The Wikipedia page for floating point arithmetic might be of
interest for the curious reader. It is beyond the scope of this module to go into all of those
details here.

The biggest takeaway points from this section and the previous are:

• All numbers in a computer are stored with finite precision.

• Nice numbers like 0.1 are sometimes not machine representable in binary.

• Machine precision is the gap between 1 and the next largest number that can be stored.

• The gap between one number and the next grows in proportion to the number.

2.3 Rounding Errors

We have seen that when the binary representation of a real number has too many binary digits
to be represented faithfully by a floating point number, we need to round it to the nearest
floating point number that can be represented. In this section you will explore a bit more the
rounding errors that arise from this.

The rounding rule that is used is “round to nearest, ties to even”, which means that if the
number is exactly halfway between two numbers that can be represented then we round the
mantissa to an even binary number, i.e., to a mantissa that ends in 0.
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Example 2.4. If we want to store the number 1.625 = 1.1012 in a floating point number
system where the mantissa has only 2 bits then we round to 1.102 = 1.510 because 1.1012 is
exactly halfway between 1.1002 and 1.1102 and the rounding rule is “round to nearest, ties to
even”.

To dive a little deeper into what happened in Exercise 2.3, simplify the detailed analysis by
working with only a 4 bit mantissa:

Exercise 2.21. Calculate the first 10 terms of the sequence

𝑥𝑛+1 = { 2𝑥𝑛, 𝑥𝑛 ∈ [0, 1
2 ]

2𝑥𝑛 − 1, 𝑥𝑛 ∈ (12 , 1]
with 𝑥0 = 1

10 (2.4)

using a number system where the mantissa has only 4 bits.

If you want to delve more deeply into this, take a look at Exercise 2.28.

Exercise 2.22. (This problem is modified from (Greenbaum and Chartier 2012))
Sometimes floating point arithmetic does not work like we would expect (and hope) as com-
pared to by-hand mathematics. In each of the following problems we have a mathematical
problem that the computer gets wrong. Explain why the computer is getting these wrong.

1. Mathematically we know that
√
52 should just give us 5 back. In Python type

np.sqrt(5)**2 == 5. What do you get and why do you get it?

2. Mathematically we know that ( 1
49) ⋅ 49 should just be 1. In Python type (1/49)*49 ==

1. What do you get and why do you get it?

3. Mathematically we know that 𝑒log(3) should just give us 3 back. In Python type
np.exp(np.log(3)) == 3. What do you get and why do you get it?

4. Create your own example of where Python gets something incorrect because of floating
point arithmetic.
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2.4 Loss of Significant Digits

As we have discussed, when representing real numbers by floating point numbers in the com-
puter, rounding errors will usually occur. When doing a calculation with double-precision
floating point numbers then the rounding error is only a tiny fraction of the actual number, so
one might think that they really don’t matter. However, calculations usually involve a number
of steps, and we saw in Exercise 2.3 that the rounding errors can accumulate and become quite
noticeable after a large number of steps.

But the problem is even worse. If we are not careful, then the rounding errors can get magnified
already after very few steps if we perform the steps in an unfortunate way. The following
examples and exercises will illustrate this.

Example 2.5. Consider the expression

(1010 + 0.123456789) − 1010.

Mathematically, the two terms of 1010 simply cancel out leaving just 0.123456789. However,
let us evaluate this in Python:

10**10 + 0.123456789 - 10**10

0.12345695495605469

Only the first six digits after the decimal point were preserved, the other digits were replaced
by something seemingly random. The reason should be clear. The computer makes a rounding
error when it tries to store the 10000000000.123456789. This is known as the loss of significant
digits. It occurs whenever you subtract two almost equal numbers from each other.

Exercise 2.23. Consider these two mathematically equivalent ways to compute the same
thing:

1) (𝑎 + 𝑏) − 𝑐
2) 𝑎 + (𝑏 − 𝑐)

a) Why might these give different results in floating-point arithmetic?
b) If 𝑎 is very small compared to 𝑏 and 𝑐, which form would you expect to be more accurate?

Why?
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c) Can you think of a real-world scenario where this difference would matter?

Exercise 2.24. Consider the trigonometric identity

2 sin2(𝑥/2) = 1 − cos(𝑥).
It gives us two different methods to calculate the same quantity. Ask Python to evaluate both
sides of the identity when 𝑥 = 0.0001. Hint: as described in Section 1.3.8, use import math
so that you can then use math.cos() and math.sin(). Also remember that exponentiation
in Python is represented by **.

What do you observe? If you want to calculate 1 − cos(𝑥) with the highest precision, which
expression would you use? Discuss.

Exercise 2.25. You know how to find the solutions to the quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.
You know the quadratic formula. For the larger of the two solutions the formula is

𝑥 = −𝑏 +
√
𝑏2 − 4𝑎𝑐
2𝑎 .

Let’s assume that the parameters are given as

𝑎 = 1, 𝑏 = 1000000, 𝑐 = 1.
Use the quadratic formula to find the larger of the two solutions, by coding the formula up in
Python. You should get a solution slightly larger than 1. Hint: use math.sqrt() to code up
the square root.

Then check whether your value for 𝑥 really does solve the quadratic equation by evaluating
𝑎𝑥2 + 𝑏𝑥+ 𝑐 with your value of 𝑥. You will notice that it does not work. Discuss the cause of
the error.

Now, on a piece of paper, rearrange the quadratic formula for the larger solution by multiplying
both the numerator and denominator by −𝑏−

√
𝑏2 − 4𝑎𝑐 and then simplify by multiplying out

the resulting numerator. This should give you the alternative formula

𝑥 = 2𝑐
−𝑏 −

√
𝑏2 − 4𝑎𝑐

.

Can you see why this expression will work better for the given parameter values? Again
evaluate 𝑥 with Python and then check it by substituting into the quadratic expression. What
do you find?
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Exercise 2.26. Consider computing the sum of 𝑛 numbers in two different ways:

1) Adding them in order from smallest to largest
2) Adding them in order from largest to smallest

Which approach would you expect to give more accurate results? Why? Give an example to
illustrate your answer.

These exercises will give much material for in-class discussion. The aim is to make you sensitive
to the issue of loss of significant figures and the fact that expressions that are mathematically
equal are not always computationally equal.

2.5 Problems

These problem exercises will let you consolidate what you have learned so far and combine it
with the coding skills you picked up in Chapter 1.

Exercise 2.27. (This problem is modified from (Greenbaum and Chartier 2012))
In the 1999 film Office Space, a character creates a program that takes fractions of cents that
are truncated in a bank’s transactions and deposits them to his own account. This idea has
been attempted in the past and now banks look for this sort of thing. In this problem you will
build a simulation of the program to see how long it takes to become a millionaire.

Assumptions:

• Assume that you have access to 50,000 bank accounts.

• Assume that the account balances are uniformly distributed between $100 and $100,000.

• Assume that the annual interest rate on the accounts is 5% and the interest is com-
pounded daily and added to the accounts, except that fractions of cents are truncated.

• Assume that your illegal account initially has a $0 balance.

Your Tasks:

1. Explain what the code below does.
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import numpy as np
accounts = 100 + (100000-100) * np.random.rand(50000,1);
accounts = np.floor(100*accounts)/100;

2. By hand (no computer) write the mathematical steps necessary to increase the accounts
by (5/365)% per day, truncate the accounts to the nearest penny, and add the truncated
amount into an account titled “illegal.”

3. Write code to complete your plan from part 2.

4. Using a while loop, iterate over your code until the illegal account has accumulated
$1,000,000. How long does it take?

Exercise 2.28. (This problem is modified from (Greenbaum and Chartier 2012))
In the 1991 Gulf War, the Patriot missile defence system failed due to rounding error. The
troubles stemmed from a computer that performed the tracking calculations with an internal
clock whose integer values in tenths of a second were converted to seconds by multiplying by
a 24-bit binary approximation to 1

10 :

0.110 ≈ 0.000110011001100110011002. (2.5)

1. Convert the binary number above to a fraction by hand.

2. The approximation of 1
10 given above is clearly not equal to 1

10 . What is the absolute
error in this value?

3. What is the time error, in seconds, after 100 hours of operation?

4. During the 1991 war, a Scud missile travelled at approximately Mach 5 (3750 mph).
Find the distance that the Scud missile would travel during the time error computed in
part 3.

Exercise 2.29 (The Python Caret Operator). Now that you’re used to using Python to do
some basic computations you are probably comfortable with the fact that the caret, ^, does
NOT do exponentiation like it does in many other programming languages. But what does
the caret operator do? That’s what we explore here.
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1. Consider the numbers 9 and 5. Write these numbers in binary representation. We are
going to use four bits to represent each number (it is OK if the first bit happens to be
zero).

9 =
5 = (2.6)

2. Now go to Python and evaluate the expression 9^5. Convert Python’s answer to a binary
representation (again using four bits).

3. Make a conjecture: How do we go from the binary representations of 𝑎 and 𝑏 to the binary
representation for Python’s a^b for numbers 𝑎 and 𝑏? Test and verify your conjecture
on several different examples and then write a few sentences explaining what the caret
operator does in Python.
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3 Functions

How does a computer understand a function like 𝑓(𝑥) = 𝑒𝑥 or 𝑓(𝑥) = sin(𝑥) or 𝑓(𝑥) = log(𝑥)?
What happens under the hood, so to speak, when you ask a computer to do a computation
with one of these functions? A computer is good at arithmetic operations, but working with
transcendental functions like these, or really any other sufficiently complicated functions for
that matter, is not something that comes naturally to a computer. What is actually happening
under the hood is that the computer only approximates the functions.

Exercise 3.1. In this problem we are going to make a bit of a wish list for all of the things that
a computer will do when approximating a function. We are going to complete the following
sentence:
If we are going to approximate a smooth function 𝑓(𝑥) near the point 𝑥 = 𝑥0 with a simpler
function 𝑔(𝑥) then …

(I will get us started with the first two things that seems natural to wish for. The rest of the
wish list is for you to complete.)

• the functions 𝑓(𝑥) and 𝑔(𝑥) should agree at 𝑥 = 𝑥0. In other words, 𝑓(𝑥0) = 𝑔(𝑥0)
• the function 𝑔(𝑥) should only involve addition, subtraction, multiplication, division, and

integer exponents since computer are very good at those sorts of operations.

• if 𝑓(𝑥) is increasing / decreasing near 𝑥 = 𝑥0 then 𝑔(𝑥) …
• if 𝑓(𝑥) is concave up / down near 𝑥 = 𝑥0 then 𝑔(𝑥)…
• if we zoom into plots of the functions 𝑓(𝑥) and 𝑔(𝑥) near 𝑥 = 𝑥0 then …

• … is there anything else that you would add?
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3.1 Polynomial Approximations

Exercise 3.2. Discuss: Could a polynomial function with a high enough degree satisfy every-
thing in the wish list from the previous problem? Explain your reasoning.

Exercise 3.3. � Let us put some parts of the wish list into action. If 𝑓(𝑥) is a differentiable
function at 𝑥 = 𝑥0 and if 𝑔(𝑥) = 𝐴 +𝐵(𝑥 − 𝑥0) + 𝐶(𝑥 − 𝑥0)2 +𝐷(𝑥 − 𝑥0)3 then

1. What is the value of 𝐴 such that 𝑓(𝑥0) = 𝑔(𝑥0)? (Hint: substitute 𝑥 = 𝑥0 into the 𝑔(𝑥)
function)

2. What is the value of 𝐵 such that 𝑓 ′(𝑥0) = 𝑔′(𝑥0)? (Hint: Start by taking the derivative
of 𝑔(𝑥))

3. What is the value of 𝐶 such that 𝑓″(𝑥0) = 𝑔″(𝑥0)?
4. What is the value of 𝐷 such that 𝑓‴(𝑥0) = 𝑔‴(𝑥0)?

In the previous 3 exercises you have built up some basic intuition for what we would want
out of a mathematical operation that might build an approximation of a complicated function.
What we have built is actually a way to get better and better approximations for functions
out to pretty much any arbitrary accuracy that we like so long as we are near some anchor
point (which we called 𝑥0 in the previous exercises).

In the next several problems you will unpack the approximations of 𝑓(𝑥) = 𝑒𝑥 and we will
wrap the whole discussion with a little bit of formal mathematical language. Then we will
examine other functions like sine, cosine, logarithms, etc. One of the points of this whole
discussion is to give you a little glimpse as to what is happening behind the scenes in scientific
programming languages when you do computations with these functions. A bigger point is to
start getting a feel for how we might go in reverse and approximate an unknown function out
of much simpler parts. This last goal is one of the big takeaways from numerical analysis: we
can mathematically model highly complicated functions out of fairly simple pieces.

Exercise 3.4. What is Euler’s number 𝑒? You likely remember using this number often in
Calculus and Differential Equations. Do you know the decimal approximation for this number?
Moreover, is there a way that we could approximate something like

√𝑒 = 𝑒0.5 or 𝑒−1 without
actually having access to the full decimal expansion?

For all of the questions below let us work with the function 𝑓(𝑥) = 𝑒𝑥.
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1. The function 𝑔(𝑥) = 1 matches 𝑓(𝑥) = 𝑒𝑥 exactly at the point 𝑥 = 0 since 𝑓(0) = 𝑒0 = 1.
Furthermore if 𝑥 is very very close to 0 then the functions 𝑓(𝑥) and 𝑔(𝑥) are really close
to each other. Hence we could say that 𝑔(𝑥) = 1 is an approximation of the function
𝑓(𝑥) = 𝑒𝑥 for values of 𝑥 very very close to 𝑥 = 0. Admittedly, though, it is probably
pretty clear that this is a horrible approximation for any 𝑥 just a little bit away from
𝑥 = 0.

2. Let us get a better approximation. What if we insist that our approximation 𝑔(𝑥)
matches 𝑓(𝑥) = 𝑒𝑥 exactly at 𝑥 = 0 and ALSO has exactly the same first derivative as
𝑓(𝑥) at 𝑥 = 0.

1. What is the first derivative of 𝑓(𝑥)?
2. What is 𝑓 ′(0)?
3. Use the point-slope form of a line to write the equation of the function 𝑔(𝑥) that

goes through the point (0, 𝑓(0)) and has slope 𝑓 ′(0). Recall from algebra that the
point-slope form of a line is 𝑦 = 𝑓(𝑥0)+𝑚(𝑥−𝑥0). In this case we are taking 𝑥0 = 0
so we are using the formula 𝑔(𝑥) = 𝑓(0) + 𝑓 ′(0)(𝑥 − 0) to get the equation of the
line.

3. Write Python code to build a plot like Figure 3.1. This plot shows 𝑓(𝑥) = 𝑒𝑥, our first
approximation 𝑔(𝑥) = 1 and our second approximation 𝑔(𝑥) = 1 + 𝑥. You may want to
refer back to Exercise 1.18 in the Python chapter.

Figure 3.1: The first two polynomial approximations of the exponential function.
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Exercise 3.5. Let us extend the idea from the previous problem to much better approxima-
tions of the function 𝑓(𝑥) = 𝑒𝑥.

1. Let us build a function 𝑔(𝑥) that matches 𝑓(𝑥) exactly at 𝑥 = 0, has exactly the same
first derivative as 𝑓(𝑥) at 𝑥 = 0, AND has exactly the same second derivative as 𝑓(𝑥)
at 𝑥 = 0. To do this we will use a quadratic function. For a quadratic approximation of
a function we just take a slight extension to the point-slope form of a line and use the
equation

𝑦 = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓″(𝑥0)

2 (𝑥 − 𝑥0)2. (3.1)

In this case we are using 𝑥0 = 0 so the quadratic approximation function looks like

𝑦 = 𝑓(0) + 𝑓 ′(0)𝑥 + 𝑓″(0)
2 𝑥2. (3.2)

1. Find the quadratic approximation for 𝑓(𝑥) = 𝑒𝑥.
2. How do you know that this function matches 𝑓(𝑥) in all of the ways described above

at 𝑥 = 0?
3. Add your new function to the plot you created in the previous problem.

2. Let us keep going!! Next we will do a cubic approximation. A cubic approximation takes
the form

𝑦 = 𝑓(𝑥0) + 𝑓 ′(0)(𝑥 − 𝑥0) +
𝑓″(0)
2 (𝑥 − 𝑥0)2 +

𝑓‴(0)
3! (𝑥 − 𝑥0)3 (3.3)

1. Find the cubic approximation for 𝑓(𝑥) = 𝑒𝑥.
2. How do we know that this function matches the first, second, and third derivatives

of 𝑓(𝑥) at 𝑥 = 0?
3. Add your function to the plot.

4. Pause and think: What’s the deal with the 3! on the cubic term?

3. Your turn: Build the next several approximations of 𝑓(𝑥) = 𝑒𝑥 at 𝑥 = 0. Add these plots
to the plot that we have been building all along.

Exercise 3.6. � Use the functions that you have built to approximate 1
𝑒 = 𝑒−1. Check the

accuracy of your answer using np.exp(-1) in Python.

82



What we have been exploring so far in this section is the Taylor Series of a function.

Definition 3.1 (Taylor Series). If 𝑓(𝑥) is an infinitely differentiable function at the point 𝑥0
then

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓″(𝑥0)

2 (𝑥 − 𝑥0)2 +⋯ 𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +⋯ (3.4)

for any reasonably small interval around 𝑥0. The infinite polynomial expansion is called the
Taylor Series of the function 𝑓(𝑥). Taylor Series are named for the mathematician Brook
Taylor.

The Taylor Series of a function is often written with summation notation as

𝑓(𝑥) =
∞
∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑥 − 𝑥0)𝑘. (3.5)

Do not let the notation scare you. In a Taylor Series you are just saying: give me a function
that

• matches 𝑓(𝑥) at 𝑥 = 𝑥0 exactly,

• matches 𝑓 ′(𝑥) at 𝑥 = 𝑥0 exactly,

• matches 𝑓″(𝑥) at 𝑥 = 𝑥0 exactly,

• matches 𝑓‴(𝑥) at 𝑥 = 𝑥0 exactly,

• etc.

(Take a moment and make sure that the summation notation makes sense to you.)

Moreover, Taylor Series are built out of the easiest types of functions: polynomials. Computers
are rather good at doing computations with addition, subtraction, multiplication, division, and
integer exponents, so Taylor Series are a natural way to express functions in a computer. The
down side is that we can only get true equality in the Taylor Series if we have infinitely many
terms in the series. A computer cannot do infinitely many computations. So, in practice, we
truncate Taylor Series after many terms and think of the new polynomial function as being
close enough to the actual function so far as we do not stray too far from the anchor 𝑥0.
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Exercise 3.7. Do all of the calculations to show that the Taylor Series centred at 𝑥0 = 0 for
the function 𝑓(𝑥) = sin(𝑥) is indeed

sin(𝑥) = 𝑥 − 𝑥3

3! + 𝑥5

5! − 𝑥7

7! + ⋯ (3.6)

Exercise 3.8. Let us compute a few Taylor Series that are not centred at 𝑥0 = 0. For example,
let us approximate the function 𝑓(𝑥) = sin(𝑥) near 𝑥0 = 𝜋

2 . Near the point 𝑥0 = 𝜋
2 , the Taylor

Series approximation will take the form

𝑓(𝑥) = 𝑓 (𝜋2) + 𝑓 ′ (𝜋2)(𝑥 − 𝜋
2) + 𝑓″ (𝜋

2 )
2! (𝑥 − 𝜋

2)
2
+ 𝑓‴ (𝜋

2 )
3! (𝑥 − 𝜋

2)
3
+⋯ (3.7)

Write the first several terms of the Taylor Series for 𝑓(𝑥) = sin(𝑥) centred at 𝑥0 = 𝜋
2 . Then

write Python code to build the plot below showing successive approximations for 𝑓(𝑥) = sin(𝑥)
centred at 𝜋/2.

Figure 3.2: Taylor series approximation of the sine function.
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Exercise 3.9. � Repeat the previous exercise for the function

𝑓(𝑥) = log(𝑥) centered at 𝑥0 = 1.

Use this to give an approximate value for log(1.1).

Example 3.1. Let us conclude this brief section by examining an interesting example. Con-
sider the function

𝑓(𝑥) = 1
1 − 𝑥. (3.8)

If we build a Taylor Series centred at 𝑥0 = 0 it is not too hard to show that we get

𝑓(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 +⋯ (3.9)

(you should stop now and verify this!). However, if we plot the function 𝑓(𝑥) along with
several successive approximations for 𝑓(𝑥) we find that beyond 𝑥 = 1 we do not get the correct
behaviour of the function (see Figure 3.3). More specifically, we cannot get the Taylor Series
to change behaviour across the vertical asymptote of the function at 𝑥 = 1. This example is
meant to point out the fact that a Taylor Series will only ever make sense near the point at
which you centre the expansion. For the function 𝑓(𝑥) = 1

1−𝑥 centred at 𝑥0 = 0 we can only
get good approximations within the interval 𝑥 ∈ (−1, 1) and no further.

import numpy as np
import math as ma
import matplotlib.pyplot as plt

# build the x and y values
x = np.linspace(-1,2,101)
y0 = 1/(1-x)
y1 = 1 + 0*x
y2 = 1 + x
y3 = y2 + x**2
y4 = y3 + x**3 + x**4 + x**5 + x**6 + x**7 + x**8

# plot each of the functions
plt.plot(x, y0, 'r-', label=r"$f(x)=1/(1-x)$")
plt.plot(x, y1, 'c-', label=r"constant")
plt.plot(x, y2, 'g:', label=r"linear")
plt.plot(x, y3, 'b-.', label=r"quadratic")
plt.plot(x, y4, 'k--', label=r"8th order")
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# set limits on the y axis
plt.ylim(-3,5)

# put in a grid, legend, title, and axis labels
plt.grid()
plt.legend()
plt.title(r"Taylor approximations of $f(x)=\frac{1}{1-x}$ around $x=0$")
plt.show()

Figure 3.3: Several Taylor Series approximations of the function 𝑓(𝑥) = 1/(1 − 𝑥).

In the previous example we saw that we cannot always get approximations from Taylor Series
that are good everywhere. For every Taylor Series there is a domain of convergence where
the Taylor Series actually makes sense and gives good approximations. While it is beyond
the scope of this section to give all of the details for finding the domain of convergence for
a Taylor Series, a good heuristic is to observe that a Taylor Series will only give reasonable
approximations of a function from the centre of the series to the nearest asymptote. The
domain of convergence is typically symmetric about the centre as well. For example:

• If we were to build a Taylor Series approximation for the function 𝑓(𝑥) = log(𝑥) centred
at the point 𝑥0 = 1 then the domain of convergence should be 𝑥 ∈ (0, 2) since there is a
vertical asymptote for the natural logarithm function at 𝑥 = 0.
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• If we were to build a Taylor Series approximation for the function 𝑓(𝑥) = 5
2𝑥−3 centred

at the point 𝑥0 = 4 then the domain of convergence should be 𝑥 ∈ (1.5, 6.5) since there
is a vertical asymptote at 𝑥 = 1.5 and the distance from 𝑥0 = 4 to 𝑥 = 1.5 is 2.5 units.

• If we were to build a Taylor Series approximation for the function 𝑓(𝑥) = 1
1+𝑥2 centred

at the point 𝑥0 = 0 then the domain of convergence should be 𝑥 ∈ (−1, 1). This may
seem quite odd (and perhaps quite surprising!) but let us think about where the nearest
asymptote might be. To find the asymptote we need to solve 1 + 𝑥2 = 0 but this gives
us the values 𝑥 = ±𝑖. In the complex plane, the numbers 𝑖 and −𝑖 are 1 unit away from
𝑥0 = 0, so the “asymptote” is not visible in a real-valued plot but it is still only one unit
away. Hence the domain of convergence is 𝑥 ∈ (−1, 1). You may want to pause now and
build some plots to show yourself that this indeed appears to be true.

Of course you learned all this and more in your first-year Calculus but I hope it was fun to
now rediscover these things yourself. In your Calculus module it was probably not stressed
how fundamental Taylor series are to doing numerical computations.

3.2 Truncation Error

The great thing about Taylor Series is that they allow for the representation of potentially very
complicated functions as polynomials – and polynomials are easily dealt with on a computer
since they involve only addition, subtraction, multiplication, division, and integer powers. The
down side is that the order of the polynomial is infinite. Hence, every time we use a Taylor
series on a computer, what we are actually going to be using is a Truncated Taylor Series
where we only take a finite number of terms. The idea here is simple in principle:

• If a function 𝑓(𝑥) has a Taylor Series representation it can be written as an infinite sum.

• Computers cannot do infinite sums.

• So stop the sum at some point 𝑛 and throw away the rest of the infinite sum.

• Now 𝑓(𝑥) is approximated by some finite sum so long as you stay pretty close to 𝑥 = 𝑥0,

• and everything that we just chopped off of the end is called the remainder for the finite
sum.

Let us be a bit more concrete about it. The Taylor Series for 𝑓(𝑥) = 𝑒𝑥 centred at 𝑥0 = 0 is

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! + ⋯ . (3.10)
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0𝑡ℎ Order Approximation of 𝑓(𝑥) = 𝑒𝑥: If we want to use a zeroth-order (constant) approxi-
mation 𝑓0(𝑥) of the function 𝑓(𝑥) = 𝑒𝑥 then we only take the first term in the Taylor
Series and the rest is not used for the approximation

𝑒𝑥 = 1⏟
0𝑡ℎ order approximation

+𝑥 + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! + ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
remainder

. (3.11)

Therefore we would approximate 𝑒𝑥 as 𝑒𝑥 ≈ 1 = 𝑓0(𝑥) for values of 𝑥 that are close to
𝑥0 = 0. Furthermore, for small values of 𝑥 that are close to 𝑥0 = 0 the largest term in
the remainder is 𝑥 (since for small values of 𝑥 like 0.01, 𝑥2 will be even smaller, 𝑥3 even
smaller than that, etc). This means that if we use a 0𝑡ℎ order approximation for 𝑒𝑥 then
we expect our error to be about the same size as 𝑥. It is common to then rewrite the
truncated Taylor Series as

0𝑡ℎ order approximation: 𝑒𝑥 ≈ 1 + 𝒪(𝑥) (3.12)

where 𝒪(𝑥) (read “Big-O of 𝑥”) tells us that the expected error for approximations close
to 𝑥0 = 0 is about the same size as 𝑥.

1𝑠𝑡 Order Approximation of 𝑓(𝑥) = 𝑒𝑥: If we want to use a first-order (linear) approximation
𝑓1(𝑥) of the function 𝑓(𝑥) = 𝑒𝑥 then we gather the 0𝑡ℎ order and 1𝑠𝑡 order terms together
as our approximation and the rest is the remainder

𝑒𝑥 = 1 + 𝑥⏟
1𝑠𝑡 order approximation

+ 𝑥2

2! + 𝑥3

3! + 𝑥4

4! + ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
remainder

. (3.13)

Therefore we would approximate 𝑒𝑥 as 𝑒𝑥 ≈ 1 + 𝑥 = 𝑓1(𝑥) for values of 𝑥 that are close
to 𝑥0 = 0. Furthermore, for values of 𝑥 very close to 𝑥0 = 0 the largest term in the
remainder is the 𝑥2 term. Using Big-O notation we can write the approximation as

1𝑠𝑡 order approximation: 𝑒𝑥 ≈ 1 + 𝑥 + 𝒪(𝑥2). (3.14)

Notice that we do not explicitly say what the coefficient is for the 𝑥2 term. Instead we
are just saying that using the linear function 𝑦 = 1 + 𝑥 to approximate 𝑒𝑥 for values of
𝑥 near 𝑥0 = 0 will result in errors that are of the order of 𝑥2.

2𝑛𝑑 Order Approximation of 𝑓(𝑥) = 𝑒𝑥: If we want to use a second-order (quadratic) approx-
imation 𝑓2(𝑥) of the function of 𝑓(𝑥) = 𝑒𝑥 then we gather the 0𝑡ℎ order, 1𝑠𝑡 order, and
2𝑛𝑑 order terms together as our approximation and the rest is the remainder

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!⏟⏟⏟⏟⏟
2𝑛𝑑 order approximation

+ 𝑥3

3! + 𝑥4

4! + ⋯⏟⏟⏟⏟⏟
remainder

. (3.15)
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Therefore we would approximate 𝑒𝑥 as 𝑒𝑥 ≈ 1 + 𝑥 + 𝑥2
2 = 𝑓2(𝑥) for values of 𝑥 that are

close to 𝑥0 = 0. Furthermore, for values of 𝑥 very close to 𝑥0 = 0 the largest term in the
remainder is the 𝑥3 term. Using Big-O notation we can write the approximation as

2𝑛𝑑 order approximation: 𝑒𝑥 ≈ 1 + 𝑥 + 𝑥2

2 + 𝒪(𝑥3). (3.16)

Again notice that we do not explicitly say what the coefficient is for the 𝑥3 term. Instead
we are just saying that using the quadratic function 𝑦 = 1 + 𝑥 + 𝑥2

2 to approximate 𝑒𝑥
for values of 𝑥 near 𝑥0 = 0 will result in errors that are of the order of 𝑥3.

Keep in mind that this sort of analysis is only good for values of 𝑥 that are very close to the
centre of the Taylor Series. If you are making approximations that are too far away then all
bets are off.

For the function 𝑓(𝑥) = 𝑒𝑥 the idea of approximating the amount of approximation error by
truncating the Taylor Series is relatively straight forward: if we want an 𝑛𝑡ℎ order polynomial
approximation 𝑓𝑛(𝑥) of the function of 𝑓(𝑥) = 𝑒𝑥 near 𝑥0 = 0 then

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! + ⋯ + 𝑥𝑛

𝑛! + 𝒪(𝑥𝑛+1), (3.17)

meaning that we expect the error to be of the order of 𝑥𝑛+1.

Exercise 3.10. � Now make the previous discussion a bit more concrete. You know the Taylor
Series for 𝑓(𝑥) = 𝑒𝑥 around 𝑥 = 0 quite well at this point so use it to approximate the values
of 𝑓(0.1) = 𝑒0.1 and 𝑓(0.2) = 𝑒0.2 by truncating the Taylor series at different orders. Because
𝑥 = 0.1 and 𝑥 = 0.2 are pretty close to the centre of the Taylor Series 𝑥0 = 0, this sort of
approximation is reasonable.

Then compare your approximate values to Python’s values 𝑓(0.1) = 𝑒0.1 ≈ np.exp(0.1)
= 1.1051709180756477 and 𝑓(0.2) = 𝑒0.2 ≈ np.exp(0.2) = 1.2214027581601699 to calculate
the truncation errors 𝜖𝑛(0.1) = |𝑓(0.1) − 𝑓𝑛(0.1)| and 𝜖𝑛(0.2) = |𝑓(0.2) − 𝑓𝑛(0.2)|.
Fill in the blanks in the table. If you want to create the table in your jupyter notebook, you
can use Pandas as described in Section 1.6. Alternatively feel free to use a spreadsheet instead
of using Python.

Order 𝑛 𝑓𝑛(0.1)
𝜖𝑛(0.1) =
|𝑓(0.1)−𝑓𝑛(0.1)| 𝑓𝑛(0.2)

𝜖𝑛(0.2) =
|𝑓(0.2)−𝑓𝑛(0.2)|

0 1 1.051709e-01 1 2.214028e-01
1 1.1 5.170918e-03 1.2
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Order 𝑛 𝑓𝑛(0.1)
𝜖𝑛(0.1) =
|𝑓(0.1)−𝑓𝑛(0.1)| 𝑓𝑛(0.2)

𝜖𝑛(0.2) =
|𝑓(0.2)−𝑓𝑛(0.2)|

2 1.105
3
4
5

You will find that, as expected, the truncation errors 𝜖𝑛(𝑥) decrease with 𝑛 but increase with
𝑥.

Exercise 3.11. To investigate the dependence of the truncation error 𝜖𝑛(𝑥) on 𝑛 and 𝑥
a bit more, add an extra column to the table from the previous exercise with the ratio
𝜖𝑛(0.2)/𝜖𝑛(0.1).

Order 𝑛 𝜖𝑛(0.1) 𝜖𝑛(0.2) 𝜖𝑛(0.2)/𝜖𝑛(0.1)
0 1.051709e-01 2.214028e-01 2.105171
1 5.170918e-03
2
3
4
5

Formulate a conjecture about how 𝜖𝑛 changes as 𝑥 changes.

Exercise 3.12. To test your conjecture, examine the truncation error for the sine function
near 𝑥0 = 0. You know that the sine function has the Taylor Series centred at 𝑥0 = 0 as

𝑓(𝑥) = sin(𝑥) = 𝑥 − 𝑥3

3! + 𝑥5

5! − 𝑥7

7! + ⋯ . (3.18)

So there are only approximations of odd order. Use the truncated Taylor series to approx-
imate 𝑓(0.1) = sin(0.1) and 𝑓(0.2) = sin(0.2) and use Python’s values np.sin(0.1) and
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np.sin(0.2) to calculate the truncation errors 𝜖𝑛(0.1) = |𝑓(0.1) − 𝑓𝑛(0.1)| and 𝜖𝑛(0.2) =
|𝑓(0.2) − 𝑓𝑛(0.2)|.
Complete the following table:

Order 𝑛 𝜖𝑛(0.1) 𝜖𝑛(0.2) 𝜖𝑛(0.2)/𝜖𝑛(0.1) Your Conjecture
1 1.665834e-04 1.330669e-03
3 8.331349e-08 2.664128e-06
5 1.983852e-11
7
9

The entry in the last row of the table will almost certainly not agree with your conjecture.
That is okay! That discrepancy has a different explanation. Can you figure out what it is?
Hint: does np.sin(x) give you the exact value of sin(𝑥)?

Exercise 3.13. � Perform another check of your conjecture by approximating log(1.02) and
log(1.1) from truncations of the Taylor series around 𝑥 = 1:

log(1 + 𝑥) = 𝑥 − 𝑥2

2 + 𝑥3

3 − 𝑥4

4 + 𝑥5

5 − ⋯ .

If you are using Python then use np.log1p(x) to calculate log(1 + 𝑥).

Exercise 3.14. Write down your observations about how the truncation error at order 𝑛
changes as 𝑥 changes. Explain this in terms of the form of the remainder of the truncated
Taylor series.

91



3.3 Problems

Exercise 3.15. Find the Taylor Series for 𝑓(𝑥) = 1
log(𝑥) centred at the point 𝑥0 = 𝑒. Then

use the Taylor Series to approximate the number 1
log(3) to 4 decimal places.

Exercise 3.16. In this problem we will use Taylor Series to build approximations for the
irrational number 𝜋.

1. Write the Taylor series centred at 𝑥0 = 0 for the function

𝑓(𝑥) = 1
1 + 𝑥. (3.19)

2. Now we want to get the Taylor Series for the function 𝑔(𝑥) = 1
1+𝑥2 . It would be quite

time consuming to take all of the necessary derivatives to get this Taylor Series. Instead
we will use our answer from part (a) of this problem to shortcut the whole process.

1. Substitute 𝑥2 for every 𝑥 in the Taylor Series for 𝑓(𝑥) = 1
1+𝑥 .

2. Make a few plots to verify that we indeed now have a Taylor Series for the function
𝑔(𝑥) = 1

1+𝑥2 .

3. Recall from Calculus that
∫ 1

1 + 𝑥2𝑑𝑥 = arctan(𝑥). (3.20)

Hence, if we integrate each term of the Taylor Series that results from part (b) we should
have a Taylor Series for arctan(𝑥).1

4. Now recall the following from Calculus:

• tan(𝜋/4) = 1
• so arctan(1) = 𝜋/4
• and therefore 𝜋 = 4 arctan(1).

Let us use these facts along with the Taylor Series for arctan(𝑥) to approximate 𝜋: we
can just plug in 𝑥 = 1 to the series, add up a bunch of terms, and then multiply by 4.
Write a loop in Python that builds successively better and better approximations of 𝜋.
Stop the loop when you have an approximation that is correct to 6 decimal places.

1There are many reasons why integrating an infinite series term by term should give you a moment of pause.
For the sake of this problem we are doing this operation a little blindly, but in reality we should have verified
that the infinite series actually converges uniformly.
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Exercise 3.17. In this problem we will prove the famous (and the author’s favourite) formula

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃). (3.21)

This is known as Euler’s formula after the famous mathematician Leonard Euler. Show all of
your work for the following tasks.

1. Write the Taylor series for the functions 𝑒𝑥, sin(𝑥), and cos(𝑥).
2. Replace 𝑥 with 𝑖𝜃 in the Taylor expansion of 𝑒𝑥. Recall that 𝑖 =

√
−1 so 𝑖2 = −1,

𝑖3 = −𝑖, and 𝑖4 = 1. Simplify all of the powers of 𝑖𝜃 that arise in the Taylor expansion.
I will get you started:

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2 + 𝑥3

3! + 𝑥4

4! + 𝑥5

5! + ⋯

𝑒𝑖𝜃 = 1 + (𝑖𝜃) + (𝑖𝜃)2
2! + (𝑖𝜃)3

3! + (𝑖𝜃)4
4! + (𝑖𝜃)5

5! + ⋯

= 1 + 𝑖𝜃 + 𝑖2 𝜃
2

2! + 𝑖3 𝜃
3

3! + 𝑖4 𝜃
4

4! + 𝑖5 𝜃
5

5! + ⋯
= … keep simplifying ... …

(3.22)

3. Gather all of the real terms and all of the imaginary terms together. Factor the 𝑖 out of
the imaginary terms. What do you notice?

4. Use your result from part (c) to prove that 𝑒𝑖𝜋 + 1 = 0.

Exercise 3.18. In physics, the relativistic energy of an object is defined as

𝐸𝑟𝑒𝑙 = 𝛾𝑚𝑐2 (3.23)

where
𝛾 = 1

√1 − 𝑣2
𝑐2

. (3.24)

In these equations, 𝑚 is the mass of the object, 𝑐 is the speed of light (𝑐 ≈ 3×108m/s), and 𝑣
is the velocity of the object. For an object of fixed mass (m) we can expand the Taylor Series
centred at 𝑣 = 0 for 𝐸𝑟𝑒𝑙 to get

𝐸𝑟𝑒𝑙 = 𝑚𝑐2 + 1
2𝑚𝑣2 + 3

8
𝑚𝑣4
𝑐2 + 5

16
𝑚𝑣6
𝑐4 +⋯ . (3.25)
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1. What do we recover if we consider an object with zero velocity?

2. Why might it be completely reasonable to only use the quadratic approximation

𝐸𝑟𝑒𝑙 = 𝑚𝑐2 + 1
2𝑚𝑣2 (3.26)

for the relativistic energy equation?2

3. (some physics knowledge required) What do you notice about the second term in the
Taylor Series approximation of the relativistic energy function?

4. Show all of the work to derive the Taylor Series centred at 𝑣 = 0 given above.

2This is something that people in physics and engineering do all the time – there is some complicated nonlinear
relationship that they wish to use, but the first few terms of the Taylor Series captures almost all of the
behaviour since the higher-order terms are very very small.
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4 Non-linear Equations

Success is the sum of small efforts, repeated day in and day out.
–Zeno of Elea

4.1 Introduction to Numerical Root Finding

In this chapter we want to solve equations using a computer. The goal of equation solving is
to find the value of the independent variable which makes the equation true. These are the
sorts of equations that you learned to solve at school. For a very simple example, solve for 𝑥
if 𝑥 + 5 = 2𝑥 − 3. Or, for another example, the equation 𝑥2 + 𝑥 = 2𝑥 − 7 is an equation that
could be solved with the quadratic formula. The equation sin(𝑥) =

√
2
2 is an equation which

can be solved using some knowledge of trigonometry. The topic of Numerical Root Finding
really boils down to approximating the solutions to equations without using all of the by-hand
techniques that you learned in high school. The down side to everything that we are about to
do is that our answers are only ever going to be approximations.

The fact that we will only ever get approximate answers begs the question: why would we want
to do numerical algebra if by-hand techniques exist? The answers are relatively simple:

• Most equations do not lend themselves to by-hand solutions. The reason you may not
have noticed that is that we tend to show you only nice equations that arise in often
very simplified situations. When equations arise naturally they are often not nice.

• By-hand algebra is often very challenging, quite time consuming, and error prone. You
will find that the numerical techniques are quite elegant, work very quickly, and require
very little overhead to actually implement and verify.

Let us first take a look at equations in a more abstract way. Consider the equation ℓ(𝑥) = 𝑟(𝑥)
where ℓ(𝑥) and 𝑟(𝑥) stand for left-hand and right-hand expressions respectively. To begin
solving this equation we can first rewrite it by subtracting the right-hand side from the left to
get

ℓ(𝑥) − 𝑟(𝑥) = 0. (4.1)

Hence, we can define a function 𝑓(𝑥) as 𝑓(𝑥) = ℓ(𝑥) − 𝑟(𝑥) and observe that every equation
can be written as:

Find 𝑥 such that 𝑓(𝑥) = 0. (4.2)
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This gives us a common language for which to frame all of our numerical algorithms. An 𝑥
where 𝑓(𝑥) = 0 is called a root of 𝑓 and thus we have seen that solving an equation is always
a root finding problem.

For example, if we want to solve the equation 3 sin(𝑥) + 9 = 𝑥2 − cos(𝑥) then this is the same
as solving (3 sin(𝑥) + 9) − (𝑥2 − cos(𝑥)) = 0. We illustrate this idea in Figure 4.1. You should
pause and notice that there is no way that you are going to apply by-hand techniques from
algebra to solve this equation … an approximate answer is pretty much our only hope.

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-4,4, 100)
l = 3 * np.sin(x) + 9
r = x**2 - np.cos(x)

fig, axes = plt.subplots(nrows = 1, ncols = 2)

axes[0].plot(x, l, 'b-.', label=r"$3\sin(x)+9$")
axes[0].plot(x, r, 'r-', label=r"$x^2-\cos(x)$")
axes[0].grid()
axes[0].legend()
axes[0].set_title(r"$3\sin(x)+9 = x^2-\cos(x)$")

axes[1].plot(x, l-r, 'g:', label=r"(3\sin(x)+9) - (x^2-\cos(x))")
axes[1].plot(x, np.zeros(100), 'k-')
axes[1].grid()
axes[1].legend()
axes[1].set_title(r"$(3\sin(x)+9) - (x^2-\cos(x))=0$")

fig.tight_layout()
plt.show()
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Figure 4.1: Two ways to visualise the same root finding problem

On the left-hand side of Figure 4.1 we see the solutions as the intersections of the graph of
3 sin(𝑥) + 9 with the graph of 𝑥2 − cos(𝑥), and on the right-hand side we see the solutions as
the intersections of the graph of (3 sin(𝑥) + 9) − (𝑥2 − cos(𝑥)) with the 𝑥 axis. From either
plot we can read off the approximate solutions: 𝑥1 ≈ −2.55 and 𝑥2 ≈ 2.88. Figure 4.1 should
demonstrate what we mean when we say that solving equations of the form ℓ(𝑥) = 𝑟(𝑥) will
give the same answer as finding the roots of 𝑓(𝑥) = ℓ(𝑥) − 𝑟(𝑥).
We now have one way to view every equation-solving problem. As we will see in this chapter,
if 𝑓(𝑥) has certain properties then different numerical techniques for solving the equation will
apply – and some will be much faster and more accurate than others. In the following sections
you will develop several different techniques for solving equations of the form 𝑓(𝑥) = 0. You
will start with the simplest techniques to implement and then move to the more powerful
techniques that use some ideas from Calculus to understand and analyse. Throughout this
chapter you will also work to quantify the amount of error that one makes when using these
techniques.
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4.2 The Bisection Method

4.2.1 Intuition

Exercise 4.1. A friend tells you that she is thinking of a number between 1 and 100. She
will allow you multiple guesses with some feedback for where the mystery number falls. How
do you systematically go about guessing the mystery number? Is there an optimal strategy?

For example, the conversation might go like this.

• Sally: I am thinking of a number between 1 and 100.
• Joe: Is it 35?
• Sally: No, 35 is too low.
• Joe: Is it 99?
• Sally: No, 99 is too high.
• …

Exercise 4.2. Imagine that Sally likes to formulate her answer not in the form “𝑥 is too
small” or “𝑥 is too large” but in the form “𝑓(𝑥) is positive” or “𝑓(𝑥) is negative”. If she uses
𝑓(𝑥) = 𝑥 − 𝑥0, where 𝑥0 is Sally’s chosen number then her new answers contain exactly the
same information as her previous answers? Can you now explain how Sally’s game is a root
finding game?

Exercise 4.3. Now go and play the game with other functions 𝑓(𝑥). Choose someone from
your group to be Sally and someone else to be Joe. Sally can choose a continuous function
and Joe needs to guess its root. Does your strategy still allow Joe to find the root of 𝑓(𝑥) at
least approximately? When should the game stop? Does Sally need to give Joe some extra
information to give him a fighting chance?

Exercise 4.4. Was it necessary to say that Sally’s function was continuous? Does your
strategy work if the function is not continuous.
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Now let us get to the maths. We will start the mathematical discussion with a theorem from
Calculus.

Theorem 4.1 (The Intermediate Value Theorem (IVT)). If 𝑓(𝑥) is a continuous function
on the closed interval [𝑎, 𝑏] and 𝑦∗ lies between 𝑓(𝑎) and 𝑓(𝑏), then there exists some point
𝑥∗ ∈ [𝑎, 𝑏] such that 𝑓(𝑥∗) = 𝑦∗.

Exercise 4.5. Draw a picture of what the intermediate value theorem says graphically.

Exercise 4.6. If 𝑦∗ = 0 the Intermediate Value Theorem gives us important information
about solving equations. What does it tell us?

Corollary 4.1. If 𝑓(𝑥) is a continuous function on the closed interval [𝑎, 𝑏] and if 𝑓(𝑎) and
𝑓(𝑏) have opposite signs then from the Intermediate Value Theorem we know that there exists
some point 𝑥∗ ∈ [𝑎, 𝑏] such that ____.

Exercise 4.7. Fill in the blank in the previous corollary and then draw several pictures that
indicate why this might be true for continuous functions.

The Intermediate Value Theorem (IVT) and its corollary are existence theorems in the sense
that they tell us that some point exists. The annoying thing about mathematical existence
theorems is that they typically do not tell us how to find the point that is guaranteed to exist.
The method that you developed in Exercise 4.1 to Exercise 4.3 gives one possible way to find
the root.

In those exercises you likely came up with an algorithm such as this:

• Say we know that a continuous function has opposite signs at 𝑥 = 𝑎 and 𝑥 = 𝑏.
• Guess that the root is at the midpoint 𝑚 = 𝑎+𝑏

2 .
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• By using the signs of the function, narrow the interval that contains the root to either
[𝑎,𝑚] or [𝑚, 𝑏].

• Repeat until the interval is small enough.

Now we will turn this strategy into computer code that will simply play the game for us. But
first we need to pay careful attention to some of the mathematical details.

Exercise 4.8. Where is the Intermediate Value Theorem used in the root-guessing strategy?

Exercise 4.9. Why was it important that the function 𝑓(𝑥) is continuous when playing this
root-guessing game? Provide a few sketches to demonstrate your answer.

4.2.2 Implementation

Exercise 4.10 (The Bisection Method). Goal: We want to solve the equation 𝑓(𝑥) = 0 for 𝑥
assuming that the solution 𝑥∗ is in the interval [𝑎, 𝑏].
The Algorithm: Assume that 𝑓(𝑥) is continuous on the closed interval [𝑎, 𝑏]. To make
approximations of the solutions to the equation 𝑓(𝑥) = 0, do the following:

1. Check to see if 𝑓(𝑎) and 𝑓(𝑏) have opposite signs. You can do this taking the product
of 𝑓(𝑎) and 𝑓(𝑏).

• If 𝑓(𝑎) and 𝑓(𝑏) have different signs then what does the IVT tell you?

• If 𝑓(𝑎) and 𝑓(𝑏) have the same sign then what does the IVT not tell you? What
should you do in this case?

• Why does the product of 𝑓(𝑎) and 𝑓(𝑏) tell us something about the signs of the two
numbers?

2. Compute the midpoint of the closed interval, 𝑚 = 𝑎+𝑏
2 , and evaluate 𝑓(𝑚).

• Will 𝑚 always be a better guess of the root than 𝑎 or 𝑏? Why?

• What should you do here if 𝑓(𝑚) is really close to zero?

3. Compare the signs of 𝑓(𝑎) versus 𝑓(𝑚) and 𝑓(𝑏) versus 𝑓(𝑚).

• What do you do if 𝑓(𝑎) and 𝑓(𝑚) have opposite signs?
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• What do you do if 𝑓(𝑚) and 𝑓(𝑏) have opposite signs?

4. Repeat steps 2 and 3 and stop when the interval containing the root is small enough.

Exercise 4.11. Draw a picture illustrating what the Bisection Method does to approximate
a solution to an equation 𝑓(𝑥) = 0.

Exercise 4.12. We want to write a Python function for the Bisection Method. Instead of
jumping straight into writing the code we should first come up with the structure of the code.
It is often helpful to outline the structure as comments in your file. Use the template below
and complete the comments. Note how the function starts with a so-called docstring that
describes what the function does and explains the function parameters and its return value.
This is standard practice and is how the help text is generated that you see when you hove
over a function name in your code.

Don’t write the code yet, just complete the comments. I recommend switching off the AI for
this exercise because otherwise the AI will keep already suggesting the code while you write
the comments.

def Bisection(f, a, b, tol=1e-5):
"""
Find a root of f(x) in the interval [a, b] using the bisection method
with a given tolerance tol.

Parameters:
f : function, the function for which we seek a root
a : float, left endpoint of the interval
b : float, right endpoint of the interval
tol : float, stopping tolerance

Returns:
float: approximate root of f(x)

"""

# check that a and b have opposite signs
# if not, return an error and stop

# calculate the midpoint m = (a+b)/2
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# start a while loop that runs while the interval is
# larger than 2 * tol

# if ...
# elif ...
# elif ...

# Calculate midpoint of new interval

# end the while loop
# return the approximate root

Exercise 4.13. Now use the comments from Exercise 4.12 as structure to complete a Python
function for the Bisection Method. Test your Bisection Method code on the following equa-
tions.

1. 𝑥2 − 2 = 0 on 𝑥 ∈ [0, 2]
2. sin(𝑥) + 𝑥2 = 2 log(𝑥) + 5 on 𝑥 ∈ [1, 5]
3. (5 − 𝑥)𝑒𝑥 = 5 on 𝑥 ∈ [0, 5]

4.2.3 Analysis

After we build any root finding algorithm we need to stop and think about how it will perform
on new problems. The questions that we typically have for a root-finding algorithm are:

• Will the algorithm always converge to a solution?

• How fast will the algorithm converge to a solution?

• Are there any pitfalls that we should be aware of when using the algorithm?

Exercise 4.14. Discussion: What must be true in order to use the bisection method?
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Exercise 4.15. Discussion: Does the bisection method work if the Intermediate Value Theo-
rem does not apply? (Hint: what does it mean for the IVT to “not apply?”)

Exercise 4.16. If there is a root of a continuous function 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏, will
the bisection method always be able to find it? Why / why not?

Next we will focus on a deeper mathematical analysis that will allow us to determine exactly
how fast the bisection method actually converges to within a pre-set tolerance. Work through
the next problem to develop a formula that tells you exactly how many steps the bisection
method needs to take before it gets close enough to the true solution.

Exercise 4.17. Let 𝑓(𝑥) be a continuous function on the interval [𝑎, 𝑏] and assume that
𝑓(𝑎)⋅𝑓(𝑏) < 0. A recurring theme in Numerical Analysis is to approximate some mathematical
thing to within some tolerance. For example, if we want to approximate the solution to the
equation 𝑓(𝑥) = 0 to within 𝜀 with the bisection method, we should be able to figure out how
many steps it will take to achieve that goal.

1. Let us say that 𝑎 = 3 and 𝑏 = 8 and 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0 for some continuous function 𝑓(𝑥).
The width of this interval is 5, so if we guess that the root is 𝑚 = (3 + 8)/2 = 5.5 then
our error is less than 5/2. In the more general setting, if there is a root of a continuous
function in the interval [𝑎, 𝑏] then how far off could the midpoint approximation of the
root be? In other words, what is the error in using 𝑚 = (𝑎 + 𝑏)/2 as the approximation
of the root?

2. The bisection method cuts the width of the interval down to a smaller size at every step.
As such, the approximation error gets smaller at every step. Fill in the blanks in the
following table to see the pattern in how the approximation error changes with each
iteration.
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Iteration Width of Interval Maximal Error

Iteration Width of Interval Maximal Error

1 |𝑏 − 𝑎| |𝑏−𝑎|
2

2 |𝑏−𝑎|
2

3 |𝑏−𝑎|
22

⋮ ⋮ ⋮
𝑛 |𝑏−𝑎|

2𝑛−1

3. Now to the key question:
If we want to approximate the solution to the equation 𝑓(𝑥) = 0 to within some tolerance
𝜀 then how many iterations of the bisection method do we need to take?
Hint: Set the 𝑛𝑡ℎ approximation error from the table equal to 𝜀. What should you solve
for from there?

In Exercise 4.17 you actually proved the following theorem.

Theorem 4.2 (Convergence Rate of the Bisection Method). If 𝑓(𝑥) is a continuous function
with a root in the interval [𝑎, 𝑏] and if the bisection method is performed to find the root then:

• The error between the actual root and the approximate root will decrease by a factor of 2
at every iteration.

• If we want the approximate root found by the bisection method to be within a tolerance
of 𝜀 then

|𝑏 − 𝑎|
2𝑛 = 𝜀 (4.3)

where 𝑛 is the number of iterations that it takes to achieve that tolerance.

Solving for the number 𝑛 of iterations we get

𝑛 = log2 (
|𝑏 − 𝑎|

𝜀 ) . (4.4)

Rounding the value of 𝑛 up to the nearest integer gives the number of iterations necessary to
approximate the root to a precision less than 𝜀.
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Exercise 4.18. Is it possible for a given function and a given interval that the Bisection
Method converges to the root in fewer steps than what you just found in the previous problem?
Explain.

Exercise 4.19. Create a second version of your Python Bisection Method function that uses
a for loop that takes the exact number of steps required to guarantee that the approximation
to the root lies within a requested tolerance. This should be in contrast to your first version
which likely used a while loop to decide when to stop. Is there an advantage to using one of
these version of the Bisection Method over the other?

The final type of analysis that we should do on the bisection method is to make plots of the
error between the approximate solution that the bisection method gives you and the exact
solution to the equation. This is a bit of a funny thing! Stop and think about this for a
second: if you know the exact solution to the equation then why are you solving it numerically
in the first place!?!? However, whenever you build an algorithm you need to test it on problems
where you actually do know the answer so that you can be somewhat sure that it is not giving
you nonsense. Furthermore, analysis like this tells us how fast the algorithm is expected to
perform.

From Theorem 4.2 you know that the bisection method cuts the interval in half at every
iteration. You proved in Exercise 4.17 that the error given by the bisection method is there-
fore cut in half at every iteration as well. The following example demonstrate this theorem
graphically.

Example 4.1. Let us solve the very simple equation 𝑥2 − 2 = 0 for 𝑥 to get the solution
𝑥 =

√
2 with the bisection method. Since we know the exact answer we can compare the exact

answer to the value of the midpoint given at each iteration and calculate an absolute error:

Absolute Error = |Approximate Solution− Exact Solution|. (4.5)

Let us write a Python function that implements the bisection method and collects the absolute
errors at each iteration into a list.
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def bisection_with_error_tracking(f, x_exact, a, b, tol):
"""
Implements the bisection method and tracks absolute error at each iteration.

Args:
f (callable): Function for which to find the root
x_exact (float): The exact root of the function
a (float): Left endpoint of initial interval
b (float): Right endpoint of initial interval
tol (float): Tolerance for stopping criterion

Returns:
list: List of absolute errors between approximate and exact solution at each iteration

"""
errors = []
while (b - a) / 2.0 > tol:

midpoint = (a + b) / 2.0
if f(midpoint) == 0:

break
elif f(a) * f(midpoint) < 0:

b = midpoint
else:

a = midpoint
error = abs(midpoint - x_exact)
errors.append(error)

return errors

We can now use this function to see the absolute error at each iteration when solving the
equation 𝑥2 − 2 = 0 with the bisection method.

import numpy as np

def f(x):
return x**2 - 2

x_exact = np.sqrt(2)

# Using the interval [1, 2] and a tolerance of 1e-7
tolerance = 1e-7
errors = bisection_with_error_tracking(f, x_exact, 1, 2, tolerance)
errors
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[np.float64(0.08578643762690485),
np.float64(0.16421356237309515),
np.float64(0.039213562373095145),
np.float64(0.023286437626904855),
np.float64(0.007963562373095145),
np.float64(0.0076614376269048545),
np.float64(0.00015106237309514547),
np.float64(0.0037551876269048545),
np.float64(0.0018020626269048545),
np.float64(0.0008255001269048545),
np.float64(0.0003372188769048545),
np.float64(9.307825190485453e-05),
np.float64(2.8992060595145475e-05),
np.float64(3.2043095654854525e-05),
np.float64(1.5255175298545254e-06),
np.float64(1.3733271532645475e-05),
np.float64(6.103877001395475e-06),
np.float64(2.2891797357704746e-06),
np.float64(3.818311029579746e-07),
np.float64(5.718432134482754e-07),
np.float64(9.500605524515038e-08),
np.float64(1.4341252385641212e-07),
np.float64(2.4203234305630872e-08)]

Next we write a function to plot the absolute error on the vertical axis and the iteration
number on the horizontal axis. We get Figure 4.2. As expected, the absolute error follows an
exponentially decreasing trend. Notice that it is not a completely smooth curve since we will
have some jumps in the accuracy just due to the fact that sometimes the root will be near the
midpoint of the interval and sometimes it will not be.

import matplotlib.pyplot as plt
def plot_errors(errors):

"""
Plot the absolute errors.

Args:
errors (list): List of absolute errors

"""
# Creating the x values for the plot (iterations)
iterations = np.arange(len(errors))

# Plotting the errors

107



plt.scatter(iterations, errors, label='Error per Iteration')

plt.xlabel('Iteration')
plt.ylabel('Absolute Error')
plt.title('Absolute Error in Each Iteration')
plt.legend()
plt.show()

plot_errors(errors)

Figure 4.2: The evolution of the absolute error when solving the equation 𝑥2 −2 = 0 with the
bisection method.

Without Theorem 4.2 it would be rather hard to tell what the exact behaviour is in the
exponential plot above. We know from Theorem 4.2 that the error will divide by 2 at every
step, so if we instead plot the base-2 logarithm of the absolute error against the iteration
number we should see a linear trend as shown in Figure 4.3.

def plot_log_errors(errors):
"""
Plot the base-2 logarithm of absolute errors and a best fit line.
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Args:
errors (list): List of absolute errors

"""
# Convert errors to base 2 logarithm
log_errors = np.log2(errors)
# Creating the x values for the plot (iterations)
iterations = np.arange(len(log_errors))

# Plotting the errors
plt.scatter(iterations, log_errors, label='Log Error per Iteration')

# Determine slope and intercept of the best-fit straight line
slope, intercept = np.polyfit(iterations, log_errors, deg=1)
best_fit_line = slope * iterations + intercept
# Plot the best-fit line
plt.plot(iterations, best_fit_line, label='Best Fit Line', color='red')

plt.xlabel('Iteration')
plt.ylabel('Base 2 Log of Absolute Error')
plt.title('Absolute Error in Each Iteration')
plt.legend()
plt.show()

plot_log_errors(errors)
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Figure 4.3: Iteration number vs the base-2 logarithm of the absolute error. Notice the slope of
−1 indicating that the error is divided by a factor of 2 at each step of the algorithm.

There will be times later in this course where we will not have a nice theorem like Theorem 4.2
and instead we will need to deduce the relationship from plots like these.

1. The trend is linear since logarithms and exponential functions are inverses. Hence, ap-
plying a logarithm to an exponential will give a linear function.

2. The slope of the resulting linear function should be −1 in this case since we are dividing
by a factor of 2 each iteration. Visually verify that the slope in the plot below follows
this trend (the red dashed line in the plot is shown to help you see the slope).

Exercise 4.20. Carefully read and discuss all of the details of the previous example and plots.
Then create plots similar to this example to solve a different equation to which you know the
exact solution. You should see the same basic behaviour based on the theorem that you proved
in Exercise 4.17. If you do not see the same basic behaviour then something has gone wrong.
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Example 4.2. Another plot that numerical analysts use quite frequently for determining how
an algorithm is behaving as it progresses is shown in Figure 4.4. and is defined by the following
axes:

• The horizontal axis is the absolute error at iteration 𝑘.
• The vertical axis is the absolute error at iteration 𝑘 + 1.

def plot_error_progression(errors):
# Calculating the log2 of the absolute error at step k and k+1
log_errors = np.log2(errors)
log_errors_k = log_errors[:-1] # log errors at step k (excluding the last one)
log_errors_k_plus_1 = log_errors[1:] # log errors at step k+1 (excluding the first one)

# Plotting log_errors_k+1 vs log_errors_k
plt.scatter(log_errors_k, log_errors_k_plus_1, label='Log Error at k+1 vs Log Error at k')

# Fitting a straight line to the data points
slope, intercept = np.polyfit(log_errors_k, log_errors_k_plus_1, deg=1)
best_fit_line = slope * log_errors_k + intercept
plt.plot(log_errors_k, best_fit_line, color='red', label='Best Fit Line')

# Setting up the plot
plt.xlabel('Log2 of Absolute Error at Step k')
plt.ylabel('Log2 of Absolute Error at Step k+1')
plt.title('Log2 of Absolute Error at Step k+1 vs Step k')
plt.legend()
plt.show()

plot_error_progression(errors)
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Figure 4.4: The base-2 logarithm of the absolute error at iteration 𝑘 vs the base-2 logarithm
of the absolute error at iteration 𝑘 + 1.

This type of plot takes a bit of explaining the first time you see it. Each point in the plot
corresponds to an iteration of the algorithm. The x-coordinate of each point is the base-2
logarithm of the absolute error at step 𝑘 and the y-coordinate is the base-2 logarithm of the
absolute error at step 𝑘+1. The initial interations are on the right-hand side of the plot where
the error is the largest (this will be where the algorithm starts). As the iterations progress
and the error decreases the points move to the left-hand side of the plot. Examining the slope
of the trend line in this plot shows how we expect the error to progress from step to step. The
slope appears to be about 1 in Figure 4.4 and the intercept appears to be about −1. In this
case we used a base-2 logarithm for each axis so we have just empirically shown that

log2(absolute error at step 𝑘 + 1) ≈ 1 ⋅ log2(absolute error at step 𝑘) − 1. (4.6)

Exponentiating both sides we see that this linear relationship turns into (You should stop now
and do this algebra.) Rearranging a bit more we get

(absolute error at step 𝑘 + 1) = 1
2(absolute error at step 𝑘), (4.7)

exactly as expected!! Pause and ponder this result for a second – we just empirically verified
the convergence rate for the bisection method just by examining Figure 4.4. That’s what
makes these types of plots so powerful!
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Exercise 4.21. Reproduce plots like those in the previous example but for the different
equation that you used in Exercise 4.20. Again check that the plots have the expected shape.

4.3 Fixed Point Iteration

We will now investigate a different problem that is closely related to root finding: the fixed
point problem. Given a function 𝑔 (of one real argument with real values), we look for a
number 𝑝 such that

𝑔(𝑝) = 𝑝.
This 𝑝 is called a fixed point of 𝑔.
Any root finding problem 𝑓(𝑥) = 0 can be reformulated as a fixed point problem, and this
can be done in many (in fact, infinitely many) ways. For example, given 𝑓 , we can define
𝑔(𝑥) ∶= 𝑓(𝑥) + 𝑥; then

𝑓(𝑥) = 0 ⇔ 𝑔(𝑥) = 𝑥.
Just as well, we could set 𝑔(𝑥) ∶= 𝜆𝑓(𝑥) + 𝑥 with any 𝜆 ∈ ℝ\{0}, and there are many other
possibilities.

The heuristic idea for approximating a fixed point of a function 𝑔 is quite simple. We take an
initial approximation 𝑥0 and calculate subsequent approximations using the formula

𝑥𝑛 ∶= 𝑔(𝑥𝑛−1).

A graphical representation of this sequence when 𝑔 = cos and 𝑥0 = 2 is shown in Figure 4.5.

Exercise 4.22. The plot that emerges in Figure 4.5 is known as a cobweb diagram, for obvious
reason. Explain to others in your group what is happening in the animation in Figure 4.5 and
how that animation is related to the fixed point iteration 𝑥𝑛 = cos(𝑥𝑛−1).

Exercise 4.23. � The animation in Figure 4.5 is a graphical representation of the fixed point
iteration 𝑥𝑛 = cos(𝑥𝑛−1). Use Python to calculate the first 10 iterations of this sequence with
𝑥0 = 0.2. Use that to get an estimate of the solution to the equation cos(𝑥) − 𝑥 = 0.
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Figure 4.5: Fixed point iteration

Why is the sequence (𝑥𝑛) expected to approximate a fixed point? Suppose for a moment that
the sequence (𝑥𝑛) converges to some number 𝑝, and that 𝑔 is continuous. Then

𝑝 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑔(𝑥𝑛−1) = 𝑔 ( lim
𝑛→∞

𝑥𝑛−1) = 𝑔(𝑝). (4.8)

Thus, if the sequence converges, then it converges to a fixed point. However, this resolves the
problem only partially. One would like to know:

• Under what conditions does the sequence (𝑥𝑛) converge?
• How fast is the convergence, i.e., can one obtain an estimate for the approximation error?

So there is much for you to investigate!

Exercise 4.24. Copy the two plots in Figure 4.6 to a piece of paper and draw the first few
iterations of the fixed point iteration 𝑥𝑛 = 𝑔(𝑥𝑛−1) on each of them. In the first plot start
with 𝑥0 = 0.2 and in the second plot start with 𝑥0 = 1.5 and in the second plot start with
𝑥 = 0.9 What do you observe about the convergence of the sequence in each case?

Can you make some conjectures about when the sequence (𝑥𝑛) will converge to a fixed point
and when it will not?
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Figure 4.6: Two plots for practicing your cobweb skills.

Exercise 4.25. Make similar plots as in the previous exercise but with different slopes of the
blue line. Can you make some conjectures about how the speed of convergence is related to
the slope of the blue line?

Now see if your observations are in agreement with the following theorem:

Theorem 4.3 (Fixed Point Theorem). Suppose that 𝑔 ∶ [𝑎, 𝑏] → [𝑎, 𝑏] is differentiable, and
that there exists 0 < 𝑘 < 1 such that

|𝑔′(𝑥)| ≤ 𝑘 for all 𝑥 ∈ (𝑎, 𝑏). (4.9)

Then, 𝑔 has a unique fixed point 𝑝 ∈ [𝑎, 𝑏]; and for any choice of 𝑥0 ∈ [𝑎, 𝑏], the sequence
defined by

𝑥𝑛 ∶= 𝑔(𝑥𝑛−1) for all 𝑛 ≥ 1 (4.10)

converges to 𝑝. The following estimate holds:

|𝑝 − 𝑥𝑛| ≤ 𝑘𝑛|𝑝 − 𝑥0| for all 𝑛 ≥ 1. (4.11)

Proof. The proof of this theorem is not difficult, but you can skip it and go directly to Ex-
ercise 4.26 if you feel that the theorem makes intuitive sense and you are not interested in
proofs.
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We first show that 𝑔 has a fixed point 𝑝 in [𝑎, 𝑏]. If 𝑔(𝑎) = 𝑎 or 𝑔(𝑏) = 𝑏 then 𝑔 has a fixed
point at an endpoint. If not, then it must be true that 𝑔(𝑎) > 𝑎 and 𝑔(𝑏) < 𝑏. This means
that the function ℎ(𝑥) ∶= 𝑔(𝑥) − 𝑥 satisfies

ℎ(𝑎) = 𝑔(𝑎) − 𝑎 > 0, ℎ(𝑏) = 𝑔(𝑏) − 𝑏 < 0

and since ℎ is continuous on [𝑎, 𝑏] the Intermediate Value Theorem guarantees the existence
of 𝑝 ∈ (𝑎, 𝑏) for which ℎ(𝑝) = 0, equivalently 𝑔(𝑝) = 𝑝, so that 𝑝 is a fixed point of 𝑔.
To show that the fixed point is unique, suppose that 𝑞 ≠ 𝑝 is a fixed point of 𝑔 in [𝑎, 𝑏]. The
Mean Value Theorem implies the existence of a number 𝜉 ∈ (min{𝑝, 𝑞},max{𝑝, 𝑞}) ⊆ (𝑎, 𝑏)
such that

𝑔(𝑝) − 𝑔(𝑞)
𝑝 − 𝑞 = 𝑔′(𝜉).

Then
|𝑝 − 𝑞| = |𝑔(𝑝) − 𝑔(𝑞)| = |(𝑝 − 𝑞)𝑔′(𝜉)| = |𝑝 − 𝑞||𝑔′(𝜉)| ≤ 𝑘|𝑝 − 𝑞| < |𝑝 − 𝑞|,

where the inequalities follow from Eq. 4.9. This is a contradiction, which must have come from
the assumption 𝑝 ≠ 𝑞. Thus 𝑝 = 𝑞 and the fixed point is unique.

Since 𝑔 maps [𝑎, 𝑏] onto itself, the sequence {𝑥𝑛} is well defined. For each 𝑛 ≥ 0 the Mean
Value Theorem gives the existence of a 𝜉 ∈ (min{𝑥𝑛, 𝑝},max{𝑥𝑛, 𝑝}) ⊆ (𝑎, 𝑏) such that

𝑔(𝑥𝑛) − 𝑔(𝑝)
𝑥𝑛 − 𝑝 = 𝑔′(𝜉).

Thus for each 𝑛 ≥ 1 by Eq. 4.9, Eq. 4.10

|𝑥𝑛 − 𝑝| = |𝑔(𝑥𝑛−1) − 𝑔(𝑝)| = |(𝑥𝑛−1 − 𝑝)𝑔′(𝜉)| = |𝑥𝑛−1 − 𝑝||𝑔′(𝜉)| ≤ 𝑘|𝑥𝑛−1 − 𝑝|.

Applying this inequality inductively, we obtain the error estimate Eq. 4.11. Moreover since
𝑘 < 1 we have

lim
𝑛→∞

|𝑥𝑛 − 𝑝| ≤ lim
𝑛→∞

𝑘𝑛|𝑥0 − 𝑝| = 0,

which implies that (𝑥𝑛) converges to 𝑝. �

Exercise 4.26. � This exercise shows why the conditions of the Theorem 4.3 are important.

The equation
𝑓(𝑥) = 𝑥2 − 2 = 0

has a unique root
√
2 in [1, 2]. There are many ways of writing this equation in the form

𝑥 = 𝑔(𝑥); we consider two of them:

𝑥 = 𝑔(𝑥) = 𝑥 − (𝑥2 − 2), 𝑥 = ℎ(𝑥) = 𝑥 − 𝑥2 − 2
3 .
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Calculate the first terms in the sequences generated by the fixed point iteration procedures
𝑥𝑛 = 𝑔(𝑥𝑛−1) and 𝑥𝑛 = ℎ(𝑥𝑛−1) with start value 𝑥0 = 1. Which of these fixed point problems
generate a rapidly converging sequence? Calculate the derivatives of 𝑔 and ℎ and check if the
conditions of the fixed point theorem are satisfied.

The previous exercise illustrates that one needs to be careful in rewriting root finding problems
as fixed point problems—there are many ways to do so, but not all lead to a good approxima-
tion. In the next section about Newton’s method we will discover a very good choice.

Note at this point that Theorem 4.3 gives only sufficient conditions for convergence; in practice,
convergence might occur even if the conditions are violated.

Exercise 4.27. � In this exercise you will write a Python function to implement the fixed
point iteration algorithm.

For implementing the fixed point method as a computer algorithm, there’s one more complica-
tion to be taken into account: how many steps of the iteration should be taken, i.e., how large
should 𝑛 be chosen, in order to reach the desired precision? The error estimate in Eq. 4.11 is
often difficult to use for this purpose because it involves estimates on the derivative of 𝑔 which
may not be known.

Instead, one uses a different stopping condition for the algorithm. Since the sequence is
expected to converge rapidly, one uses the difference |𝑥𝑛 − 𝑥𝑛−1| to measure the precision
reached. If this difference is below a specified limit, say 𝜏 , the iteration is stopped. Since
it is possible that the iteration does not converge—see the example above—one would also
stop the iteration (with an error message) if a certain number of steps is exceeded, in order to
avoid infinite loops. In pseudocode the fixed point iteration algorithm is then implemented as
follows:

Fixed point iteration
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1 ∶ function 𝐹𝑖𝑥𝑒𝑑𝑃𝑜𝑖𝑛𝑡(𝑔, 𝑥0, 𝑡𝑜𝑙,𝑁) ♯ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔, 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑥0,
2 ∶ 𝑥 ← 𝑥0; 𝑛 ← 0 ♯ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑡𝑜𝑙,
3 ∶ for 𝑖 ← 1 to 𝑁 ♯ 𝑚𝑎𝑥. 𝑛𝑢𝑚. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑁
4 ∶ 𝑦 ← 𝑥; 𝑥 ← 𝑔(𝑥)
5 ∶ if |𝑦 − 𝑥| < 𝑡𝑜𝑙 then ♯ 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
6 ∶ return 𝑥
7 ∶ end if
8 ∶ end for
9 ∶ exception(𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑)
10 ∶ end function

Implement this algorithm in Python. Use it to approximate the fixed point of the function
𝑔(𝑥) = cos(𝑥) with start value 𝑥0 = 2 and tolerance 𝑡𝑜𝑙 = 10−8.

Further reading: Section 2.2 of (Burden and Faires 2010).

4.4 Newton’s Method

In the Bisection Method (Section 4.2) we had used only the sign of of the function at the guessed
points. We will now investigate how we can use also the value and the slope (derivative) of
the function to get a much improved method.

4.4.1 Intuition

Root finding is really the process of finding the 𝑥-intercept of the function. If the function is
complicated (e.g. highly nonlinear or does not lend itself to traditional by-hand techniques)
then we can approximate the 𝑥-intercept by creating a Taylor Series approximation of the
function at a nearby point and then finding the 𝑥-intercept of that simpler Taylor Series. The
simplest non-trivial Taylor Series is a linear function – a tangent line!
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Exercise 4.28. A tangent line approximation to a function 𝑓(𝑥) near a point 𝑥0 is

𝑦 = 𝑓(𝑥0) + 𝑓 ′(𝑥0) (𝑥 − 𝑥0) . (4.12)

Set 𝑦 to zero and solve for 𝑥 to find the 𝑥-intercept of the tangent line.

𝑥-intercept of tangent line is 𝑥 = (4.13)

The idea of approximating the function by its tangent line gives us an algorithm for approxi-
mating the root of a function:

• Given a value of 𝑥 that is a decent approximation of the root, draw a tangent line to
𝑓(𝑥) at that point.

• Find where the tangent line intersects the 𝑥 axis.

• Use this intersection as the new 𝑥 value and repeat.

The first step has been shown for you in Figure 4.7. The tangent line to the function 𝑓(𝑥) at
the point (𝑥0, 𝑓(𝑥0)) is shown in red. The 𝑥-intercept of the tangent line is the new 𝑥 value,
𝑥1. The process is then repeated with 𝑥1 as the new 𝑥0 and so on.

The graphical method illustrated in Figure 4.7 was introduced by Sir Isaac Newton and is
therefore known as Newton’s Method. Joseph Raphson then gave the algebraic formulation
and popularised the method, which is therefore also known as the Newton-Raphson method.

Exercise 4.29. If we had started not at 𝑥0 in Figure 4.7 but instead at the very end of the
x-axis in that figure, what would have happened? Would this initial guess have worked to
eventually approximate the root?

Exercise 4.30. Sketch some other function 𝑓(𝑥) with a root and choose an initial point 𝑥0
and graphically perform the Newton iteration a few times, similar to Figure 4.7. Does the
algorithm appear to converge to the root in your example? Do you think that this will generally
take more or fewer steps than the Bisection Method?
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Figure 4.7: Using successive tangent line approximations to find the root of a function

120



Exercise 4.31. � Consider the function 𝑓(𝑥) = sin(𝑥) + 1. It has roots at 𝑥 = 2𝑛𝜋 + 3𝜋/2
for 𝑛 ∈ ℤ. However at the roots we have 𝑓 ′(𝑥) = 0. Make yourself a sketch to see why. What
will happen when you apply Newton’s method with a starting value of 𝑥0 = 𝜋? You should
be able to answer this just by looking at the sketch.

Exercise 4.32. Using your result from Exercise 4.28, write the formula for the 𝑥-intercept
of the tangent line to 𝑓(𝑥) at the point (𝑥𝑛, 𝑓(𝑥𝑛)). This is the formula for the next guess
𝑥𝑛−1 in Newton’s Method. Newton’s method is a fixed point iteration method of the form
𝑥𝑛+1 = 𝑔(𝑥𝑛) with

𝑔(𝑥) = … .
Fill in the blank in the above formula.

Exercise 4.33. � Apply Newton’s method to find the root of the function 𝑓(𝑥) = 𝑥2 −2 with
an initial guess of 𝑥0 = 1. Calculate the first two iterations of the sequence by hand (you do
not need a calculator or computer for this). Use a calculator or computer to calculate the next
two iterations and fill in the following table:

𝑛 𝑥𝑛 𝑓(𝑥𝑛) 𝑓 ′(𝑥𝑛)
0 𝑥0 = 1 𝑓(𝑥0) = −1 𝑓 ′(𝑥0) = 2
1 𝑥1 = 1 − −1

2 = 3
2 𝑓(𝑥1) = 𝑓 ′(𝑥1) =

2 𝑥2 = 𝑓(𝑥2) = 𝑓 ′(𝑥2) =
3 𝑥3 = 𝑓(𝑥3) = 𝑓 ′(𝑥3) =
4 𝑥4 =

4.4.2 Implementation

Exercise 4.34. The following is an outline a Python function called newton() for Newton’s
method. The function needs to accept a Python function for 𝑓(𝑥), a Python function for 𝑓 ′(𝑥),
an initial guess, and an optional error tolerance.
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def newton(f, fprime, x0, tol=1e-12):
"""
Find root of f(x) using Newton's Method.

Parameters:
f (function): Function whose root we want to find
fprime (function): Derivative of f
x0 (float): Initial guess for the root
tol (float, optional): Error tolerance. Defaults to 1e-6

Returns:
float: Approximate root of f(x)
or error message if method fails

"""

# Set x equal to initial guess x0

# Loop for maximum of 30 iterations:
# 1. Calculate next Newton iteration:
# x_new = x - f(x)/f'(x)

# 2. Check if within tolerance:
# If |x_new - x| < tol, return x_new as root
# If not, update x = x_new

# 3. If loop completes without finding root,
# return message that method did not converge

Exercise 4.35. � Use your implementation from Exercise 4.34 to approximate the root of the
function 𝑓(𝑥) = 𝑥2 − 2 with an initial guess of 𝑥0 = 1. Use a tolerance of 10−12.

4.4.3 Failures

There are several ways in which Newton’s Method will behave unexpectedly – or downright
fail. Some of these issues can be foreseen by examining the Newton iteration formula

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓 ′(𝑥𝑛)

. (4.14)
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Some of the failures that we will see are a little more surprising. Also in this section we
will look at the convergence rate of Newton’s Method and we will show that we can greatly
outperform the Bisection method.

Exercise 4.36. There are several reasons why Newton’s method could fail. Work with your
partners to come up with a list of reasons. Support each of your reasons with a sketch or an
example.

Exercise 4.37. One of the failures of Newton’s Method is that it requires a division by 𝑓 ′(𝑥𝑛).
If 𝑓 ′(𝑥𝑛) is zero then the algorithm completely fails. Go back to your Python function and
put an if statement in the function that catches instances when Newton’s Method fails in this
way.

Exercise 4.38. An interesting failure can occur with Newton’s Method that you might not
initially expect. Consider the function 𝑓(𝑥) = 𝑥3 − 2𝑥 + 2. This function has a root near
𝑥 = −1.77. Fill in the table below by hand. You really do not need a computer for this.
Then draw the tangent lines into Figure 4.8 for approximating the solution to 𝑓(𝑥) = 0 with
a starting point of 𝑥 = 0.

𝑛 𝑥𝑛 𝑓(𝑥𝑛) 𝑓 ′(𝑥𝑛)
0 𝑥0 = 0 𝑓(𝑥0) = 2 𝑓 ′(𝑥0) = −2
1 𝑥1 = 0 − 𝑓(𝑥0)

𝑓′(𝑥0) = 1 𝑓(𝑥1) = 1 𝑓 ′(𝑥1) = 1
2 𝑥2 = 1 − 𝑓(𝑥1)

𝑓′(𝑥1) = 𝑓(𝑥2) = 𝑓 ′(𝑥2) =
3 𝑥3 = 𝑓(𝑥3) = 𝑓 ′(𝑥3) =
4 𝑥4 = 𝑓(𝑥4) = 𝑓 ′(𝑥4) =
⋮ ⋮ ⋮ ⋮
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Figure 4.8: An interesting Newton’s Method failure when 𝑓(𝑥) = 𝑥3 − 2𝑥 + 2.
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Exercise 4.39. Now let us consider the function 𝑓(𝑥) = 3√𝑥. This function has a root 𝑥 = 0.
Furthermore, it is differentiable everywhere except at 𝑥 = 0 since

𝑓 ′(𝑥) = 1
3𝑥

−2/3 = 1
3𝑥2/3 . (4.15)

The point of this exercise is to show what can happen when the point of non-differentiability
is precisely the point that you are looking for.

1. Fill in the table of iterations starting at 𝑥 = −1, draw the tangent lines on the plot, and
make a general observation of what is happening with the Newton iterations.

𝑛 𝑥𝑛 𝑓(𝑥𝑛) 𝑓(𝑥𝑛)
0 𝑥0 = −1 𝑓(𝑥0) = −1 𝑓 ′(𝑥0) =
1 𝑥1 = −1 − 𝑓(−1)

𝑓′(−1) = 𝑓(𝑥1) = 𝑓 ′(𝑥1) =
2
3
4
⋮ ⋮ ⋮ ⋮

2. Now let us look at the Newton iteration in a bit more detail. Since 𝑓(𝑥) = 𝑥1/3 and
𝑓 ′(𝑥) = 1

3𝑥−2/3 the Newton iteration can be simplified as

𝑥𝑛+1 = 𝑥𝑛 − 𝑥1/3
𝑛

(1
3𝑥

−2/3
𝑛 )

= 𝑥𝑛 − 3 𝑥1/3
𝑛

𝑥−2/3
𝑛

= 𝑥𝑛 − 3𝑥𝑛 = −2𝑥𝑛. (4.16)

What does this tell us about the Newton iterations?
Hint: You should have found the exact same thing in the numerical experiment in part
1.

3. Was there anything special about the starting point 𝑥0 = −1? Will this problem exist
for every starting point?

Exercise 4.40. Repeat the previous exercise with the function 𝑓(𝑥) = 𝑥3 − 5𝑥 with the
starting point 𝑥0 = −1.
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Figure 4.9: Another surprising Newton’s Method failure when 𝑓(𝑥) = 3√𝑥.
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Figure 4.10: Another surprising Newton’s Method failure when 𝑓(𝑥) = 𝑥3 − 5𝑥.
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4.4.4 Rate of Convergence

We saw in Example 4.2 how we could empirically determine the rate of convergence of the
bisection method by plotting the error in the new iterate on the 𝑦-axis and the error in the
old iterate on the 𝑥 axis of a log-log plot. Take a look at that example again and make sure
you understand the code and the explanation of the plot. Then, to investigate the rate of
convergence of Newton’s method you can do the same thing.

Exercise 4.41. � Write a Python function newton_with_error_tracking() that returns a
list of absolute errors between the iterates and the exact solution. You can start with your
code from newton() from Exercise 4.34 and add the collection of the errors in a list as in
the bisection_with_error_tracking() function that we wrote in Example 4.1. Your new
function should accept a Python function for 𝑓(𝑥), a Python function for 𝑓 ′(𝑥), the exact root,
an initial guess, and an optional error tolerance.

Then, use this function to list the error progression for Newton’s method for finding the root
of 𝑓(𝑥) = 𝑥2 − 2 with the initial guess 𝑥0 = 1 and tolerance 10−12. You should find that the
error goes down extremely quickly and that for the final iteration Python can no longer detect
a difference between the new iterate and its own value for

√
2.

Exercise 4.42.

1. Plot the errors you calculated in Exercise 4.41 using the plot_error_progression()
function that we wrote in Example 4.2. Note that you will first need to remove the zeros
from the error list, otherwise you will get an error. You can remind yourself of how to
work with lists in Section 1.3.2.

2. Give a thorough explanation for how to interpret the plot that you just made.

3. � Extract the slope and intercept of the line that you fitted to the log-log plot of the
error progression using the np.polyfit function. What does this tell you about how the
error at each iteration is related to the error at the previous iteration?

Exercise 4.43. Reproduce plots like those in the previous example but for the different
equation that you used in Exercise 4.20. Again check that the plots have the expected shape.
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4.5 The Secant Method

4.5.1 Intuition and Implementation

Newton’s Method has second-order (quadratic) convergence and, as such, will perform faster
than the Bisection method. However, Newton’s Method requires that you have a function
and a derivative of that function. The conundrum here is that sometimes the derivative is
cumbersome or impossible to obtain but you still want to have the great quadratic convergence
exhibited by Newton’s method.

Recall that Newton’s method is
𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
. (4.17)

If we replace 𝑓 ′(𝑥𝑛) with an approximation of the derivative then we may have a method that
is close to Newton’s method in terms of convergence rate but is less troublesome to compute.
Any method that replaces the derivative in Newton’s method with an approximation is called
a Quasi-Newton Method.

The first, and most obvious, way to approximate the derivative is just to use the slope of a
secant line instead of the slope of the tangent line in the Newton iteration. If we choose two
starting points that are quite close to each other then the slope of the secant line through
those points will be approximately the same as the slope of the tangent line.

Exercise 4.44. Use the backward difference

𝑓 ′(𝑥𝑛) ≈
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)

𝑥𝑛 − 𝑥𝑛−1
(4.18)

to approximate the derivative of 𝑓 at 𝑥𝑛. Discuss why this approximates the derivative. Use
this approximation of 𝑓 ′(𝑥𝑛) in the expression for 𝑥𝑛+1 of Newton’s method. Show that that
the result simplifies to

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛) (𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)

. (4.19)

Exercise 4.45. Notice that the iteration formula for 𝑥𝑛+1 that you derived depends on both
𝑥𝑛 and 𝑥𝑛−1. So to start the iteration you need to choose two points 𝑥0 and 𝑥1 before you can
calculate 𝑥2, 𝑥3,…. Draw several pictures showing what the secant method does pictorially.
Discuss whether it is important to choose these starting points close to the root and close to
each other.
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Figure 4.11: Using successive secant line approximations to find the root of a function
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Exercise 4.46. � Write a Python function for solving equations of the form 𝑓(𝑥) = 0 with the
secant method. Your function should accept a Python function, two starting points, and an
optional error tolerance. Also write a test script that clearly shows that your code is working.

4.5.2 Analysis

Up to this point we have done analysis work on the Bisection Method and Newton’s Method.
We have found that the methods are first order and second order respectively. We end this
chapter by doing the same for the Secant Method.

Exercise 4.47. Write a function secant_with_error_tracking() that returns a list of ab-
solute errors between the iterates and the exact solution. You can start with your code
from secant() from Exercise 4.46 and add the collection of the errors in a list as in the
bisection_with_error_tracking() function that we wrote in Example 4.1. Your new func-
tion should accept a Python function, the exact root, two starting points, and an optional
error tolerance.

Use this function to list the error progression for the secant method for finding the root of
𝑓(𝑥) = 𝑥2 − 2 with the starting points 𝑥0 = 1 and 𝑥1 = 3. Use a tolerance of 10−12. Use
the plot_error_progression() function that we wrote in Example 4.2 to plot the error
progression.

Exercise 4.48. � Using the np.polyfit function, extract the slope of the line that you had
fit to the log-log plot of the error progression in Exercise 4.47. What does this slope tell you
about how the error at each iteration is related to the error at the previous iteration?

Exercise 4.49. Make error progression plots for a few different functions and look at the
slopes. What do you notice?
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4.6 Order of Convergence

You will by now have noticed that Newton’s method converges much faster than the bisection
method. The secant method also converges faster than the bisection method, though not quite
as fast as Newton’s method. You will have observed that reflected in the different slopes of
the error progression graphs. In this section we summarize your observations theoretically.
Thus this section is untypical in that it does not contain further explorations for you to do
but instead just consolidates what you have already done. In class this will be presented as a
lecture.

4.6.1 Definition

Definition 4.1. Suppose that 𝑥𝑛 → 𝑝 as 𝑛 → ∞ and 𝑥𝑛 ≠ 𝑝 for all 𝑛. The sequence {𝑥𝑛} is
said to have order of convergence 𝛼 ≥ 1 if there exists a constant 𝜆 > 0 such that

lim
𝑛→∞

𝐸𝑛+1
𝐸𝛼𝑛

= 𝜆. (4.20)

Here 𝐸𝑛 denotes the absolute error in the 𝑛th approximation: 𝐸𝑛 = |𝑥𝑛 − 𝑝|.

If 𝛼 = 1, 2, 3,…, the convergence is said to be linear, quadratic, cubic, …, respectively. Note that
if the convergence is linear, then the positive constant 𝜆 that appears in the above definition
must be smaller than 1 (0 < 𝜆 < 1), because otherwise the sequence will not converge.

A sequence with a higher order of convergence converges much more rapidly than a sequence
with a lower order of convergence. To see this, let us consider the following example:

Example 4.3. Let {𝑥𝑛} and {𝑦𝑛} be sequences converging to zero and let, for 𝑛 ≥ 0,

|𝑥𝑛+1| = 𝑘|𝑥𝑛| and |𝑦𝑛+1| = 𝑘|𝑦𝑛|2, (4.21)

where 0 < 𝑘 < 1. According to the definition, {𝑥𝑛} is linearly convergent and {𝑦𝑛} is quadrat-
ically convergent.

Also, we have

|𝑥𝑛| = 𝑘|𝑥𝑛−1| = 𝑘2|𝑥𝑛−2| = ... = 𝑘𝑛|𝑥0|,
|𝑦𝑛| = 𝑘|𝑦𝑛−1|2 = 𝑘|𝑘|𝑦𝑛−2|2|2 = 𝑘3|𝑦𝑛−2|4 = 𝑘7|𝑦𝑛−3|8 = ... = 𝑘2𝑛−1|𝑦0|2

𝑛 . (4.22)

This illustrates that the quadratic convergence is much faster that the linear convergence.

We have defined the order of convergence of a converging sequence. We will also say than an
iterative method has order of convergence 𝛼 if the sequence of approximations that it produces
on a generic problem has order of convergence 𝛼.
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4.6.2 Fixed Point Iteration

Suppose that 𝑔(𝑥) satisfies the conditions of the Fixed Point Theorem on interval [𝑎, 𝑏], so that
the sequence {𝑥𝑛} generated by the formula 𝑥𝑛+1 = 𝑔(𝑥𝑛) with 𝑥0 ∈ [𝑎, 𝑏] converges to a fixed
point 𝑝. Then, using the Mean Value Theorem, we obtain

𝐸𝑛+1 = |𝑥𝑛+1 − 𝑝| = |𝑔(𝑥𝑛) − 𝑔(𝑝)|
= |𝑔′(𝜉𝑛)(𝑥𝑛 − 𝑝)| = 𝐸𝑛|𝑔′(𝜉𝑛)|,

(4.23)

where 𝜉𝑛 is a number between 𝑥𝑛 and 𝑝. This implies that if 𝑥𝑛 → 𝑝, then 𝜉𝑛 → 𝑝 as 𝑛 → ∞.
Therefore,

lim
𝑛→∞

𝐸𝑛+1
𝐸𝑛

= |𝑔′(𝑝)|. (4.24)

In general, 𝑔′(𝑝) ≠ 0, so that the fixed point iteration produces a linearly convergent se-
quence.

Can the fixed-point iteration produce convergent sequences with convergence of order 2, 3, etc.
? It turns out that, under certain conditions, this is possible.

We will prove the following

Theorem 4.4. Let 𝑚 > 1 be an integer, and let 𝑔 ∈ 𝐶𝑚[𝑎, 𝑏]. Suppose that 𝑝 ∈ [𝑎, 𝑏] is a
fixed point of 𝑔, and a point 𝑥0 ∈ [𝑎, 𝑏] exists such that the sequence generated by the formula
𝑥𝑛+1 = 𝑔(𝑥𝑛) converges to 𝑝. If 𝑔′(𝑝) = ⋯ = 𝑔(𝑚−1)(𝑝) = 0, then {𝑥𝑛} has the order of
convergence 𝑚.

Proof. Expanding 𝑔(𝑥𝑛) in Taylor’s series at point 𝑝, we obtain:

𝑥𝑛+1 = 𝑔(𝑥𝑛) = 𝑔(𝑝) + (𝑥𝑛 − 𝑝)𝑔′(𝑝) + …

+ (𝑥𝑛 − 𝑝)𝑚−1

(𝑚 − 1)! 𝑔(𝑚−1)(𝑝)

+ (𝑥𝑛 − 𝑝)𝑚
𝑚! 𝑔(𝑚)(𝜉𝑛)

= 𝑝 + (𝑥𝑛 − 𝑝)𝑚
(𝑚)! 𝑔(𝑚)(𝜉𝑛),

(4.25)

where 𝜉𝑛 is between 𝑥𝑛 and 𝑝 and, therefore, in [𝑎, 𝑏] (𝑥𝑛 ∈ [𝑎, 𝑏] at least for sufficiently large
𝑛). Then we have

𝐸𝑛+1 = |𝑥𝑛+1 − 𝑝| = |𝑔(𝑥𝑛) − 𝑝| = ∣(𝑥𝑛 − 𝑝)𝑚
(𝑚)! 𝑔(𝑚)(𝜉𝑛)∣

= 𝐸𝑚
𝑛
|𝑔(𝑚)(𝜉𝑛)|

𝑚! .
(4.26)
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Therefore (using the fact that 𝜉𝑛 → 𝑝),

lim
𝑛→∞

𝐸𝑛+1
𝐸𝑚𝑛

= |𝑔(𝑚)(𝑝)|
𝑚! , (4.27)

which means that {𝑥𝑛} has convergence of order 𝑚.

4.6.3 Newton’s Method

Newton’s method for approximating the root 𝑝 of the equation 𝑓(𝑥) = 0 is equivalent to the
fixed-point iteration 𝑥𝑛+1 = 𝑔(𝑥𝑛) with

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)
𝑓 ′(𝑥) . (4.28)

Suppose that sequence {𝑥𝑛} converges to 𝑝 and 𝑓 ′(𝑝) ≠ 0. We have

𝑔′(𝑥) = 𝑓(𝑥)𝑓″(𝑥)
[𝑓 ′(𝑥)]2 ⇒ 𝑔′(𝑝) = 𝑓(𝑝)𝑓″(𝑝)

[𝑓 ′(𝑝)]2 = 0. (4.29)

It follows from the above theorem that the order of convergence of Newton’s method is 2
(except in the special case where 𝑔″(𝑝) = 0).

4.6.4 Secant Method

The situation with the secant method is more complicated (since it cannot be reduced to the
fixed point iteration) and requires a separate treatment. The result is that the secant method
has order of convergence 𝛼 = 1+

√
5

2 ≈ 1.618.
Note that 𝛼 is known as the golden ratio. If you are intrigued to see the golden ratio appear
in this context, you can find a proof below. If you are happy to just accept the miracle, you
can skip the proof and go on to Section 4.7.

Suppose that a sequence {𝑥𝑛}, generated by the secant method

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)(𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)

, (4.30)

converges to 𝑝. Let
𝑒𝑛 = 𝑥𝑛 − 𝑝, (4.31)

so that 𝐸𝑛 = |𝑒𝑛|, and we assume that 𝐸𝑛 ≪ 1, which is definitely true for sufficiently large
𝑛 (since the sequence {𝑥𝑛} is converging to 𝑝). Subtracting 𝑝 from both sides of Eq. 4.30, we
obtain

𝑒𝑛+1 = 𝑒𝑛 − 𝑓(𝑝 + 𝑒𝑛)(𝑒𝑛 − 𝑒𝑛−1)
𝑓(𝑝 + 𝑒𝑛) − 𝑓(𝑝 + 𝑒𝑛−1)

, (4.32)
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Expanding 𝑓(𝑝 + 𝑒𝑛) and 𝑓(𝑝 + 𝑒𝑛−1) in Taylor series about 𝑝 and taking into account that
𝑓(𝑝) = 0, we find that

𝑓(𝑝 + 𝑒𝑛) = 𝑒𝑛𝑓 ′(𝑝) + 𝑒2𝑛
2 𝑓 ′′(𝑝) + ⋯

= 𝑒𝑛𝑓 ′(𝑝)(1 + 𝑒𝑛𝑄) + ⋯ ,

𝑓(𝑝 + 𝑒𝑛−1) = 𝑒𝑛−1𝑓 ′(𝑝) + 𝑒2𝑛−1
2 𝑓 ′′(𝑝) + ⋯

= 𝑒𝑛−1𝑓 ′(𝑝)(1 + 𝑒𝑛−1𝑄) + ⋯ ,

(4.33)

where
𝑄 = 𝑓 ′′(𝑝)

2𝑓 ′(𝑝) . (4.34)

Substitution of Eq. 4.33 into Eq. 4.32 yields

𝑒𝑛+1 = 𝑒𝑛 − 𝑒𝑛(𝑒𝑛 − 𝑒𝑛−1)𝑓 ′(𝑝)(1 + 𝑒𝑛𝑄) + ⋯
𝑓 ′(𝑝) [𝑒𝑛 − 𝑒𝑛−1 +𝑄(𝑒2𝑛 − 𝑒2𝑛−1) + ⋯]

= 𝑒𝑛 (1 − 1 + 𝑒𝑛𝑄+⋯
1 +𝑄(𝑒𝑛 + 𝑒𝑛−1) + ⋯) .

(4.35)

Since, for small 𝑥,
1

1 + 𝑥 + ⋯ = 1 − 𝑥 +⋯ , (4.36)

we obtain
𝑒𝑛+1 = 𝑒𝑛 (1 − (1 + 𝑒𝑛𝑄+⋯) (1 − 𝑄(𝑒𝑛 + 𝑒𝑛−1) + ⋯))

= 𝑄𝑒𝑛𝑒𝑛−1 +⋯ . (4.37)

Thus, for sufficiently large 𝑛, we have

𝑒𝑛+1 ≈ 𝑄𝑒𝑛𝑒𝑛−1. (4.38)

Hence,
𝐸𝑛+1 ≈ |𝑄|𝐸𝑛𝐸𝑛−1. (4.39)

Now we assume that (for all sufficiently large 𝑛)

𝐸𝑛+1 ≈ 𝜆𝐸𝛼
𝑛 , (4.40)

where 𝜆 and 𝛼 are positive constants. Substituting Eq. 4.40 into Eq. 4.39, we find

𝜆𝐸𝛼
𝑛 ≈ |𝑄|𝐸𝑛𝐸𝑛−1 or 𝜆𝐸𝛼−1

𝑛 ≈ |𝑄|𝐸𝑛−1. (4.41)

Applying Eq. 4.40 one more time (with 𝑛 replaced by 𝑛 − 1), we obtain

𝜆 (𝜆𝐸𝛼
𝑛−1)

𝛼−1 ≈ |𝑄|𝐸𝑛−1 (4.42)
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or, equivalently,
𝜆𝛼𝐸𝛼(𝛼−1)

𝑛−1 ≈ |𝑄|𝐸𝑛−1. (4.43)

The last equation will be satisfied provided that

𝜆𝛼 = |𝑄|, 𝛼(𝛼 − 1) = 1, (4.44)

which requires that
𝜆 = |𝑄|1/𝛼, 𝛼 = (1 +

√
5)/2 ≈ 1.62. (4.45)

Thus, we have shown that if {𝑥𝑛} is a convergent sequence generated by the secant method,
then

lim
𝑛→∞

𝐸𝑛+1
𝐸𝛼𝑛

= |𝑄|1/𝛼. (4.46)

Thus, the secant method has superlinear convergence.

Further reading: Section 2.4 of (Burden and Faires 2010).

4.7 Algorithm Summaries

The following four problems are meant to have you re-build each of the algorithms that we
developed in this chapter. Write all of the mathematical details completely and clearly. Do
not just write “how” the method works, but give all of the mathematical details for “why” it
works.

Exercise 4.50. Let 𝑓(𝑥) be a continuous function on the interval [𝑎, 𝑏] where 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0.
Clearly give all of the mathematical details for how the Bisection Method approximates the
root of the function 𝑓(𝑥) in the interval [𝑎, 𝑏].

Exercise 4.51. Let 𝑓(𝑥) be a differentiable function with a root near 𝑥 = 𝑥0. Clearly give all
of the mathematical details for how Newton’s Method approximates the root of the function
𝑓(𝑥).
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Exercise 4.52. Let 𝑓(𝑥) be a continuous function with a root near 𝑥 = 𝑥0. Clearly give all
of the mathematical details for how the Secant Method approximates the root of the function
𝑓(𝑥).

4.8 Problems

Exercise 4.53. Can the Bisection Method or Newton’s Method be used to find the roots of
the function 𝑓(𝑥) = cos(𝑥)+1? Explain why or why not for each technique? What is the rate
of convergence? Be careful here, the answer is surprising.

Exercise 4.54. How many iterations of the bisection method are necessary to approximate√
3 to within 10−3, 10−4, …, 10−15 using the initial interval [𝑎, 𝑏] = [0, 2]? See Theorem 4.2.

Exercise 4.55. Refer back to Example 4.1 and demonstrate that you get the same results for
the order of convergence when solving the problem 𝑥3 − 3 = 0. Generate versions of all of the
plots from that example and give thorough descriptions of what you learn from each plot.

Exercise 4.56. In this problem you will demonstrate that all of your root finding codes work.
At the beginning of this chapter we proposed the equation solving problem

3 sin(𝑥) + 9 = 𝑥2 − cos(𝑥). (4.47)

Write a script that calls upon your Bisection, Newton, and Secant methods one at a time to
find the positive solution to this equation. Your script needs to output the solutions in a clear
and readable way so you can tell which answer came from which root finding algorithm.

Exercise 4.57. In Figure 4.12 you see six different log-log plots of the new error to the old
error for different root finding techniques. What is the order of the approximate convergence
rate for each of these methods?
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Figure 4.12: Six Error Plots
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d. In your own words, what does it mean for a root finding method to have a “first order
convergence rate?” “Second order convergence rate?” etc.

Exercise 4.58. There are MANY other root finding techniques beyond the four that we have
studied thus far. We can build these methods using Taylor Series as follows:

Near 𝑥 = 𝑥0 the function 𝑓(𝑥) is approximated by the Taylor Series

𝑓(𝑥) ≈ 𝑦 = 𝑓(𝑥0) +
𝑁
∑
𝑛=1

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 (4.48)

where 𝑁 is a positive integer. In a root-finding algorithm we set 𝑦 to zero to find the root of
the approximation function. The root of this function should be close to the actual root that
we are looking for. Therefore, to find the next iterate we solve the equation

0 = 𝑓(𝑥0) +
𝑁
∑
𝑛=1

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 (4.49)

for 𝑥. For example, if 𝑁 = 1 then we need to solve 0 = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) for 𝑥. In doing
so we get 𝑥 = 𝑥0 − 𝑓(𝑥0)/𝑓 ′(𝑥0). This is exactly Newton’s method. If 𝑁 = 2 then we need to
solve

0 = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓″(𝑥0)

2! (𝑥 − 𝑥0)2 (4.50)

for 𝑥.

(a) Solve for 𝑥 in the case that 𝑁 = 2. Then write a Python function that implements this
root-finding method.

(b) Demonstrate that your code from part (a) is indeed working by solving several problems
where you know the exact solution.

(c) Show several plots that estimates the order of the method from part (a). That is, create
a log-log plot of the successive errors for several different equation-solving problems.

(d) What are the pro’s and con’s to using this new method?

Exercise 4.59. (modified from (Burden and Faires 2010)) An object falling vertically through
the air is subject to friction due to air resistance as well as gravity. The function describing
the position of such an object is

𝑠(𝑡) = 𝑠0 −
𝑚𝑔
𝑘 𝑡 + 𝑚2𝑔

𝑘2 (1 − 𝑒−𝑘𝑡/𝑚) , (4.51)
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where 𝑚 is the mass measured in kg, 𝑔 is gravity measured in meters per second per second,
𝑠0 is the initial position measured in meters, and 𝑘 is the coefficient of air resistance.

1. What are the dimensions of the parameter 𝑘?
2. If 𝑚 = 1kg, 𝑔 = 9.8m/s2, 𝑘 = 0.1𝑘𝑔/𝑠, and 𝑠0 = 100m how long will it take for the

object to hit the ground? Find your answer to within 0.01 seconds.

3. The value of 𝑘 depends on the aerodynamics of the object and might be challenging to
measure. We want to perform a sensitivity analysis on your answer to part (b) subject
to small measurement errors in 𝑘. If the value of 𝑘 is only known to within 10% then
what are your estimates of when the object will hit the ground?

Exercise 4.60. In Single Variable Calculus you studied methods for finding local and global
extrema of functions. You likely recall that part of the process is to set the first derivative to
zero and to solve for the independent variable (remind yourself why you are doing this). The
trouble with this process is that it may be very very challenging to solve by hand. This is a
perfect place for Newton’s method or any other root finding technique!
Find the local extrema for the function 𝑓(𝑥) = 𝑥3(𝑥 − 3)(𝑥 − 6)4 using numerical techniques
where appropriate.

Exercise 4.61. (scipy.optimize.fsolve()) The scipy library in Python has many built-in
numerical analysis routines much like the ones that we have built in this chapter. Of particular
interest to the task of root finding is the fsolve command in the scipy.optimize library.

1. Go to the help documentation for scipy.optimize.fsolve and make yourself familiar
with how to use the tool.

2. First solve the equation 𝑥 sin(𝑥) − log(𝑥) = 0 for 𝑥 starting at 𝑥0 = 3.

1. Make a plot of the function on the domain [0, 5] so you can eyeball the root before
using the tool.

2. Use the scipy.optimize.fsolve() command to approximate the root.

3. Fully explain each of the outputs from the scipy.optimize.fsolve() command.
You should use the fsolve() command with full_output=1 so you can see all of
the solver diagnostics.

3. Demonstrate how to use fsolve() using any non-trivial nonlinear equation solving prob-
lem. Demonstrate what some of the options of fsolve() do.
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4. The scipy.optimize.fsolve() command can also solve systems of equations (some-
thing we have not built algorithms for in this chapter). Consider the system of equations

𝑥0 cos(𝑥1) = 4
𝑥0𝑥1 − 𝑥1 = 5 (4.52)

The following Python code allows you to use scipy.optimize.fsolve() so solve this
system of nonlinear equations in much the same way as we did in part (b) of this problem.
However, be aware that we need to think of x as a vector of 𝑥-values. Go through the
code below and be sure that you understand every line of code.

import numpy as np
from scipy.optimize import fsolve

def F(x):
return [x[0]*np.cos(x[1])-4, x[0]*x[1] - x[1] - 5]

fsolve(F, [6,1], full_output=1)
# Note: full_output=1 gives the solver diagnostics

5. Solve the system of nonlinear equations below using .fsolve().

𝑥2 − 𝑥𝑦2 = 2
𝑥𝑦 = 2 (4.53)

4.9 Projects

At the end of every chapter we propose a few projects related to the content in the preceding
chapter(s). In this section we propose two ideas for a project related to numerical algebra.
The projects in this book are meant to be open ended, to encourage creative mathematics, to
push your coding skills, and to require you to write and communicate your mathematics.

4.9.1 Basins of Attraction

Let 𝑓(𝑥) be a differentiable function with several roots. Given a starting 𝑥 value we should
be able to apply Newton’s Method to that starting point and we will converge to one of the
roots (so long as you are not in one of the special cases discussed earlier in the chapter). It
stands to reason that starting points near each other should all end up at the same root, and
for some functions this is true. However, it is not true in general.
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A basin of attraction for a root is the set of 𝑥 values that converges to that root under
Newton iterations. In this problem you will produce coloured plots showing the basins of
attraction for all of the following functions. Do this as follows:

• Find the actual roots of the function by hand (this should be easy on the functions
below).

• Assign each of the roots a different colour.

• Pick a starting point on the 𝑥 axis and use it to start Newton’s Method.

• Colour the starting point according to the root that it converges to.

• Repeat this process for many many starting points so you get a coloured picture of the
𝑥 axis showing where the starting points converge to.

The set of points that are all the same colour are called the basin of attraction for the root
associated with that colour. In Figure 4.13 there is an image of a sample basin of attraction
image.

Figure 4.13: A sample basin of attraction image for a cubic function.
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1. Create a basin on attraction image for the function 𝑓(𝑥) = (𝑥 − 4)(𝑥 + 1).
2. Create a basin on attraction image for the function 𝑔(𝑥) = (𝑥 − 1)(𝑥 + 3).
3. Create a basin on attraction image for the function ℎ(𝑥) = (𝑥 − 4)(𝑥 − 1)(𝑥 + 3).
4. Find a non-trivial single-variable function of your own that has an interesting picture

of the basins of attraction. In your write up explain why you thought that this was an
interesting function in terms of the basins of attraction.

5. Now for the fun part! Consider the function 𝑓(𝑧) = 𝑧3 −1 where 𝑧 is a complex variable.
That is, 𝑧 = 𝑥+𝑖𝑦 where 𝑖 =

√
−1. From the Fundamental Theorem of Algebra we know

that there are three roots to this polynomial in the complex plane. In fact, we know that
the roots are 𝑧0 = 1, 𝑧1 = 1

2 (−1 +
√
3𝑖), and 𝑧2 = 1

2 (−1 −
√
3𝑖) (you should stop now

and check that these three numbers are indeed roots of the polynomial 𝑓(𝑧)). Your job
is to build a picture of the basins of attraction for the three roots in the complex plane.
This picture will naturally be two-dimensional since numbers in the complex plane are
two dimensional (each has a real and an imaginary part). When you have your picture
give a thorough write up of what you found.

6. Now pick your favourite complex-valued function and build a picture of the basins of
attraction. Consider this an art project! See if you can come up with the prettiest basin
of attraction picture.

4.9.2 Artillery

An artillery officer wishes to fire his cannon on an enemy brigade. He wants to know the angle
to aim the cannon in order to strike the target. If we have control over the initial velocity of
the cannon ball, 𝑣0, and the angle of the cannon above horizontal, 𝜃, then the initial vertical
component of the velocity of the ball is 𝑣𝑦(0) = 𝑣0 sin(𝜃) and the initial horizontal component
of the velocity of the ball is 𝑣𝑥(0) = 𝑣0 cos(𝜃). In this problem we will assume the following:

• We will neglect air resistance1 so, for all time, the differential equations 𝑣′𝑦(𝑡) = −𝑔 and
𝑣′𝑥(𝑡) = 0 must both hold.

• We will assume that the position of the cannon is the origin of a coordinate system so
𝑠𝑥(0) = 0 and 𝑠𝑦(0) = 0.

• We will assume that the target is at position (𝑥∗, 𝑦∗) which you can measure accurately
relative to the cannon’s position. The landscape is relatively flat but 𝑦∗ could be a bit
higher or a bit lower than the cannon’s position.

1Strictly speaking, neglecting air resistance is a poor assumption since a cannon ball moves fast enough that
friction with the air plays a non-negligible role. However, the assumption of no air resistance greatly simplifies
the maths and makes this version of the problem more tractable. The second version of the artillery problem
in Chapter 8 will look at the effects of air resistance on the cannon ball.
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Use the given information to write a nonlinear equation2 that relates 𝑥∗, 𝑦∗, 𝑣0, 𝑔, and 𝜃. We
know that 𝑔 = 9.8𝑚/𝑠2 is constant and we will assume that the initial velocity can be adjusted
between 𝑣0 = 100𝑚/𝑠 and 𝑣0 = 150𝑚/𝑠 in increments of 10𝑚/𝑠. If we then are given a fixed
value of 𝑥∗ and 𝑦∗ the only variable left to find in your equation is 𝜃. A numerical root-finding
technique can then be applied to your equation to approximate the angle. Create several look
up tables for the artillery officer so they can be given 𝑣0, 𝑥∗, and 𝑦∗ and then use your tables
to look up the angle at which to set the cannon. Be sure to indicate when a target is out of
range.

Write a brief technical report detailing your methods. Support your work with appropriate
mathematics and plots. Include your tables at the end of your report.

2Hint: Symbolically work out the amount of time that it takes until the vertical position of the cannon ball
reaches 𝑦∗. Then substitute that time into the horizontal position, and set the horizontal position equation
to 𝑥∗
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5 Derivatives

The calculus was the first achievement of modern mathematics and it is difficult to
overestimate its importance.
–Hungarian-American Mathematician John von Neumann

The primary goal of this chapter is to build a solid understanding of the basic techniques for
numerical differentiation. This will be crucial in the later chapters of this book when we do
optimisation and when we numerically integrate ordinary and partial differential equations.

We use this chapter also to comment on the importance of writing vectorized code using
NumPy. And this chapter will again let us investigate truncation errors that we first discussed
in Chapter 3. This is because in this chapter too, we will make use of Taylor series that we
need to truncate at some order to give us practical methods.

5.1 Finite Differences

5.1.1 The First Derivative

Exercise 5.1. Recall from your first-semester Calculus class that the derivative of a function
𝑓(𝑥) is defined as

𝑓 ′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥 . (5.1)

A Calculus student proposes that it would just be much easier if we dropped the limit and
instead just always choose Δ𝑥 to be some small number, like 0.001 or 10−6. Discuss the
following questions:

1. When might the Calculus student’s proposal actually work pretty well in place of calcu-
lating an actual derivative?

2. When might the Calculus student’s proposal fail in terms of approximating the deriva-
tive?
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In this section we will build several approximation of first and second derivatives. The primary
idea for each of these approximations is:

• Partition the interval [𝑎, 𝑏] into 𝑁 sub intervals

• Define the distance between two points in the partition as Δ𝑥.
• Approximate the derivative at any point 𝑥 in the interval [𝑎, 𝑏] by using linear combina-

tions of 𝑓(𝑥 − Δ𝑥), 𝑓(𝑥), 𝑓(𝑥 + Δ𝑥), and/or other points in the partition.

Partitioning the interval into discrete points turns the continuous problem of finding a deriva-
tive at every real point in [𝑎, 𝑏] into a discrete problem where we calculate the approximate
derivative at finitely many points in [𝑎, 𝑏].
This distance Δ𝑥 between neighbouring points in the partition is often referred to as the step
size. It is also common to denote the step size by the letter ℎ. We will use both notations
for the step size interchangeably, using mostly ℎ in this section on differentiation and Δ𝑥 in
the next section on integration. Note that in general the points in the partition do not need
to be equally spaced, but that is the simplest place to start. Figure 5.1 shows a depiction of
the partition as well as making clear that ℎ is the separation between each of the points in the
partition.

Figure 5.1: A partition of the interval [𝑎, 𝑏].

Exercise 5.2. Let us take a close look at partitions before moving on to more details about
numerical differentiation.

1. If we partition the interval [0, 1] into 3 equal sub intervals each with length ℎ then:

a. ℎ =
b. [0, 1] = [0, ] ∪ [ , ] ∪ [ , 1]
c. There are four total points that define the partition. They are 0, , , 1.

2. If we partition the interval [3, 7] into 5 equal sub intervals each with length ℎ then:

a. ℎ =
b. [3, 7] = [3, ] ∪ [ , ] ∪ [ , ] ∪ [ , ] ∪ [ , 7]
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c. There are 6 total points that define the partition. They are 0, , , , , 7.

3. More generally, if a closed interval [𝑎, 𝑏] contains 𝑁 equal sub intervals where

[𝑎, 𝑏] = [𝑎, 𝑎 + ℎ] ∪ [𝑎 + ℎ, 𝑎 + 2ℎ] ∪ ⋯ ∪ [𝑏 − 2ℎ, 𝑏 − ℎ] ∪ [𝑏 − ℎ, 𝑏]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁 total sub intervals

(5.2)

then the length of each sub interval, ℎ, is given by the formula

ℎ = − . (5.3)

Exercise 5.3. � In Python’s numpy library there is a nice tool called np.linspace() that
partitions an interval in exactly the way that we want. The command takes the form
np.linspace(a, b, n) where the interval is [𝑎, 𝑏] and 𝑛 the number of points used to create
the partition. For example, np.linspace(0,1,5) will produce the list of numbers 0, 0.25,
0.5, 0.75, 1. Notice that there are 5 total points, the first point is 𝑎, the last point is 𝑏, and
there are 4 total sub intervals in the partition. Hence, if we want to partition the interval [0, 1]
into 20 equal sub intervals then we would use the command np.linspace(0,1,21) which
would result in a list of numbers starting with 0, 0.05, 0.1, 0.15, etc. What command
would you use to partition the interval [5, 10] into 100 equal sub intervals?

Exercise 5.4. Consider the Python command np.linspace(0,1,50).

1. What interval does this command partition?

2. How many points are going to be returned?

3. How many equal length subintervals will we have in the resulting partition?

4. What is the length of each of the subintervals in the resulting partition?

Now let us get back to the discussion of numerical differentiation. If we recall that the definition
of the first derivative of a function is

𝑑𝑓(𝑥)
𝑑𝑥 = lim

ℎ→0
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ . (5.4)
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our first approximation for the first derivative is naturally

𝑑𝑓(𝑥)
𝑑𝑥 ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ =∶ Δ𝑓(𝑥). (5.5)

In this approximation of the derivative we have simply removed the limit and instead approx-
imated the derivative as the slope. It should be clear that this approximation is only good if
the step size ℎ is small. In Figure 5.2 we see a graphical depiction of what we are doing to
approximate the derivative. The slope of the tangent line (Δ𝑦/Δ𝑥) is what we are after, and
a way to approximate it is to calculate the slope of the secant line formed by looking ℎ units
forward from the point 𝑥.

Figure 5.2: The forward difference differentiation scheme for the first derivative.

While this is the simplest and most obvious approximation for the first derivative there is a
much more elegant technique, using Taylor series, for arriving at this approximation. Further-
more, the Taylor series technique gives us information about the approximation error and later
will suggest an infinite family of other techniques.
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5.1.2 Truncation error

Exercise 5.5. From Taylor’s Theorem we know that for an infinitely differentiable function
𝑓(𝑥),

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓 ′(𝑥0)

1! (𝑥 − 𝑥0)1 +
𝑓″(𝑥0)

2! (𝑥 − 𝑥0)2 +
𝑓 (3)(𝑥0)

3! (𝑥 − 𝑥0)3 +⋯ . (5.6)

What do we get if we replace every “𝑥” in the Taylor Series with “𝑥 + ℎ” and replace every
“𝑥0” in the Taylor Series with “𝑥?” In other words, in Figure 5.1 we want to centre the Taylor
series at 𝑥 and evaluate the resulting series at the point 𝑥 + ℎ.

𝑓(𝑥 + ℎ) = (5.7)

Exercise 5.6. Solve the result from the previous exercise for 𝑓 ′(𝑥) to create an approximation
for 𝑓 ′(𝑥) using 𝑓(𝑥+ℎ), 𝑓(𝑥), and some higher order terms. (fill in the blanks and the question
marks)

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ) − ???
?? + (5.8)

Exercise 5.7. � In the formula that you developed in Exercise 5.6, if we were to truncate after
the first fraction and drop everything else (called the remainder), we know that we would be
introducing a truncation error into our derivative computation. If ℎ is taken to be very small
then the first term in the remainder is the largest and everything else in the remainder can
be ignored (since all subsequent terms should be extremely small … pause and ponder this
fact). Therefore, the amount of error we make in the derivative computation by dropping the
remainder depends on the power of ℎ in that first term in the remainder.

What is the power of ℎ in the first term of the remainder from Exercise 5.6?

Definition 5.1 (Order of a Numerical Differentiation Scheme). The order of a numerical
derivative is the power of the step size in the first term of the remainder of the rearranged
Taylor Series. For example, a first order method will have “ℎ1” in the first term of the
remainder. A second order method will have “ℎ2” in the first term of the remainder. Etc.

For sufficiently small step size ℎ, the error that you make by truncating the series is dominated
by the first term in the remainder, which is proportional to the power of ℎ in that term. Hence,
the order of a numerical differentiation scheme tells you how the error you are making by using
the approximation scheme decreases as you decrease the step-size ℎ.
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Definition 5.2. (Big O Notation) We say that the error in a differentiation scheme is 𝒪(ℎ)
(read: “big O of ℎ”), if and only if there is a positive constant 𝑀 such that

|Error| ≤ 𝑀 ⋅ ℎ (5.9)

when ℎ is sufficiently small. This is equivalent to saying that a differentiation method is “first
order.”

More generally, we say that the error in a differentiation scheme is 𝒪(ℎ𝑘) (read: “big O of ℎ𝑘”)
if and only if there is a positive constant 𝑀 such that

|Error| ≤ 𝑀 ⋅ ℎ𝑘. (5.10)

when ℎ is sufficiently small. This is equivalent to saying that a differentiation scheme is “𝑘𝑡ℎ

order.”

Theorem 5.1. The approximation you derived in Exercise 5.6 gives a first order approximation
of the first derivative:

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ + 𝒪(ℎ). (5.11)

This is called the forward difference approximation of the first derivative.

Exercise 5.8. Consider the function 𝑓(𝑥) = sin(𝑥)(1−𝑥). The goal of this exercise is to make
sense of the discussion of the “order” of the derivative approximation. You may want to pause
first and reread the previous couple of pages.

a. Find 𝑓 ′(𝑥) by hand.

b. Use your answer to part (a) to verify that 𝑓 ′(1) = − sin(1) ≈ −0.8414709848.
c. To approximate the first derivative at 𝑥 = 1 numerically with the forward-difference

approximation formula from Theorem 5.1 we calculate

𝑓 ′(1) ≈ 𝑓(1 + ℎ) − 𝑓(1)
ℎ =∶ Δ𝑓(1). (5.12)

We want to see how the error in the approximation behaves as ℎ is made smaller and
smaller. Fill in the table below with the derivative approximation and the absolute error
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associated with each given ℎ. You may want to use a spreadsheet to organize your data
(be sure that you are working in radians!).

ℎ Δ𝑓(1) |𝑓 ′(1) − Δ𝑓(1)|
2−1 = 0.5 𝑓(1+0.5)−𝑓(1)

0.5 ≈ −0.99749 0.15602
2−2 = 0.25 𝑓(1+0.25)−𝑓(1)

0.25 ≈ −0.94898 0.10751
2−3 = 0.125
2−4 = 0.0625
2−5

2−6

2−7

2−8

2−9

2−10

d. There was nothing really special in part (c) about powers of 2. Use your spreadsheet to
build similar tables for the following sequences of ℎ:

ℎ = 3−1, 3−2, 3−3, …
ℎ = 5−1, 5−2, 5−3, …
ℎ = 10−1, 10−2, 10−3, …
ℎ = 𝜋−1, 𝜋−2, 𝜋−3, … .

(5.13)

e. Observation: If you calculate a numerical derivative with a forward difference and then
calculate the absolute error with a fixed value of ℎ, then what do you expect to happen
to the absolute error if you divide the value of ℎ by some positive constant 𝑀? It may
be helpful at this point to go back to your table and include a column called the error
reduction factor where you find the ratio of two successive absolute errors. Observe what
happens to this error reduction factor as ℎ gets smaller and smaller.

f. What does your answer to part (e) have to do with the approximation order of the
numerical derivative method that you used?

Exercise 5.9. � The following incomplete block of Python code will help to streamline the
previous exercise so that you do not need to do the computation with a spreadsheet.

a. Comment every existing line with a thorough description.

b. Fill in the blanks in the code to perform the spreadsheet computations from the previous
exercise.
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c. Run the code for several different sequences of values for ℎ. Do you still observe the
same result that you observed in part (e) of the previous exercise?

d. Run the code for several different choices of the function 𝑓 and several different choices
for the point 𝑥. What do you observe?

import numpy as np
import matplotlib.pyplot as plt

f = lambda x: np.sin(x) * (1-x) # what does this line do?
exact = -np.sin(1) # what does this line do?

H = 2.0**(-np.arange(1,10)) # what does this line do?
AbsError = [] # start off with a blank list of errors

# Create columns with column headers
print(f"{'h':<12} {'Absolute Error':<22} {'Reduction factor':<20}")
print("------------------------------------------------------")

# Fill the rows of the table
for h in H:

approx = # FINISH THIS LINE OF CODE
AbsError.append(abs((approx - exact)/exact))
if h==H[0]:
reduction_factor = ''

else:
reduction_factor = AbsError[-2]/AbsError[-1]

print(f"{h:<12} {AbsError[-1]:<22} {reduction_factor:<20}")

# Make a plot
plt.loglog(H, AbsError, 'b-*') # Why are we making a loglog plot?
plt.grid()
plt.show()

Exercise 5.10. Explain the phrase: The forward difference approximation 𝑓 ′(𝑥) ≈ 𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

is first order.
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5.1.3 Efficient Coding

Now that we have a handle on how the forward-difference approximation scheme for the first
derivative works and how the error depends on the step size, let us build some code that will
take in a function and output the approximate first derivative on an entire interval instead of
just at a single point.

Exercise 5.11. We want to build a Python function that accepts:

• a mathematical function,

• the bounds of an interval,

• and the number of subintervals.

The function will return the forward-difference approximation of the first derivative at every
point in the interval except at the right-hand side. For example, we could send the function
𝑓(𝑥) = sin(𝑥), the interval [0, 2𝜋], and tell it to split the interval into 100 subintervals. We
would then get back an approximate value of the derivative 𝑓 ′(𝑥) at all of the points except
at 𝑥 = 2𝜋.

1. First of all, why can we not compute the forward-difference approximation of the deriva-
tive at the last point?

2. Next, fill in the blanks in the partially complete code below. Every line needs to have a
comment explaining exactly what it does.

import numpy as np
import matplotlib.pyplot as plt
def ForwardDiff(f,a,b,N):

x = np.linspace(a,b,N+1) # What does this line of code do?
# What's up with the N+1 in the previous line?
h = x[1] - x[0] # What does this line of code do?
df = [] # What does this line of code do?
for j in np.arange(len(x)-1): # What does this line of code do?

# What's up with the -1 in the definition of the loop?
#
# Now we want to build the approximation
# (f(x+h) - f(x)) / h.
# Obviously "x+h" is just the next item in the list of
# x values so when we do f(x+h) mathematically we should
# write f(x[j+1]) in Python (explain this).
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# Fill in the question marks below
df.append((f(???) - f(???)) / h )

return df

3. Now we want to call upon this function to build the first order approximation of the
first derivative for some function. We will use the function 𝑓(𝑥) = sin(𝑥) on the interval
[0, 2𝜋] with 100 sub intervals (since we know what the answer should be). Complete the
code below to call upon your ForwardDiff() function and to plot 𝑓(𝑥), 𝑓 ′(𝑥), and the
approximation of 𝑓 ′(𝑥).

f = lambda x: np.sin(x)
exact_df = lambda x: np.cos(x)
a = ???
b = ???
N = 100 # What is this?
x = np.linspace(a,b,N+1)
# What does the previous line do?
# What's up with the N+1?

df = ForwardDiff(f,a,b,N) # What does this line do?

# In the next line we plot three curves:
# 1) the function f(x)
# 2) the function f'(x)
# 3) the approximation of f'(x)
# However, we do something funny with the x in the last plot. Why?
plt.plot(x,f(x),'b',x,exact_df(x),'r--',x[0:-1], df, 'k-.')
plt.grid()
plt.legend(['f(x) = sin(x)',

'exact first deriv',
'approx first deriv'])

plt.show()

4. Implement your completed code and then test it in several ways:

a. Test your code on functions where you know the derivative. Be sure that you get
the plots that you expect.

b. Test your code with a very large number of sub intervals, 𝑁 . What do you observe?

c. Test your code with small number of sub intervals, 𝑁 . What do you observe?
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Exercise 5.12. Now let us build the first derivative function in a much smarter way – using
NumPy arrays in Python. Instead of looping over all of the 𝑥 values, we can take advantage of
the fact that NumPy operations can act on all the elements of an array at once and hence we
can do all of the function evaluations and all the subtractions and divisions at once without a
loop.

1. The line of code x = np.linspace(a,b,N+1) builds a numpy vector of 𝑁 + 1 values of
𝑥 starting at 𝑎 and ending at 𝑏. Then y = f(x) builds a vector with the function values
at all the elements in x. In the following questions remember that Python indexes all
lists starting at 0. Also remember that you can call on the last element of a list using
an index of -1. Finally, remember that if you do x[p:q] in Python you will get a list of
x values starting at index p and ending at index q-1.

1. What will we get if we evaluate the code y[1:]?

2. What will we get if we evaluate the code y[:-1]?

3. What will we get if we evaluate the code y[1:] - y[:-1]?

4. What will we get if we evaluate the code (y[1:] - y[:-1]) / h?

2. Use the insight from part (1) to simplify your first order first derivative function to look
like the code below.

def ForwardDiff(f,a,b,N):
x = np.linspace(a,b,N+1)
h = x[1] - x[0]
y = f(x)
df = # your line of code goes here?
return df

Exercise 5.13. � Write code that finds a first order approximation for the first derivative
of 𝑓(𝑥) = sin(𝑥) − 𝑥 sin(𝑥) on the interval 𝑥 ∈ (0, 15). Your script should output two plots
(side-by-side).

a. The left-hand plot should show the function in blue and the approximate first derivative
as a red dashed curve. Sample code for this exercise is given below.

import matplotlib.pyplot as plt
import numpy as np

f = lambda x: np.sin(x) - x*np.sin(x)
a = 0
b = 15
N = # make this an appropriately sized number of subintervals
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x = np.linspace(a,b,N+1) # what does this line do?
y = f(x) # what does this line do?
df = ForwardDiff(f,a,b,N) # what does this line do?

fig, ax = plt.subplots(1,2) # what does this line do?
ax[0].plot(x,y,'b',x[0:-1],df,'r--') # what does this line do?
ax[0].grid()

b. The right-hand plot should show the absolute error between the exact derivative and the
numerical derivative. You should use a logarithmic 𝑦 axis for this plot.

exact = lambda x: # write a function for the exact derivative
# There is a lot going on the next line of code ... explain it.
ax[1].semilogy(x[0:-1],abs(exact(x[0:-1]) - df))
ax[1].grid()

c. Play with the number of sub intervals, 𝑁 , and demonstrate the fact that we are using a
first order method to approximate the first derivative.

5.1.4 A Better First Derivative

Next we will build a more accurate numerical first derivative scheme. The derivation technique
is the same: play a little algebra game with the Taylor series and see if you can get the first
derivative to simplify out. This time we will be hoping to get a second order method.

Exercise 5.14. Consider again the Taylor series for an infinitely differentiable function 𝑓(𝑥):

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓 ′(𝑥0)

1! (𝑥 − 𝑥0)1 +
𝑓″(𝑥0)

2! (𝑥 − 𝑥0)2 +
𝑓 (3)(𝑥0)

3! (𝑥 − 𝑥0)3 +⋯ . (5.14)

1. Replace the “𝑥” in the Taylor Series with “𝑥 + ℎ” and replace the “𝑥0” in the Taylor
Series with “𝑥” and simplify.

𝑓(𝑥 + ℎ) = . (5.15)

2. Now replace the “𝑥” in the Taylor Series with “𝑥−ℎ” and replace the “𝑥0” in the Taylor
Series with “𝑥” and simplify.

𝑓(𝑥 − ℎ) = . (5.16)
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3. Find the difference between 𝑓(𝑥 + ℎ) and 𝑓(𝑥 − ℎ) and simplify. Be very careful of your
signs.

𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ) = . (5.17)

4. Solve for 𝑓 ′(𝑥) in your result from part (3). Fill in the question marks and blanks below
once you have finished simplifying.

𝑓 ′(𝑥) = ??? − ???
2ℎ + . (5.18)

5. Use your result from part (4) to verify that

𝑓 ′(𝑥) = + 𝒪(ℎ2). (5.19)

6. Draw a picture similar to Figure 5.2 showing what this scheme is doing graphically.

Exercise 5.15. � Let us return to the function 𝑓(𝑥) = sin(𝑥)(1 − 𝑥) but this time we will
approximate the first derivative at 𝑥 = 1 using the formula

𝑓 ′(1) ≈ 𝑓(1 + ℎ) − 𝑓(1 − ℎ)
2ℎ =∶ 𝛿𝑓(1). (5.20)

You should already have the first derivative and the exact answer from Exercise 5.8 (if not,
then go get them by hand again).

a. Fill in the table below with the derivative approximation and the absolute error associ-
ated with each given ℎ. You may want to use a spreadsheet to organize your data (be
sure that you are working in radians!).

ℎ 𝛿𝑓(1) |𝑓 ′(1) − 𝛿𝑓(1)|
2−1 = 0.5 −0.73846 0.10301
2−2 = 0.25 −0.81531 0.02616
2−3 = 0.125
2−4 = 0.0625
2−5

2−6

2−7

2−8

2−9

157



ℎ 𝛿𝑓(1) |𝑓 ′(1) − 𝛿𝑓(1)|
2−10

b. There was nothing really special in part (a) about powers of 2. Use your spreadsheet to
build similar tables for the following sequences of ℎ:

ℎ = 3−1, 3−2, 3−3, …
ℎ = 5−1, 5−2, 5−3, …
ℎ = 10−1, 10−2, 10−3, …
ℎ = 𝜋−1, 𝜋−2, 𝜋−3, … .

(5.21)

c. Observation: If you calculate a numerical derivative with a central difference and cal-
culate the resulting absolute error with a fixed value of ℎ, then what do you expect to
happen to the absolute error if you divide the value of ℎ by some positive constant 𝑀?
It may be helpful to include a column in your table that tracks the error reduction factor
as we decrease ℎ.

d. What does your answer to part (c) have to do with the approximation order of the
numerical derivative method that you used?

Exercise 5.16. Write a Python function CentralDiff(f, a, b, N) that takes a mathemat-
ical function f, the start and end values of an interval [a, b] and the number N of subintervals
to use. It should return a second order numerical approximation to the first derivative on the
interval. This should be a vector with 𝑁 −1 entries (why?). You should try to write this code
without using any loops. (Hint: This should really be a minor modification of your first order
first derivative code.) Test the code on functions where you know the first derivative.

Exercise 5.17. The plot shown in Figure 5.3 shows the maximum absolute error between the
exact first derivative of a function 𝑓(𝑥) and a numerical first derivative approximation scheme.
At this point we know two schemes:

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ + 𝒪(ℎ) (5.22)

and
𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ + 𝒪(ℎ2). (5.23)
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1. Which curve in the plot matches with which method. How do you know?

2. Recreate the plot with a function of your choosing.

import numpy as np
import matplotlib.pyplot as plt

# Choose a function f
f = lambda x: np.sin(x)
# Give its derivative
df = lambda x: np.cos(x)
# Choose interval
a = 0
b = 2*np.pi

m = 16 # Number of different step sizes to plot
# Pre-allocate vectors for errors
fd_error = np.zeros(m)
cd_error = np.zeros(m)
# Pre-allocate vector for step sizes
H = np.zeros(m)

# Loop over the different step sizes
for n in range(m):

N = 2**(n+2) # Number of subintervals
x = np.linspace(a, b, N+1)
y = f(x)
h = x[1]-x[0] # step size

# Calculate the derivative and approximations
exact = df(x)
forward_diff = (y[1:]-y[:-1])/h
central_diff = (y[2:]-y[:-2])/(2*h)

# save the maximum of the errors for this step size
fd_error[n] = max(abs(forward_diff - df(x[:-1])))
cd_error[n] = max(abs(central_diff - df(x[1:-1])))
H[n] = h

# Make a loglog plot of the errors agains step size
plt.loglog(H,fd_error,'b-', label='Approximation Method A')
plt.loglog(H,cd_error,'r-', label='Approximation Method B')
plt.xlabel('Steps size h')
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plt.ylabel('Maximum Absolute Error')
plt.title('Comparing Two First Derivative Approximations')
plt.grid()
plt.legend()
plt.show()

Figure 5.3: Maximum absolute error between the first derivative and two different approxima-
tions of the first derivative.

5.1.5 The Second Derivative

Now we will search for an approximation of the second derivative. Again, the game will be
the same: experiment with the Taylor series and some algebra with an eye toward getting the
second derivative to pop out cleanly. This time we will do the algebra in such a way that the
first derivative cancels.

From the previous exercises you already have Taylor expansions of the form 𝑓(𝑥+ℎ) and 𝑓(𝑥−
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ℎ). Let us summarize them here since you are going to need them for future computations.

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝑓 ′(𝑥)
1! ℎ + 𝑓″(𝑥)

2! ℎ2 + 𝑓 (3)(𝑥)
3! ℎ3 +⋯

𝑓(𝑥 − ℎ) = 𝑓(𝑥) − 𝑓 ′(𝑥)
1! ℎ + 𝑓″(𝑥)

2! ℎ2 − 𝑓 (3)(𝑥)
3! ℎ3 +⋯ .

(5.24)

Exercise 5.18. The goal of this exercise is to use the Taylor series for 𝑓(𝑥 + ℎ) and 𝑓(𝑥 − ℎ)
to arrive at an approximation scheme for the second derivative 𝑓″(𝑥).

1. Add the Taylor series for 𝑓(𝑥 + ℎ) and 𝑓(𝑥 − ℎ) and combine all like terms. You should
notice that several terms cancel.

𝑓(𝑥 + ℎ) + 𝑓(𝑥 − ℎ) = . (5.25)

2. Solve your answer in part (1) for 𝑓″(𝑥).

𝑓″(𝑥) = ?? − 2 ⋅ ?? + ??
ℎ2 + . (5.26)

3. If we were to drop all of the terms after the fraction on the right-hand side of the previous
result we would be introducing some error into the derivative computation. What does
this tell us about the order of the error for the second derivative approximation scheme
we just built?

Exercise 5.19. � Again consider the function 𝑓(𝑥) = sin(𝑥)(1 − 𝑥).

1. Calculate the second derivative of this function analytically and evaluate it at 𝑥 = 1.
2. If we calculate the second derivative with the central difference scheme that you built

in the previous exercise using ℎ = 0.5 then we get an absolute error of about 0.044466.
Stop now and verify this error calculation.

3. Based on our previous work with the order of the error in a numerical differentiation
scheme, what do you predict the error will be if we calculate 𝑓″(1) with ℎ = 0.25? With
ℎ = 0.05? With ℎ = 0.005? Defend your answers.
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Exercise 5.20. Write a Python function SecondDiff(f, a, b, N) that takes a mathematical
function f, the start and end values of an interval [a, b] and the number N of subintervals to
use. It should return a second order numerical approximation to the second derivative on the
interval. This should be a vector with 𝑁 −1 entries (why?). As before, you should write your
code without using any loops.

Exercise 5.21. Test your second derivative code on the function 𝑓(𝑥) = sin(𝑥) − 𝑥 sin(𝑥) by
doing the following.

1. Find the analytic second derivative by hand (you did this already in Exercise 5.19).

2. Find the numerical second derivative with the code that you just wrote.

3. Find the absolute difference between your numerical second derivative and the actual
second derivative. This is point-by-point subtraction so you should end up with a vector
of errors.

4. Find the maximum of your errors.

5. Now we want to see how the code works if you change the number of points used. Build a
plot showing the value of ℎ on the horizontal axis and the maximum error on the vertical
axis. You will need to write a loop that gets the error for many different values of ℎ.
Finally, it is probably best to build this plot on a log-log scale.

6. Discuss what you see? How do you see the fact that the numerical second derivative is
second order accurate?

The table below summarizes the formulas that we have for derivatives thus far. The exercises
at the end of this chapter contain several more derivative approximations. We will return to
this idea when we study numerical differential equations in Chapter 8.

Derivative Formula Error Name

1𝑠𝑡 𝑓 ′(𝑥) ≈ 𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ 𝒪(ℎ) Forward

Difference
1𝑠𝑡 𝑓 ′(𝑥) ≈ 𝑓(𝑥)−𝑓(𝑥−ℎ)

ℎ 𝒪(ℎ) Backward
Difference

1𝑠𝑡 𝑓 ′(𝑥) ≈ 𝑓(𝑥+ℎ)−𝑓(𝑥−ℎ)
2ℎ 𝒪(ℎ2) Central

Difference
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Derivative Formula Error Name

2𝑛𝑑 𝑓″(𝑥) ≈ 𝑓(𝑥+ℎ)−2𝑓(𝑥)+𝑓(𝑥−ℎ)
ℎ2 𝒪(ℎ2) Central

Difference

Exercise 5.22. Let 𝑓(𝑥) be a twice differentiable function. We are interested in the first and
second derivative of the function 𝑓 at the point 𝑥 = 1.74. Use what you have learned in this
section to answer the following questions. (For clarity, you can think of “𝑓” as a different
function in each of the following questions …it does not really matter exactly what function 𝑓
is.)

1. � Johnny used a numerical first derivative scheme with ℎ = 0.1 to approximate 𝑓 ′(1.74)
and found an absolute error of 3.28. He then used ℎ = 0.01 and found an absolute error
of 0.328. What was the order of the error in his first derivative scheme? How can you
tell?

2. � Betty used a numerical first derivative scheme with ℎ = 0.2 to approximate 𝑓 ′(1.74)
and found an absolute error of 4.32. She then used ℎ = 0.1 and found an absolute error
of 1.08. What numerical first derivative scheme did she likely use?

3. � Harry wants to compute 𝑓″(1.74) to within 1% using a central difference scheme. He
tries ℎ = 0.25 and gets an absolute percentage error of 3.71%. What ℎ should he try
next so that his absolute percentage error is close to 1%?

Exercise 5.23. We said at the start of this section that the spacing of the steps do not
have to be constant. Insteady of a constant step size ℎ we could have variable step sizes
Δ𝑥𝑖 ∶= 𝑥𝑖+1 − 𝑥𝑖. However, this complicates the expression for the second derivative. In this
exercise you can check that you fully understood the derivation of the formula for the second
derivative by repeating it for these variable step sizes. So you will need to start with the Taylor
expansions of 𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖 +Δ𝑥𝑖) and 𝑓(𝑥𝑖−1) = 𝑓(𝑥𝑖 −Δ𝑥𝑖−1) around 𝑥𝑖.

5.2 Automatic Differentiation

In the previous section, we explored numerical differentiation through finite difference meth-
ods. These methods approximate derivatives by evaluating the function at different points
and calculating differences. While straightforward to implement, they suffer from two main
limitations:
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1. Truncation error: As we’ve seen, the error scales with some power of the step size ℎ
2. Round-off error: As ℎ gets extremely small, floating-point arithmetic leads to precision

loss

Automatic differentiation (AD) is a different approach that computes derivatives exactly (to
machine precision) without relying on finite differences. AD leverages the chain rule and
the fact that all computer programs, no matter how complex, ultimately break down into
elementary operations (addition, multiplication, sin, exp, etc.) whose derivatives are known.

Let’s introduce the concept of a computation graph, which is fundamental to understanding
automatic differentiation.

A computation graph represents a mathematical function as a directed graph where:

• Nodes represent variables (inputs, outputs, or intermediate values)
• Edges represent dependencies between variables
• Each node performs a simple operation with known derivatives

Example 5.1. Consider the function 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑥𝑦). We can break this down into
elementary operations and visualize it as a computation graph:

Figure 5.4: Computation graph for f(x,y) = x²y + sin(xy) at (x,y) = (2,1)
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This computation graph for 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑥𝑦) at (𝑥, 𝑦) = (2, 3) shows:

1. Input nodes: 𝑥 = 2, 𝑦 = 3
2. Intermediate computations:

• 𝑣1 = 𝑥2 = 4
• 𝑣3 = 𝑥𝑦 = 6
• 𝑣2 = 𝑣1𝑦 = 12
• 𝑣4 = sin(𝑣3) = sin(6) ≈ −0.2794

3. Output node: 𝑓 = 𝑣2 + 𝑣4 ≈ 12 + (−0.2794) ≈ 11.7206

For each operation in the computation graph, we know:

1. How to compute the function value (forward evaluation)
2. How to compute the derivative of the operation with respect to its inputs

The computation graph is the foundation for automatic differentiation:

• Forward mode AD: Derivatives flow through the graph in the same direction as func-
tion evaluation

• Reverse mode AD: Function values flow forward through the graph, derivatives flow
backward

This will become clearer in sections Section 5.2.1 and Section 5.2.2.

Exercise 5.24.

1. Draw the computation graph for the function 𝑓(𝑥) = 𝑥2 sin(𝑥).
2. For the function ℎ(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥, identify:

• The input nodes
• The intermediate nodes and their operations
• The output node

3. Explain why breaking a complex function into a computation graph of elementary oper-
ations is useful for derivative computation.
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5.2.1 Forward mode AD

In forward mode automatic differentiation, we track both the values of variables and their
derivatives with respect to the input variables. This allows us to build the derivatives as we
compute the function value.

Example 5.2. Consider a simple function 𝑓(𝑥) = 𝑥2 sin(𝑥). We can compute both the value
and the derivative at 𝑥 = 2 as follows:

1. Initialize: 𝑥 = 2, 𝑑𝑥
𝑑𝑥 = 1 (The derivative of 𝑥 with respect to itself is 1)

2. Compute 𝑢 = 𝑥2:

• Value: 𝑢 = 22 = 4
• Derivative: 𝑑𝑢

𝑑𝑥 = 𝑑(𝑥2)
𝑑𝑥 ⋅ 𝑑𝑥

𝑑𝑥 = 2𝑥 ⋅ 1 = 2 ⋅ 2 = 4

3. Compute 𝑣 = sin(𝑥):

• Value: 𝑣 = sin(2) ≈ 0.9093
• Derivative: 𝑑𝑣

𝑑𝑥 = 𝑑 sin(𝑥)
𝑑𝑥 ⋅ 𝑑𝑥

𝑑𝑥 = cos(𝑥) ⋅ 1 = cos(2) ≈ −0.4161

4. Compute 𝑓 = 𝑢 ⋅ 𝑣:

• Value: 𝑓 = 4 ⋅ 0.9093 ≈ 3.6372
• Derivative: 𝑑𝑓

𝑑𝑥 = 𝑑(𝑢⋅𝑣)
𝑑𝑥 = 𝑑𝑢

𝑑𝑥 ⋅ 𝑣 + 𝑢 ⋅ 𝑑𝑣
𝑑𝑥 = 4 ⋅ 0.9093 + 4 ⋅ (−0.4161) ≈ 1.9728

This is forward mode automatic differentiation.

The figure below illustrates the computational graph for 𝑓(𝑥) = 𝑥2 sin(𝑥) with forward mode
AD. The blue values show the function evaluation, while the red values show the derivative
calculation:

Note how both the value and the derivative are computed in a single pass through the computa-
tion graph, with the derivatives at later nodes being computed with the help of the derivatives
at earlier nodes.

Let’s formalize the forward mode automatic differentiation process by creating a systematic
approach. We’ll use the concept of a “dual number” that carries both a value and its

derivative. We will represent each variable as a pair (𝑣
𝑑) where 𝑣 is the variable’s value and

𝑑 is its derivative with respect to the input we’re differentiating against.

Because we know the differentiation rules for the following basic operations we can define the
operations on dual numbers as follows:
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Figure 5.5: Forward mode automatic differentiation for f(x) = x² · sin(x) at x = 2
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1. Addition: (𝑎
𝑎′)+(𝑏

𝑏′) = ( 𝑎 + 𝑏
𝑎′ + 𝑏′)

2. Multiplication: (𝑎
𝑎′) ⋅ ( 𝑏

𝑏′) = ( 𝑎 ⋅ 𝑏
𝑎′ ⋅ 𝑏 + 𝑎 ⋅ 𝑏′)

3. Division: (𝑎
𝑎′)/(𝑏

𝑏′) = ( 𝑎/𝑏
(𝑎′ ⋅ 𝑏 − 𝑎 ⋅ 𝑏′)/𝑏2)

4. Power: (𝑎
𝑎′)

𝑛
= ( 𝑎𝑛

𝑛 ⋅ 𝑎𝑛−1 ⋅ 𝑎′)

5. Sine: sin(𝑎
𝑎′) = ( sin(𝑎)

cos(𝑎) ⋅ 𝑎′)

6. Exponential: 𝑒
⎛⎜
⎝

𝑎
𝑎′

⎞⎟
⎠ = ( 𝑒𝑎

𝑒𝑎 ⋅ 𝑎′)

With this notation the calculations from Example 5.2 can be written as:

(𝑥
𝑥′) = (2

1)

(𝑢
𝑢′) = (𝑥

𝑥′)
2
= ( 𝑥2

2𝑥𝑥′) = (4
4)

(𝑣
𝑣′) = sin(𝑥

𝑥′) = ( sin(𝑥)
cos(𝑥)𝑥′) = ( 0.9093

−0.4161)

(𝑓
𝑓 ′) = (𝑢

𝑢′) ⋅ (𝑣
𝑣′) = ( 𝑢 ⋅ 𝑣

𝑢′ ⋅ 𝑣 + 𝑢 ⋅ 𝑣′) = (3.6372
1.9728)

Exercise 5.25. � Compute the derivative of 𝑓(𝑥) = 𝑥2+1
2𝑥−3 at 𝑥 = 2 using the dual number

approach.

Verify your result by computing the derivative analytically and comparing.

Next let us teach Python how to do this. Here is the implementation for four basic opera-
tions:
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import numpy as np
# Basic operations on dual numbers represented as tuples (value, derivative)
def dual_add(a, b):

"""Add two dual numbers:
(a, a') + (b, b') = (a + b, a' + b')"""
return (a[0] + b[0], a[1] + b[1])

def dual_multiply(a, b):
"""Multiply two dual numbers:
(a, a') * (b, b') = (a*b, a'*b + a*b')"""
return (a[0] * b[0], a[1] * b[0] + a[0] * b[1])

def dual_power(a, n):
"""Raise dual number to integer power n:
(a, a')^n = (a^n, n*a^(n-1)*a')"""
return (a[0]**n, n * a[0]**(n-1) * a[1])

def dual_sin(a):
"""Sine of dual number:
sin(a, a') = (sin(a), cos(a)*a')"""
return (np.sin(a[0]), np.cos(a[0]) * a[1])

We can now use these operations to compute the derivative of 𝑓(𝑥) = 𝑥2 sin(𝑥) at 𝑥 = 2 as
follows:

x = (2, 1)
u = dual_power(x, 2)
v = dual_sin(x)
f = dual_multiply(u, v)
print(f)

(np.float64(3.637189707302727), np.float64(1.9726023611141572))

Exercise 5.26. Compute the derivative of 𝑓(𝑥) = 𝑥2+1
2𝑥−3 at 𝑥 = 2 using your Python imple-

mentation of the dual number approach. You will need to define the operation for division
using the quotient rule.

Verify that you get the same result as in Exercise 6.3.
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Exercise 5.27. Compute the derivative of 𝑓(𝑥) = exp(𝑥)/ cos(𝑥) at 𝑥 = 2 using your Python
implementation of the dual number approach. You will need to define dual number versions
of the exponential and cosine functions.

For multivariate functions, we can compute one directional derivative at a time.

For a function 𝑓(𝑥, 𝑦), to compute 𝜕𝑓
𝜕𝑥 , we initialize:

• 𝑥 = (𝑥
1) (value and derivative of 𝑥 with respect to 𝑥)

• 𝑦 = (𝑦
0) (value and derivative of 𝑦 with respect to 𝑥)

And to compute 𝜕𝑓
𝜕𝑦 , we initialize:

• 𝑥 = (𝑥
0) (value and derivative of 𝑥 with respect to 𝑦)

• 𝑦 = (𝑦
1) (value and derivative of 𝑦 with respect to 𝑦)

Exercise 5.28.

1. � For 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑥𝑦), compute both 𝜕𝑓
𝜕𝑥 and 𝜕𝑓

𝜕𝑦 at (𝑥, 𝑦) = (2, 1) using forward
mode AD with the dual number approach.

2. For 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 𝑦 sin(𝑧) + 𝑧 cos(𝑥), compute 𝜕𝑓
𝜕𝑥 ,

𝜕𝑓
𝜕𝑦 , and

𝜕𝑓
𝜕𝑧 at (𝑥, 𝑦, 𝑧) = (1, 1, 1).

3. � If a function has 𝑛 inputs and we want all partial derivatives, how many forward mode
passes do we need? What implications does this have for functions with many inputs?
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5.2.2 Reverse mode AD

We have seen that if one has a function of 𝑛 variables, forward mode AD requires 𝑛 passes
to compute all partial derivatives. Now let’s explore reverse mode automatic differentiation,
which is more efficient for functions with many inputs and few outputs. Reverse mode AD
first computes the function value and then propagates derivatives backward from the output
to the inputs.

This approach is particularly important in optimisation and machine learning. In neural
networks, which can have millions of parameters (inputs) but typically only one output (the
loss function), reverse mode AD allows us to compute all partial derivatives in a single backward
pass. This is the foundation of the famous backpropagation algorithm used to train neural
networks efficiently. Without reverse mode AD, training modern deep learning models would
be computationally infeasible, as forward mode would require millions of separate passes to
compute all the necessary gradients for parameter updates.

We introduce the concept of adjoints or accumulated gradients. The adjoint of a variable
𝑣 is denoted 𝑣 and represents 𝜕𝑓

𝜕𝑣 where 𝑓 is the final output.

Example 5.3. Let’s trace through the reverse mode process for 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑥𝑦) at
(𝑥, 𝑦) = (2, 3):

1. Define intermediate variables in the computation graph as in Figure 5.4:

• 𝑣1 = 𝑥2 = 4
• 𝑣2 = 𝑣1 ⋅ 𝑦 = 4 ⋅ 3 = 12
• 𝑣3 = 𝑥 ⋅ 𝑦 = 2 ⋅ 3 = 6
• 𝑣4 = sin(𝑣3) = sin(6) ≈ −0.2794
• 𝑓 = 𝑣2 + 𝑣4 = 12 + (−0.2794) ≈ 11.7206 (final output)

2. Initialize the adjoint of the output: 𝑓 = 1
3. Propagate adjoints backward using the chain rule:

• 𝑣4 = 𝑓 ⋅ 𝜕𝑓
𝜕𝑣4

= 1 ⋅ 1 = 1
• 𝑣3 = 𝑣4 ⋅ 𝜕𝑣4

𝜕𝑣3
= 1 ⋅ cos(𝑣3) = cos(6) ≈ 0.9602

• 𝑣2 = 𝑣5 ⋅ 𝜕𝑓
𝜕𝑣2

= 1 ⋅ 1 = 1
• 𝑣1 = 𝑣2 ⋅ 𝜕𝑣2

𝜕𝑣1
= 1 ⋅ 𝑦 = 3

• 𝑥 = 𝑣1 ⋅ 𝜕𝑣1
𝜕𝑥 + 𝑣3 ⋅ 𝜕𝑣3

𝜕𝑦 = 3 ⋅ 2𝑥 + 0.9602 ⋅ 𝑦 = 3 ⋅ 2 ⋅ 2 + 0.9602 ⋅ 3 ≈ 14.8806
• 𝑦 = 𝑣2 ⋅ 𝜕𝑣2

𝜕𝑦 + 𝑣3 ⋅ 𝜕𝑣3
𝜕𝑦 = 1 ⋅ 𝑣1 + 0.9602 ⋅ 𝑥 = 1 ⋅ 4 + 0.9602 ⋅ 2 ≈ 5.9204

4. The final results are 𝜕𝑓
𝜕𝑥 = 𝑥 ≈ 14.8806 and 𝜕𝑓

𝜕𝑦 = 𝑦 ≈ 5.9204
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Figure 5.6: Reverse mode automatic differentiation for f(x,y) = x²y + sin(xy) at (x,y) = (2,1)
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Figure 5.6 illustrates the reverse mode AD computation graph for this example.

Note how the backward pass computes the gradients with respect to 𝑥 and 𝑦 in a single pass
through the computation graph. This pass is going backwards through the graph because the
gradients at earlier nodes are computed with the help of the gradients at later nodes. Note
how the gradient at a node is the sum of the contributions from the gradients of the nodes
that depend on it. Also note how we need the values of the nodes to compute the gradients,
so we need to keep track of them in the forward pass. Thus reverse mode is more memory
intensive than forward mode.

Exercise 5.29. � Perform the forward pass and the backward pass through the computation
graph for 𝑓(𝑥, 𝑦) = 𝑥𝑦2 cos𝑥𝑦2 at (𝑥, 𝑦) = (𝜋, 3).

Implementing reverse mode automatic differentiation in Python is not straightforward, because
we need to build up the computation graph and store the values of the nodes so that we can
use them in the backward pass. So we will not attempt an implementation from scratch
but instead use the JAX library that provides automatic differentiation in Python. JAX is
designed to be simple to use while providing powerful capabilities.

Example 5.4. Here’s a simple example using JAX to compute derivatives:

import jax
import jax.numpy as jnp

# Define a function
def f(x):

return jnp.sin(x) * (1 - x)

# Compute the derivative function
df = jax.grad(f)

# Evaluate at x = 1
print(f"f(1) = {f(1)}")
print(f"f'(1) = {df(1.0)}")

f(1) = 0.0
f'(1) = -0.8414709568023682
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Two things to note:

• We had to use the jax versions of NumPy functions, like jnp.sin instead of np.sin.
• We had to pass a float to the df function, rather than an integer. So we had to write

df(1.0) instead of df(1).

Exercise 5.30. Use JAX to compute the derivatives of:

a. 𝑓(𝑥) = 𝑥3 − 2𝑥2 + 4𝑥 − 7 at 𝑥 = 1;
b. 𝑓(𝑥) = (𝑥2+1)/(2𝑥−3) at 𝑥 = 2. Check that you get the same results as in Exercise 6.3.

Example 5.5. For multivariate functions, JAX allows us to compute partial derivatives:

def g(x, y):
return x**2 * y + jnp.sin(x * y)

# Compute partial with respect to first argument (x)
dg_dx = jax.grad(g, argnums=0)

# Compute partial with respect to second argument (y)
dg_dy = jax.grad(g, argnums=1)

# Evaluate at (2, 1)
print(f"�g/�x at (2,1) = {dg_dx(2.0, 1.0)}")
print(f"�g/�y at (2,1) = {dg_dy(2.0, 1.0)}")

�g/�x at (2,1) = 3.583853244781494
�g/�y at (2,1) = 3.167706251144409

Exercise 5.31. � Use JAX to compute the partial derivatives of 𝑓(𝑥, 𝑦) = 𝑥 exp(𝑦 + 𝑥) +
𝑦 sin(𝑥𝑦) at (𝑥, 𝑦) = (1, 2).
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JAX can also compute higher-order derivatives:

Example 5.6.

f = lambda x: x*x*x

# Second derivative
d2f = jax.grad(jax.grad(f))
print(f"f''(1) = {d2f(1.0)}")

# Or more concisely
d2f = jax.hessian(f)
print(f"f''(1) = {d2f(1.0)}")

f''(1) = 6.0
f''(1) = 6.0

Exercise 5.32. Compare the accuracy and efficiency of the differentiation methods we’ve
studied:

1. For the function 𝑓(𝑥) = sin(𝑥)(1 − 𝑥), compute the derivative at 𝑥 = 1 using:

a. Forward difference with step sizes ℎ = 0.1, 0.01, 0.001
b. Central difference with step sizes ℎ = 0.1, 0.01, 0.001
c. JAX automatic differentiation

Create a table giving the value of the derivative and the absolute error for each of these
7 cases.
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5.3 Algorithm Summaries

Exercise 5.33. Starting from Taylor series prove that

𝑓 ′(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (5.27)

is a first-order approximation of the first derivative of 𝑓(𝑥). Clearly describe what “first-order
approximation” means in this context.

Exercise 5.34. Starting from Taylor series prove that

𝑓 ′(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ (5.28)

is a second-order approximation of the first derivative of 𝑓(𝑥). Clearly describe what “second-
order approximation” means in this context.

Exercise 5.35. Starting from Taylor series prove that

𝑓″(𝑥) ≈ 𝑓(𝑥 + ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 − ℎ)
ℎ2 (5.29)

is a second-order approximation of the second derivative of 𝑓(𝑥). Clearly describe what
“second-order approximation” means in this context.

Exercise 5.36. Explain how to define arithmetic operations on dual numbers and how to use
them to compute the derivative of a function with forward mode automatic differentiation.

Exercise 5.37. Given a computation graph of a function, explain how to accumulate the
gradients in a backwards pass through the computation graph. What is the advantage of this
method over forward mode automatic differentiation?
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5.4 Problems

Exercise 5.38. For each of the following numerical differentiation formulas

(1) prove that the formula is true and
(2) find the order of the method.

To prove that each of the formulas is true you will need to write the Taylor series for all of
the terms in the numerator on the right and then simplify to solve for the necessary derivative.
The highest power of the remainder should reveal the order of the method.

1. 𝑓 ′(𝑥) ≈
1
12𝑓(𝑥−2ℎ)− 2

3𝑓(𝑥−ℎ)+ 2
3𝑓(𝑥+ℎ)− 1

12𝑓(𝑥+2ℎ)
ℎ

2. 𝑓 ′(𝑥) ≈ − 3
2𝑓(𝑥)+2𝑓(𝑥+ℎ)− 1

2𝑓(𝑥+2ℎ)
ℎ

3. 𝑓″(𝑥) ≈ − 1
12𝑓(𝑥−2ℎ)+ 4

3𝑓(𝑥−ℎ)− 5
2𝑓(𝑥)+ 4

3𝑓(𝑥+ℎ)− 1
12𝑓(𝑥+2ℎ)

ℎ2

4. 𝑓‴(𝑥) ≈ − 1
2𝑓(𝑥−2ℎ)+𝑓(𝑥−ℎ)−𝑓(𝑥+ℎ)+ 1

2𝑓(𝑥+2ℎ)
ℎ3

Exercise 5.39. Write a function that accepts a list of (𝑥, 𝑦) ordered pairs from a spreadsheet
and returns a list of (𝑥, 𝑦) ordered pairs for a first order approximation of the first derivative
of the underlying function. Create a test spreadsheet file and a test script that have graphical
output showing that your function is finding the correct derivative.

Exercise 5.40. Write a function that accepts a list of (𝑥, 𝑦) ordered pairs from a spreadsheet
or a *.csv file and returns a list of (𝑥, 𝑦) ordered pairs for a second order approximation of the
second derivative of the underlying function. Create a test spreadsheet file and a test script
that have graphical output showing that your function is finding the correct derivative.

Exercise 5.41. Go to data.gov or the World Health Organization Data Repository and find
a data set where the variables naturally lead to a meaningful derivative. Use appropriate code
to evaluate and plot the derivative. If your data appears to be subject to significant noise
then you may want to smooth the data first before doing the derivative. Write a few sentences
explaining what the derivative means in the context of the data. Be very cautious of the units
on the data sets and the units of your answer.
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Exercise 5.42. A bicyclist completes a race course in 90 seconds. The speed of the biker at
each 10-second interval is determined using a radar gun and is given in the table in feet per
second. How long is the race course?

Time
(sec) 0 10 20 30 40 50 60 70 80 90
Speed
(ft/sec)

34 32 29 33 37 40 41 36 38 39

You can download the data with the following code.

import numpy as np
import pandas as pd
data = np.array(pd.read_csv('https://github.com/gustavdelius/NumericalAnalysis2025/raw/main/data/Calculus/bikespeed.csv'))
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6 Integrals

Now that we understand how to calculate derivatives, we begin our work on the second prin-
cipal computation of calculus: evaluating a definite integral. You will be able to transfer
much of what you did in the previous chapter, where you investigated the errors in numerical
differentiation, to the investigation of the errors in numerical integration.

Exercise 6.1. Remember that a single-variable definite integral can be interpreted as the
signed area between the curve and the 𝑥 axis. Consider the shaded area of the region under
the function plotted in Figure 6.1 between 𝑥 = 0 and 𝑥 = 2.

1. What rectangle with area 6 gives an upper bound for the area under the curve? Can you
give a better upper bound?

2. Why must the area under the curve be greater than 3?

3. Is the area greater than 4? Why/Why not?

4. Work with your group to give an estimate of the area and provide an estimate for the
amount of error that you are making.

In this chapter we will study three different techniques for approximating the value of a definite
integral.

6.1 Riemann Sums

In this subsection we will build our first method for approximating definite integrals. Recall
from Calculus that the definition of the Riemann integral is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = lim

Δ𝑥→0

𝑁
∑
𝑗=1

𝑓(𝑥𝑗)Δ𝑥, (6.1)
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Figure 6.1: A sample integration
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where 𝑁 is the number of sub intervals on the interval [𝑎, 𝑏] and Δ𝑥 is the width of the
interval. As with differentiation, we can remove the limit and have a decent approximation of
the integral so long as 𝑁 is large (or equivalently, as long as Δ𝑥 is small).

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

𝑁
∑
𝑗=1

𝑓(𝑥𝑗)Δ𝑥. (6.2)

You are likely familiar with this approximation of the integral from Calculus. The value of
𝑥𝑗 can be chosen anywhere within the sub interval and three common choices are to use the
left-aligned, the midpoint-aligned, and the right-aligned.

We see a depiction of this in Figure 6.2.

Figure 6.2: Left-aligned Riemann sum, midpoint-aligned Riemann sum, and right-aligned Rie-
mann sum

Clearly, the more rectangles we choose the closer the sum of the areas of the rectangles will
get to the integral.

Exercise 6.2. � Write a Python function RiemannSum(f, a, b, N, method='left') that
approximates an integral with a Riemann sum. Your Python function should accept a Python
Function f, a lower bound a, an upper bound b, the number of subintervals N, and an optional
input method that allows the user to designate whether they want ‘left’, ‘right’, or ‘midpoint’
rectangles. Test your code on several functions for which you know the integral. You should
write your code without any loops.

181



Exercise 6.3. Consider the function 𝑓(𝑥) = sin(𝑥). We know the antiderivative for this
function, 𝐹(𝑥) = − cos(𝑥)+𝐶. In this question we are going to get a sense of the order of the
error when doing Riemann Sum integration.

1. Find the exact value of
𝐼 = ∫

1

0
𝑓(𝑥)𝑑𝑥. (6.3)

2. Now calculate left Riemann Sum approximation (using your RiemannSum() function from
Exercise 6.2) with various values of Δ𝑥. Fill in the table with your results. Note the
similarity between this exercise and Exercise 5.8 where you created a similar table for
approximating a derivative. If you want to save yourself tedious work, you may want to
adapt the code from Exercise 5.9 to this exercise.

Δ𝑥 Approx. Integral Absolute Error
2−1 = 0.5
2−2 = 0.25
2−3

2−4

2−5

2−6

2−7

2−8

3. There was nothing really special about powers of 2 in part (2) of this exercise. Examine
other sequences of Δ𝑥 with a goal toward answering the question:

If we find an approximation of the integral with a fixed Δ𝑥 and find an absolute
error, then what would happen to the absolute error if we divide Δ𝑥 by some
positive constant 𝑀?

Exercise 6.4. Repeat the previous exercise using the midpoint Riemann sum. Again answer
the question what happens to the absolute error if we divide Δ𝑥 by some positive constant 𝑀 .

Exercise 6.5. Create a plot with the width of the subintervals on the horizontal axis and
the absolute error between your Riemann sum calculations (left, right, and midpoint) and the
exact integral for a known definite integral of your choice. Your plot should be on a log-log
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scale. Based on your plot, what is the approximate order of the error in the Riemann sum
approximation? Again notice the similarity between this exercise and Exercise 5.17 where you
created a similar plot for approximating a derivative. And don’t be worried if you plot three
lines but can only see two of them. The third line is likely very close to one of the other two.

6.2 Trapezoidal Rule

Now let us turn our attention to some slightly better algorithms for calculating the value
of a definite integral: The Trapezoidal Rule and Simpson’s Rule. There are many others,
but in practice these two are relatively easy to implement and have reasonably good error
approximations. To motivate the idea of the trapezoidal rule consider Figure 6.3. It is plain to
see that trapezoids will make better approximations than rectangles at least in this particular
case. Another way to think about using trapezoids, however, is to see the top side of the
trapezoid as a secant line connecting two points on the curve. As Δ𝑥 gets arbitrarily small,
the secant lines become better and better approximations for tangent lines and are hence
arbitrarily good approximations for the curve. For these reasons it seems like we should
investigate how to systematically approximate definite integrals via trapezoids.

Figure 6.3: Motivation for using trapezoids to approximate a definite integral.

Exercise 6.6. Consider a single trapezoid approximating the area under a curve. From
geometry we recall that the area of a trapezoid is

𝐴 = 1
2 (𝑏1 + 𝑏2) ℎ, (6.4)
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where 𝑏1, 𝑏2 and ℎ are marked in Figure 6.4. The function shown in the picture is 𝑓(𝑥) =
1
5𝑥2(5 − 𝑥). Find the area of the shaded region as an approximation to

∫
4

1
(1
5𝑥

2(5 − 𝑥)) 𝑑𝑥. (6.5)

Figure 6.4: A single trapezoid to approximate area under a curve.

Now use the same idea with ℎ = Δ𝑥 = 1 to approximate the area under the function using
three trapezoids, as illustrated in the last panel of Figure 6.3.

184



Exercise 6.7 (Trapezoidal Rule). Now generalise the idea from Exercise 6.6 to divide the
interval [𝑎, 𝑏] into 𝑁 subintervals with boundaries {𝑥0 = 𝑎, 𝑥1, 𝑥2,… , 𝑥𝑁−1, 𝑥𝑁 = 𝑏}. Fill in
the missing bits in the equations below. The area of the trapezoid on the subinterval from
𝑥𝑗−1 to 𝑥𝑗 is

𝐴𝑗 =
1
2 [𝑓(???) + 𝑓(???)] (??? − ???) . (6.6)

Then the approximation of the integral is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

???
∑
???

𝐴𝑗. (6.7)

Exercise 6.8. � Write a Python function Trapezoidal(f, a, b, N) that approximates an
integral with the trapezoidal method you derived in the previous exercise. Your Python
function should accept a Python Function f, a lower bound a, an upper bound b and the
number of subintervals N. You should write your code without any loops. Test your code on
several functions for which you know the integral.

Exercise 6.9. You have by now developed and repeatedly used ways to investigate how the
errors for numerical integration and differentiation schemes depend on the stepsize. It is now
up to you to do the same for the trapezoidal rule. Remember that the goal is to answer the
question:

If I approximate the integral with a fixed Δ𝑥 and find an absolute error of 𝑃 , then
what will the absolute error be using a width of Δ𝑥/𝑀?

You can either do this with a table or with a graph. What is the order of the error for the
trapezoidal rule?

6.3 Simpsons Rule

The trapezoidal rule does a decent job approximating integrals, but ultimately you are using
linear functions to approximate 𝑓(𝑥) and the accuracy may suffer if the step size is too large
or the function too non-linear. You likely notice that the trapezoidal rule will give an exact
answer if you were to integrate a linear or constant function. A potentially better approach
would be to get an integral that evaluates quadratic functions exactly. We call this method
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Simpson’s Rule after Thomas Simpson (1710-1761) who, by the way, was a basket weaver in
his day job so he could pay the bills and keep doing math.

Three points are needed to uniquely determine a quadratic function, where two points were
enough to uniquely determine a linear function. So for Simpson’s method we need to evaluate
the function at three points (not two as for the trapezoidal rule). To approximate the integral
a function 𝑓(𝑥) on the interval [𝑎, 𝑏] we will use the three points (𝑎, 𝑓(𝑎)), (𝑚, 𝑓(𝑚)), and
(𝑏, 𝑓(𝑏)) where 𝑚 = 𝑎+𝑏

2 is the midpoint of the two boundary points.

We want to find constants 𝐴1, 𝐴2, and 𝐴3 in terms of 𝑎, 𝑏, 𝑓(𝑎), 𝑓(𝑏), and 𝑓(𝑚) such that

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐴1𝑓(𝑎) + 𝐴2𝑓(𝑚) + 𝐴3𝑓(𝑏) (6.8)

is exact for all constant, linear, and quadratic functions. This would guarantee that we have
an exact integration method for all polynomials of order 2 or less but should serve as a decent
approximation if the function is not quadratic.

Exercise 6.10. Follow these steps to find 𝐴1, 𝐴2, and 𝐴3.

1. Verify that

∫
𝑏

𝑎
1𝑑𝑥 = 𝑏 − 𝑎 = 𝐴1 +𝐴2 +𝐴3. (6.9)

2. Verify that

∫
𝑏

𝑎
𝑥𝑑𝑥 = 𝑏2 − 𝑎2

2 = 𝐴1𝑎 + 𝐴2 (
𝑎 + 𝑏
2 ) + 𝐴3𝑏. (6.10)

3. Verify that

∫
𝑏

𝑎
𝑥2𝑑𝑥 = 𝑏3 − 𝑎3

3 = 𝐴1𝑎2 +𝐴2 (
𝑎 + 𝑏
2 )

2
+𝐴3𝑏2. (6.11)

4. Verify that the above linear system of equations has the solution

𝐴1 = 𝑏 − 𝑎
6 , 𝐴2 = 4(𝑏 − 𝑎)

6 , and 𝐴3 = 𝑏 − 𝑎
6 . (6.12)
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Exercise 6.11. At this point we can see that an integral can be approximated as

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎

6 )(𝑓(𝑎) + 4𝑓 (𝑎 + 𝑏
2 ) + 𝑓(𝑏)) (6.13)

and the technique will give an exact answer for any polynomial of order 2 or below.

Verify the previous sentence by integrating 𝑓(𝑥) = 1, 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑥2 by hand on the
interval [0, 1] and using the approximation formula.

To make the punchline of the previous exercises a bit more clear: Using the formula

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎

6 ) (𝑓(𝑎) + 4𝑓(𝑚) + 𝑓(𝑏)) (6.14)

is the same as fitting a parabola to the three points (𝑎, 𝑓(𝑎)), (𝑚, 𝑓(𝑚)), and (𝑏, 𝑓(𝑏)) and
finding the area under the parabola exactly. That is exactly the step up from the trapezoidal
rule and Riemann sums that we were after:

• Riemann sums approximate the function with constant functions,

• the trapezoidal rule uses linear functions, and

• now we have a method for approximating with parabolas.

To improve upon this idea we now examine the problem of partitioning the interval [𝑎, 𝑏]
into small pieces and running this process on each piece. This is called Simpson’s Rule for
integration.

Exercise 6.12 (Simpson’s Rule). We divide the interval [𝑎, 𝑏] into 𝑁 subintervals with bound-
aries {𝑥0 = 𝑎, 𝑥1, 𝑥2,… , 𝑥𝑁−1, 𝑥𝑁 = 𝑏}. Fill in the missing bits in the equations below. We
approximate the integral on the subinterval from 𝑥𝑗−1 to 𝑥𝑗 by

𝐴𝑗 =
1
??? [𝑓(???) + ???𝑓(???) + 𝑓(???)] (??? − ???) . (6.15)

Then the approximation of the integral is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

???
∑
???

𝐴𝑗. (6.16)
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Exercise 6.13. � Write a Python function Simpsons(f, a, b, N) that approximates an
integral with Simpson’s rule that you derived in the previous exercise. Your Python function
should accept a Python Function f, a lower bound a, an upper bound b and the number
of subintervals N. You should write your code without any loops. Test your code on several
functions for which you know the integral.

Exercise 6.14. � As in Exercise 6.9, use your favourite method to determine how the absolute
error in Simpson’s rule depends on the step size and hence determine the order of the error
for Simpson’s rule?

Exercise 6.15. Use the integration problem and exact answer

∫
𝜋/4

0
𝑒3𝑥 sin(2𝑥)𝑑𝑥 = 3

13𝑒
3𝜋/4 + 2

13 (6.17)

and produce a log-log error plot with Δ𝑥 on the horizontal axis and the absolute error on the
vertical axis. Include one graph for each of our integration methods. Fully explain how the
error rates show themselves in your plot.

Thus far we have three numerical approximations for definite integrals: Riemann sums (with
rectangles), the trapezoidal rule, and Simpsons’s rule. There are MANY other approximations
for integrals and we leave the further research to the curious reader.

Further reading: Sections 4.3 to 4.9 of (Burden and Faires 2010).
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6.4 Algorithm Summaries

Exercise 6.16. Explain how to approximate the value of a definite integral with Riemann
sums. When will the Riemann sum approximation be exact? Distinguish between left, right
and midpoint Riemann sums. State how the error of these approximations depends on the
step size, i.e., give the order of the error for each of the three Riemann sums.

Exercise 6.17. Explain how to approximate the value of a definite integral with the trape-
zoidal rule. When will the trapezoidal rule approximation be exact? What is the order of the
Trapezoidal rule?

Exercise 6.18. Explain how to approximate the value of a definite integral with Simpson’s
rule. Give the full mathematical details for where Simpson’s rule comes from. When will the
Simpson’s rule approximation be exact? What is the order of Simpson’s rule?

6.5 Problems

Exercise 6.19. Numerically integrate each of the functions over the interval [−1, 2] with an
appropriate technique and verify mathematically that your numerical integral is correct to 10
decimal places. Then provide a plot of the function along with its numerical first derivative.

1. 𝑓(𝑥) = 𝑥
1+𝑥4

2. 𝑔(𝑥) = (𝑥 − 1)3(𝑥 − 2)2

3. ℎ(𝑥) = sin (𝑥2)

Exercise 6.20. Write a function that implements the trapezoidal rule on a list of (𝑥, 𝑦) order
pairs representing the integrand function. The list of ordered pairs should be read from a
spreadsheet file. Create a test spreadsheet file and a test script showing that your function is
finding the correct integral.
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Exercise 6.21. Use numerical integration to answer the question in each of the following
scenarios

1. We measure the rate at which water is flowing out of a reservoir (in gallons per second)
several times over the course of one hour. Estimate the total amount of water which left
the reservoir during that hour.

time (min) 0 7 19 25 38 47 55
flow rate (gal/sec) 316 309 296 298 305 314 322

You can download the data directly from the github repository for this course with the code
below.

import numpy as np
import pandas as pd
data = np.array(pd.read_csv('https://github.com/gustavdelius/NumericalAnalysis2025/raw/main/data/Calculus/waterflow.csv'))

2. The department of transportation finds that the rate at which cars cross a bridge can be
approximated by the function

𝑓(𝑡) = 22.8
3.5 + 7(𝑡 − 1.25)4 , (6.18)

where 𝑡 = 0 at 4pm, and is measured in hours, and 𝑓(𝑡) is measured in cars per minute.
Estimate the total number of cars that cross the bridge between 4 and 6pm. Make
sure that your estimate has an error less than 5% and provide sufficient mathematical
evidence of your error estimate.

Exercise 6.22. Consider the integrals

∫
2

−2
𝑒−𝑥2/2𝑑𝑥 and ∫

1

0
cos(𝑥2)𝑑𝑥. (6.19)

Neither of these integrals have closed-form solutions so a numerical method is necessary.
Create a log-log plot that shows the errors for the integrals with different values of ℎ (log of ℎ
on the 𝑥-axis and log of the absolute error on the 𝑦-axis). Write a complete interpretation of
the log-log plot. To get the exact answer for these plots use Python’s scipy.integrate.quad
command. (What we are really doing here is comparing our algorithms to Python’s
scipy.integrate.quad() algorithm).
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6.6 Projects

In this section we propose several ideas for projects related to numerical Calculus. These
projects are meant to be open ended, to encourage creative mathematics, to push your coding
skills, and to require you to write and communicate your mathematics.

6.6.1 Higher Order Integration

Riemann sums can be used to approximate integrals and they do so by using piecewise constant
functions to approximate the function. The trapezoidal rule uses piece wise linear functions
to approximate the function and then the area of a trapezoid to approximate the area. We
saw earlier that Simpson’s rule uses piece wise parabolas to approximate the function. The
process which we used to build Simpson’s rule can be extended to any higher-order polynomial.
Your job in this project is to build integration algorithms that use piece wise cubic functions,
quartic functions, etc. For each you need to show all of the mathematics necessary to derive
the algorithm, provide several test cases to show that the algorithm works, and produce a
numerical experiment that shows the order of accuracy of the algorithm.

6.6.2 Dam Integration

Go to the USGS water data repository:
https://maps.waterdata.usgs.gov/mapper/index.html.
Here you will find a map with information about water resources around the country.

• Zoom in to a dam of your choice (make sure that it is a dam).

• Click on the map tag then click “Access Data”

• From the drop down menu at the top select either “Daily Data” or “Current / Historical
Data.” If these options do not appear then choose a different dam.

• Change the dates so you have the past year’s worth of information.

• Select “Tab-separated” under “Output format” and press Go. Be sure that the data you
got has a flow rate (ft3/sec).

• At this point you should have access to the entire data set. Copy it into a csv file and
save it to your computer.

For the data that you just downloaded you have three tasks: (1) plot the data in a reasonable
way giving appropriate units, (2) find the total amount of water that has been discharged from
the dam during the past calendar year, and (3) report any margin of error in your calculation
based on the numerical method that you used in part (2).

191

https://maps.waterdata.usgs.gov/mapper/index.html


6.6.3 WHO Data Integration

Go to data.gov or the World Health Organization Data Repository and find a data set where
the variables naturally lead to a meaningful definite integral. Use appropriate code to evaluate
the definite integral. If your data appears to be subject to significant noise then you might
want to smooth the data first before doing the integral. Write a few sentences explaining what
the integral means in the context of the data. Be very cautious of the units on the data sets
and the units of your answer.
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7 Optima

It is not enough to do your best; you must know what to do, and then do your best.
–W. Edwards Deming

In applied mathematics we are often not interested in all solutions of a problem but in the
optimal solution. Optimization therefore permeates many areas of mathematics and science.
In this section we will look at a few examples of optimization problems and the numerical
methods that can be used to solve them.

Exercise 7.1. Here is an atypically easy optimisation problem that you can quickly do by
hand:

A piece of cardboard measuring 20cm by 20cm is to be cut so that it can be folded into a
box without a lid (see Figure 7.1). We want to find the size of the cut, 𝑥, that maximizes the
volume of the box.

1. Write a function 𝑉 (𝑥)for the volume of the box resulting from a cut of size 𝑥. What is
the domain of your function?

2. We know that we want to maximize this function so go through the full Calculus exercise
to find the maximum:

• take the derivative 𝑉 ′(𝑥)
• set it to zero to find the critical points

• determine the critical point that gives the maximum volume

An optimization problem is approached by first writing the quantity you want to optimize
as a function of the parameters of the model. In the previous exercise that was the function
𝑉 (𝑥) that gives the volume of the box as a function of the parameter 𝑥, which was the length
of the cut. That function then needs to be maximized (or minimized, depending on what is
optimal).
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Figure 7.1: Folds to make a cardboard box

Exercise 7.2. In the previous example it was easy to find the value of 𝑥 that maximized the
function analytically However, in many cases it is not so easy. The equation for the parameters
that arises from setting the derivatives to zero is usually not solvable analytically. In these
cases we need to use numerical methods to find the extremum. Take for example the function

𝑓(𝑥) = 𝑒−𝑥2 + sin(𝑥2)
on the domain 0 ≤ 𝑥 ≤ 1.5. The maximum of this function on this domain can not be
determined analytically.

Use Python to make a plot of this function over this domain. You should get something similar
to the graph shown in Figure 7.2. What is the 𝑥 that maximizes the function on this domain?
What is the 𝑥 that minimizes the function on this domain?

The intuition behind numerical optimization schemes is typically to visualize the function as
representing a landscape on which you are trying to walk to the highest or lowest point. You
however can only sense your immediate neighbourhood and need to use that information to
make decisions about where to walk next.

Exercise 7.3. If you were blind folded and standing on a hillside, could you find the top of
the hill? (assume no trees and no cliffs …this is not supposed to be dangerous) How would you
do it? Explain your technique clearly.
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Figure 7.2: Graph of the function 𝑓(𝑥) = 𝑒−𝑥2 + sin(𝑥2).

Exercise 7.4. If you were blind folded and standing on a crater on the moon could you find
the lowest point? How would you do it? Remember that you can hop as far as you like …
because gravity … but sometimes that’s not a great thing because you could hop too far.

Clearly there is no difference between finding the maximum of a function and finding the
minimum of a function. The maximum of a function 𝑓 is exactly at the same point as the
minimum of the function −𝑓 . For concreteness we will from now on focus on finding the
minimum of a function.

7.1 Single Variable Optimization

The preceding thought exercises have given you intuition about finding extrema in a two-
dimensional landscape. But first we will reduce back to one-dimensional optimization problems
before generalising to multiple dimensions in the next section.
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Exercise 7.5. Did you come up with ideas in the previous two exercises for how you would
go about finding a minimum or maximum of a function 𝑓(𝑥)? If so, try to turn your ideas into
step-by-step algorithms which could be coded. Then try out your codes on the function

𝑓(𝑥) = −𝑒−𝑥2 − sin(𝑥2) (7.1)

to see if your algorithms can find the local minimum near 𝑥 ≈ 1.14. Try to generate several
different algorithms.

One obvious method would be to simply evaluate the function at many points and choose the
smallest value. This is called a brute force search.

import numpy as np
x = np.linspace(0,1.5,1000)
f = -np.exp(-x**2) - np.sin(x**2)
print(x[np.argmin(f)])

This method is not very efficient. Just think about how often you would need to evaluate the
function for the above approach to give the answer to 12 decimal places. It would be a lot!
Your method should be more efficient.

The advantage of this brute force method is that it is guaranteed to find the global minimum
in the interval. Any other, more efficient method can get stuck in local minima.

7.1.1 Golden Section Search

Here is an idea for a method that is similar to the bisection method for root finding.

In the bisection method we needed a starting interval so that the function values had opposite
signs at the endpoints. You were therefore guaranteed that there would be at least one root
in that interval. Then you chose a point in the middle of the interval and by looking at the
function value at that new point were able to choose an appropriate smaller interval that was
still guaranteed to contain a root. By repeating this you honed in on the root.

Unfortunately by just looking at the function values at two points there is no way of knowing
whether there is a minimum between them. However, if you were to look at the function values
at three points and found that the value at the middle point was less than the values at the
endpoints then you would know that there was a minimum between the endpoints.
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Exercise 7.6. Make a sketch of a function and choose three points on the function such that
the middle point is lower than the two outer points. Use this to illustrate that there must be
at least a local minimum between the two outer points.

The idea now is to choose a new point between the two outer points, compare the function
value there to those at the previous three points, and then choose a new triplet of points that
is guaranteed to contain a minimum. By repeating this process you would hone in on the
minimum.

Exercise 7.7. � You want to find a minimum of a continuous function 𝑓 using the golden
section search method. You start with the three points 𝑎 = 1, 𝑐 = 3, 𝑏 = 5 where the function
takes the values 𝑓(1) = 5, 𝑓(3) = 2, 𝑓(5) = 3. For the next step you decided to add the point
𝑑 = 2.5 and find that 𝑓(2.5) = 1. Which three points should you choose to continue the
search?

Exercise 7.8. Complete the following function to implement this idea. You need to think
about how to choose the new point and then how to choose the new triplet.

def golden_section(f, a, b, c, tol = 1e-12):
"""
Find an approximation of a local minimum of a function f within the
interval [a, b] using a bracketing method.

The function narrows down the interval [a, b] by maintaining a
triplet (a, c, b) where f(c) < f(a) and f(c) < f(b).
The process iteratively updates the triplet to home in on the minimum,
stopping when the interval is smaller than `tol`.

Parameters:
f (function): A function to minimize.
a, b (float): The initial interval bounds where the minimum is to be

searched. It is assumed that a < b.
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c (float): An initial point within the interval (a, b) where
f(c) < f(a) and f(c) < f(b).

tol (float): The tolerance for the convergence of the algorithm.
The function stops when b - a < tol.

Returns:
float: An approximation of a point where f achieves a local minimum.
"""

# Check that the point are ordered a < c < b

# Check that the function value at `c` is lower than at both `a` and `b`

# Loop until you have an interval smaller than the tolerance
while b-a > tol:

# Choose a new point `d` between `a` and `b`
# Think about what is the most efficient choice

# Compare f(d) with f(c) and use the result
# to choose a new triplet `a`, `b`, `c` in such a way that
# b-a has decreased but f(c) is still lower than both f(a) and f(b)

# While debugging, include a print statement to let you know what
# is happening within your loop

return c

Then try out your code on the function

𝑓(𝑥) = −𝑒−𝑥2 − sin(𝑥2) (7.2)

to see if it can find the local minimum near 𝑥 ≈ 1.14.

7.1.2 Gradient Descent

Let us next explore the intuitive method of simply taking steps in the downhill direction. That
should eventually bring us to a local minimum. The problem is only to know how to choose
the step size and the direction. The gradient descent method is a simple and effective way
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to do this. By making the step be proportional to the negative gradient of the function we
are guaranteed to be moving in the right direction and we are also automatically reducing the
step size as we get closer to the minimum where the gradient gets smaller.

Let 𝑓(𝑥) be the objective function which you are seeking to minimize.

• Find the derivative of your objective function, 𝑓 ′(𝑥).
• Pick a starting point, 𝑥0.

• Pick a small control parameter, 𝛼 (in machine learning this parameter is called the
“learning rate” for the gradient descent algorithm).

• Use the iteration 𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝑓 ′(𝑥𝑛).
• Iterate (decide on a good stopping rule)

Exercise 7.9. What is the Gradient Ascent/Descent algorithm doing geometrically? Draw a
picture and be prepared to explain to your peers.

Exercise 7.10. � Write code to implement the 1D gradient descent algorithm and use it to
solve Exercise 7.1. Compare your answer to the analytic solution.

def gradient_descent(df, x0, learning_rate,
tol = 1e-12, max_iter=10000):

"""
Find an approximation of a local minimum of a function f
using the gradient descent method.

The function iteratively updates the current guess `x0`
by moving in the direction of the negative gradient
of `f` at `x0` multiplied by `alpha`.
The process stops when the magnitude of the gradient
is smaller than `tol`.

Parameters:
df (function): The derivative of the function you

want to minimize.
x0 (float): The initial guess for the minimum.
learning_rate (float): The learning rate multiplies the
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gradient to give the step size.
tol (float): The tolerance for the convergence.

The function stops when |df(x0)| < tol.
max_iter (int): The maximum number of iterations to perform.

Returns:
float: An approximation of a point where f achieves

a local minimum.
"""
# Initialize x with the starting value
x = x0
# Loop for a maximum of `max_iter` iterations
for i in range(max_iter):

# Calculate the step size by multiplying the learning
# rate with the derivative at the current guess

# Update `x` by subtracting the step

# If the step size was smaller than `tol` then
# return the new `x`

# If the loop finishes without returning then print a
# warning that the last step size was larger than `tol`.

# Return the last `x` value

Exercise 7.11. Compare an contrast the methods you came up with in Exercise 7.5 with the
methods proposed in Exercise 7.8 and Exercise 7.10.

1. What are the advantages to each of the methods proposed?

2. What are the disadvantages to each of the methods proposed?

3. Which method, do you suppose, will be faster in general? Why?

4. Which method, do you suppose, will be slower in general? Why?

Exercise 7.12. Make a plot of the log of the absolute error at iteration 𝑘 + 1 against the
log of the absolute error at iteration 𝑘, similar to Figure 4.4, for several methods and several
choices of function. What do you observe?
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Exercise 7.13. � Modify your code from Exercise 7.12 so that it prints out the slope and
intercept of the best-fit line to the graph. Then use this with the function 𝑓(𝑥) = cos(𝑥) with
starting value 𝑥0 = 3 and learning rate 0.1 and tolerance 10−12.

Exercise 7.14. � Try out your algorithms to find the minimum of the function

𝑓(𝑥) = (sin(4𝑥) + 1)((𝑥 − 5)2 − 25)

on the domain 0 ≤ 𝑥 ≤ 8.

import numpy as np
import matplotlib.pyplot as plt
f = lambda x: (np.sin(4*x)+1)*((x-5)**2-25)
x = np.linspace(0,8,100)
plt.plot(x,f(x))

Figure 7.3: Graph of the function 𝑓(𝑥) = (sin(4𝑥) + 1)((𝑥 − 5)2 − 25).

If you choose 𝑥0 = 3 as your starting point and a learning rate of 0.001, what approximation
do you get for 𝑥 at the minimum?
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Exercise 7.15. � Experiment with different values of the learning rate for the previous ques-
tion, assuming that you can only specify it with up to 3 digits after the decimal point. Which
choice of learning rate requires the smallest number of steps for the required tolerance of 10−12?

7.2 Multivariable Optimization

Now let us look at multi-variable optimization. The idea is the same as in the single-variable
case. We want to find the minimum of a function 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛). Such higher-dimensional
problems are very common and the dimension 𝑛 can be very large in practical problems. A
good example is the loss function of a neural network which is a function of the weights and
biases of the network. In a large language model the loss function is a function of many billions
of variables and the training of the model is a large optimization problem.

Here is a two-variable example: Find the minimum of the function

𝑓(𝑥, 𝑦) = sin(𝑥) exp (−√𝑥2 + 𝑦2)

import numpy as np
import plotly.graph_objects as go

f = lambda x, y: np.sin(x)*np.exp(-np.sqrt(x**2+y**2))

# Generating values for x and y
x = np.linspace(-2, 2, 100)
y = np.linspace(-1, 3, 100)

X, Y = np.meshgrid(x, y)
Z = f(X, Y)

# Creating the plot
fig = go.Figure(data=[go.Surface(z=Z, x=X, y=Y)])
fig.update_layout(width=800, height=800)

Finding the minima of multi-variable functions is a bit more complicated than finding the
minima of single-variable functions. The reason is that there are many more directions in
which to move. But the basic intuition that we want to move downhill to move towards a
minimum of course still works. The gradient descent method is still a good choice for finding
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(a) Graph of the function sin(𝑥) exp (−√𝑥2 + 𝑦2).
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the minimum of a multi-variable function. The only difference is that the gradient is now a
vector and the step is in the direction of the negative gradient.

Exercise 7.16. In your group, answer each of the following questions to remind yourselves of
multivariable calculus.

1. What is a partial derivative (explain geometrically). For the function 𝑓(𝑥, 𝑦) =
sin(𝑥) exp (−√𝑥2 + 𝑦2) what is 𝜕𝑓

𝜕𝑥 and what is 𝜕𝑓
𝜕𝑦?

2. What is the gradient of a function? What does it tell us physically or geometrically? If
𝑓(𝑥, 𝑦) = sin(𝑥) exp (−√𝑥2 + 𝑦2) then what is ∇𝑓?

Below we will give the full description of the gradient descent algorithm.

7.2.1 Gradient Descent Algorithm

We want to solve the problem

minimize 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛) subject to (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ 𝑆. (7.3)

1. Choose an arbitrary starting point 𝑥0 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ 𝑆.
2. We are going to define a difference equation that gives successive guesses for the optimal

value:
𝑥𝑛+1 = 𝑥𝑛 − 𝛼∇𝑓(𝑥𝑛). (7.4)

The difference equation says to follow the negative gradient a certain distance from your
present point (why are we doing this). Note that the value of 𝛼 is up to you so experiment
with a few values (you should probably take 𝛼 ≤ 1 …why?).

203



3. Repeat the iterative process in step 2 until two successive points are close enough to each
other.

Exercise 7.17. Write code to implement the gradient descent algorithm for a function 𝑓(𝑥, 𝑦).

def gradient_descent_2d(df, x0, learning_rate, tol=1e-12, max_iter=10000):
"""
Finds an approximation of a local minimum of a 2D function using
gradient descent.

Parameters:
df (function): A function that returns the gradient of the function to

minimize. It should take a NumPy array with two elements
as input and return a NumPy array with two elements
representing the gradient.

x0 (NumPy array): The initial guess for the minimum
(a NumPy array with two elements).

learning_rate (float): The learning rate (step size multiplier).
tol (float): Tolerance for convergence

(stops when the magnitude of the step is below this).
max_iter (int): Maximum number of iterations.

Returns:
NumPy array: The approximated minimum point

(a NumPy array with two elements).
"""

# Here comes your code.

You can build on your code for the single-variable gradient descent from Exercise 7.10.

Use your function to find the minimum of the function

𝑓(𝑥, 𝑦) = sin(𝑥) exp (−√𝑥2 + 𝑦2) .

with a starting point (𝑥0, 𝑦0) = (−1, 1), a learning rate of 1 and a tolerance of 10−6.

Then find the minimum of the same function with a starting point a starting point (𝑥0, 𝑦0) =
(0, 0), using the same learning rate of 1 and tolerance of 10−6.

Exercise 7.18. How much more complicated would your function have to be to work for a
function of 𝑛 arguments for an arbitrary 𝑛?
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It is annoying that one needs to first work out the gradient function by hand before one can
use the gradient descent algorithm. This is especially annoying when the function is very
complicated. It would be better to use automatic differentiation. If you followed the material
on automatic differentiation you will know how to do that.

Of course there are many other methods for finding the minimum of a multi-variable function.
An important method that does not need the gradient of the function is the Nelder-Mead
method. This method is a direct search method that only needs the function values at the
points it is evaluating. The method is very robust and is often used when the gradient of the
function is not known or is difficult to calculate. There are also clever variants of the gradient
descent method that are more efficient than the basic method. The Adam and RMSprop
algorithms are two such methods that are used in machine learning. This subject is a large
and active area of research and we will not go into more detail here.

7.3 Optimization with SciPy

You have already seen that there are many tools built into the NumPy and SciPy libraries that
will do some of our basic numerical computations. The same is true for numerical optimization
problems. Keep in mind throughout the remainder of this section that the whole topic of
numerical optimization is still an active area of research and there is much more to the story
than what we will see here. However, the Python tools provided by scipy.optimize are highly
optimized and tend to work quite well.

Exercise 7.19. Let us solve a very simple function minimization problem to get started.
Consider the function 𝑓(𝑥) = (𝑥−3)2−5. A moment’s thought reveals that the global minimum
of this parabolic function occurs at (3,−5). We can have scipy.optimize.minimize() find
this value for us numerically. The routine is much like Newton’s Method in that we give it
a starting point near where we think the optimum will be and it will iterate through some
algorithm (like a derivative free optimization routine) to approximate the minimum.

import numpy as np
from scipy.optimize import minimize
f = lambda x: (x-3)**2 - 5
minimize(f,2)

205



1. Implement the code above then spend some time playing around with the minimize
command to minimize more challenging functions.

2. Consult the help page and explain what all of the output information is from the
minimize() command.

7.4 Algorithm Summaries

Exercise 7.20. Explain in clear language how the Golden Section Search method works.

Exercise 7.21. Explain in clear language how the Gradient Descent method works.

7.5 Problems

Exercise 7.22. For each of the following functions write code to numerically approximate the
local maximum or minimum that is closest to 𝑥 = 0. You may want to start with a plot of the
function just to get a feel for where the local extreme value(s) might be.

1. 𝑓(𝑥) = 𝑥
1 + 𝑥4 + sin(𝑥)

2. 𝑔(𝑥) = (𝑥 − 1)3 ⋅ (𝑥 − 2)2 + 𝑒−0.5⋅𝑥

Exercise 7.23. (This exercise is modified from (Meerschaert 2013))
A pig weighing 200 pounds gains 5 pounds per day and costs 45 cents a day to keep. The
market price for pigs is 65 cents per pound, but is falling 1 cent per day. When should the pig
be sold to maximize the profit?

Write the expression for the profit 𝑃(𝑡) as a function of time 𝑡 and maximize this analytically
(by hand). Then solve the problem with all three methods outlined in Section 7.1.
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Exercise 7.24. (This exercise is modified from (Meerschaert 2013))
Reconsider the pig Exercise 7.23 but now suppose that the weight of the pig after 𝑡 days is

𝑤 = 800
1 + 3𝑒−𝑡/30 pounds. (7.5)

When should the pig be sold and how much profit do you make on the pig when you sell
it? Write this situation as a single variable mathematical model. You should notice that the
algebra and calculus for solving this problem is no longer really a desirable way to go. Use an
appropriate numerical technique to solve this problem.

Exercise 7.25. Go back to your old Calculus textbook or homework and find your favourite
optimization problem. State the problem, create the mathematical model, and use any of
the numerical optimization techniques in this chapter to get an approximate solution to the
problem.

Exercise 7.26. (The Goat Problem) This is a classic problem in recreational mathematics
that has a great approximate solution where we can leverage some of our numerical analysis
skills. Grab a pencil and a piece of paper so we can draw a picture.

• Draw a coordinate plane

• Draw a circle with radius 1 unit centred at the point (0, 1). This circle will obviously be
tangent to the 𝑥 axis.

• Draw a circle with radius 𝑟 centred at the point (0, 0). We will take 0 < 𝑟 < 2 so there
are two intersections of the two circles.

– Label the left-hand intersection of the two circles as point 𝐴. (Point 𝐴 should be
in the second quadrant of your coordinate plane.)

– Label the right-hand intersection of the circles as point 𝐵. (Point 𝐵 should be in
the first quadrant of your coordinate plane.)

• Label the point (0, 0) as the point 𝑃 .

A rancher has built a circular fence of radius 1 unit centred at the point (0, 1) for his goat to
graze. He tethers his goat at point 𝑃 on the far south end of the circular fence. He wants to
make the length of the goat’s chain, 𝑟, just long enough so that it can graze half of the area
of the fenced region. How long should he make the chain?

Hints:
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• It would be helpful to write equations for both circles. Then you can use the equations
to find the coordinates of the intersection points 𝐴 and 𝐵.

– You can either solve for the intersection points algebraically or you can use a nu-
merical root finding technique to find the intersection points.

– In any case, the intersection points will (obviously) depend on the value of 𝑟

• Set up an integral to find the area grazed by the goat.

– You will likely need to use a numerical integration technique to evaluate the integral.

• Write code to narrow down on the best value of 𝑟 where the integral evaluates to half
the area of the fenced region.

7.6 Projects

In this section we propose several ideas for projects related to numerical optimisation. These
projects are meant to be open ended, to encourage creative mathematics, to push your coding
skills, and to require you to write and communicate your mathematics.

7.6.1 Edge Detection in Images

Edge detection is the process of finding the boundaries or edges of objects in an image. There
are many approaches to performing edge detection, but one method that is quite robust is to
use the gradient vector in the following way:

• First convert the image to gray scale.

• Then think of the gray scale image as a plot of a multivariable function 𝐺(𝑥, 𝑦) where
the ordered pair (𝑥, 𝑦) is the pixel location and the output 𝐺(𝑥, 𝑦) is the value of the
gray scale at that point.

• At each pixel calculate the gradient of the function 𝐺(𝑥, 𝑦) numerically.

• If the magnitude of the gradient is larger than some threshold then the function 𝐺(𝑥, 𝑦)
is steep at that location and it is possible that there is an edge (a transition from one
part of the image to a different part) at that point. Hence, if ‖∇𝐺(𝑥, 𝑦)‖ > 𝛿 for some
threshold 𝛿 then we can mark the point (𝑥, 𝑦) as an edge point.

Your Tasks:
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1. Choose several images on which to do edge detection. You should take your own images,
but if you choose not to be sure that you cite the source(s) of your images.

2. Write Python code that performs edge detection as described above on the image. In the
end you should produce side-by-side plots of the original picture and the image showing
only the edges. To calculate the gradient use a centred difference scheme for the first
derivatives

𝑓 ′(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . (7.6)

In an image we can take ℎ = 1 (why?), and since the gradient is two dimensional we get

∇𝐺(𝑥, 𝑦) ≈ ⟨𝐺(𝑥 + 1, 𝑦) − 𝐺(𝑥 − 1, 𝑦)
2 , 𝐺(𝑥, 𝑦 + 1) − 𝐺(𝑥, 𝑦 − 1)

2 ⟩ . (7.7)

Figure 7.5 depicts what this looks like when we zoom in to a pixel and its immediate
neighbours. The pixel labelled G[i,j] is the pixel at which we want to evaluate the
gradient, and the surrounding pixels are labelled by their indices relative to [i,j].

Figure 7.5: The gradient computation on a single pixel using a central difference scheme for
the first derivative.

3. There are many ways to approximate numerical first derivatives. The simplest approach
is what you did in part (2) – using a centred difference scheme. However, pixels are
necessarily tightly packed in an image and the immediate neighbours of a point may not
have enough contrast to truly detect edges. If you examine Figure 7.5 you will notice that
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we only use 4 of the 8 neighbours of the pixel [i,j]. Also notice that we did not reach
out any further than a single pixel. Your job now is to build several other approaches
to calculating the gradient vector, implement them to perform edge detection, and show
the resulting images. For each method you need to give the full mathematical details
for how you calculated the gradient as well as give a list of pros and cons for using the
new numerical gradient for edge detection based on what you see in your images. As an
example, you could use a centred difference scheme that looks two pixels away instead
of at the immediate neighbouring pixels

𝑓 ′(𝑥) ≈ ???𝑓(𝑥 − 2) + ???𝑓(𝑥 + 2)
??? . (7.8)

Of course you would need to determine the coefficients in this approximation scheme.
Another idea could use a centred difference scheme that uses pixels that are immediate
neighbours AND pixels that are two units away

𝑓 ′(𝑥) ≈ ???𝑓(𝑥 − 2) + ???𝑓(𝑥 − 1) + ???𝑓(𝑥 + 1) + ???𝑓(𝑥 + 2)
??? . (7.9)

In any case, you will need to use Taylor Series to derive coefficients in the formulas for
the derivatives as well as the order of the error. There are many ways to approximate the
first derivatives so be creative. In your exploration you are not restricted to using just the
first derivative. There could be some argument for using the second derivatives and/or
the Hessian matrix of the gray scale image function 𝐺(𝑥, 𝑦) and using some function of
the concavity as a means of edge detection. Explore and have fun!

The following code will allow you to read an image into Python as an np.array().

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import image
I = np.array(image.plt.imread('ImageName.jpg'))
plt.imshow(I)
plt.axis("off")
plt.show()

You should notice that the image, I, is a three dimensional array. The three layers are the
red, green, and blue channels of the image. To flatten the image to gray scale you can apply
the rule

grayscale value = 0.3Red+ 0.59Green+ 0.11Blue. (7.10)

The output should be a 2 dimensional numpy array which you can show with the following
Python code.
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plt.imshow(G, cmap='gray') # "cmap" stands for "color map"
plt.axis("off")
plt.show()

Figure 7.6 shows the result of different threshold values applied to the simplest numerical
gradient computations. The image was taken by the author.

Figure 7.6: Edge detection using different thresholds for the value of the gradient on the
grayscale image
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8 Ordinary Differential Equations

The mathematical discipline of differential equations furnishes the explanation of
all those elementary manifestations of nature which involve time.
–Norwegian Mathematician Sophus Lie

The topic of this chapter is to find approximate solutions to ordinary differential equations.

Let us briefly recall what an ordinary differential equation (ODE) is. A rather arbitrarily
chosen example for an ODE (here, of second order) is

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0. (8.1)

Equations like this are normally satisfied by many functions 𝑦(𝑥): the problem has many
solutions. In order to specify a uniquely solvable problem, one needs to fix initial values, i.e.,
the value of 𝑦 and its first derivative at some point, say, at 𝑥 = 0:

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0, 𝑦(0) = 1, 𝑦′(0) = −2. (8.2)

This is a so-called initial-value problem (IVP). Another variant is to specify the value of 𝑦(𝑥),
but not of its derivative, at two different points:

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0, 𝑦(0) = 2, 𝑦(1) = 1. (8.3)

This is called a boundary value problem (BVP).

Both IVPs and BVPs have a unique solution (under certain mathematical conditions). How-
ever, while one can show on abstract grounds that these solutions exist, it is often not practi-
cable to find an explicit expression for them. The best one can hope for is to approximate the
solution numerically.

So what is a numerical solution to a differential equation?
When solving a differential equation with analytic techniques the goal is to find an expression
for the solution in terms of known functions. In a numerical solution the goal is typically to
divide the domain for the solution function into a fine partition by introducing a grid of points,
just like we did with numerical differentiation and integration, and then to approximate the
solution to the differential equation at each point in that partition. Hence, the end result will
be a list of approximate solution values at the grid points.
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In this chapter we will examine some of the more common ways to create approximations of
solutions to initial value problems. Moreover, we will lean heavily on Taylor Series to give us
ways to accurately measure the order of the errors that we make in the process.

In this chapter we will often think of the argument of the function described by the ODE
as time, but of course the methods are agnostic to the interpretation of the independent
variable.

8.1 Euler’s Method

Exercise 8.1. Consider the differential equation 𝑥′ = −0.5𝑥 with the initial condition 𝑥(0) =
6.

a. Since we know that 𝑥(0) = 6 and we know that 𝑥′(0) = −0.5𝑥(0) we can approximate
the value of 𝑥 at some future time step. Let us go 1 unit forward in time. That is,
approximate 𝑥(1) knowing that 𝑥(0) = 6 and 𝑥′(0) = −3.
Hint: We know a value, a slope, and the size of the step that we would like to move in
the 𝑡 direction.

𝑥(1) ≈ (8.4)

b. Use your answer from part (a) for time 𝑡 = 1 to approximate the 𝑥 value at time 𝑡 = 2.
Then use that value to approximate the value at time 𝑡 = 3. Repeat the process to
approximate the value of 𝑥 at times 𝑡 = 2, 3, 4. Record your answers in the table below.
Then find the analytic solution to this differential equation and record the 𝑥 values at
the appropriate times.

𝑡 0 1 2 3 4
Approximation of 𝑥(𝑡) 6
Exact value of 𝑥(𝑡) 6

c. The “approximations of 𝑥” that you found in part (b) are a numerical approximation
of the solution to the differential equation. You should notice that your numerical solu-
tion is pretty far off from the actual solution for most values of 𝑡. Why? What could be
the sources of this error and how could we fix it? Once you have an idea of how to fix it,
put your idea into action and devise some measurement of error to analyse your results.

d. In Figure 8.1 you will see a slope field and the exact solution to the differential equation
𝑥′ = −0.5𝑥 with 𝑥(0) = 6. Mark your approximate solutions at times 𝑡 = 1, 𝑡 = 2, …,
𝑡 = 4 on the plot and connect them with straight lines.

1. Why are we using straight lines to connect the points?
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2. What do you notice about your approximate solutions?

3. Why is it helpful to have the slope field in the background on this plot?

Figure 8.1: Plot your approximate solution on top of the slope field and the exact solution.

Exercise 8.2. In Figure 8.2 you see the analytic solution with initial condition 𝑥(0) = 5 and
a slope field for an unknown differential equation.

a. Use the slope field and a step size of Δ𝑡 = 1 to plot approximate solution values at
𝑡 = 1, 𝑡 = 2, …, 𝑡 = 10. Connect your points with straight lines. The collection of
line segments that you just drew is an approximation to the solution of the unknown
differential equation.

b. Use the slope field and a step size of Δ𝑡 = 0.5 to plot approximate solution values at
𝑡 = 0.5, 𝑡 = 1, 𝑡 = 1.5, …, 𝑡 = 10. Again, connect your points with straight lines to get
an approximation of the solution to the unknown differential equation.
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c. If you could take Δ𝑡 to be very very small, what difference would you see graphically
between the exact solution and your collection of line segments? Why?

Figure 8.2: Plot your approximate solution on top of the slope field and the exact solution.

The notion of approximating solutions to differential equations is simple in principle:

• make a discrete approximation to the derivative and

• step forward through time as a difference equation.

The challenging part is making the approximation to the derivative(s). There are many meth-
ods for approximating derivatives, and that is exactly where we will start.
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Definition 8.1 (Euler’s Method). Euler’s Method is a technique for approximating the so-
lution to the differential equation 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). Recall from Exercise 5.6 that the first
derivative of a function can be discretized as

𝑥′(𝑡) = 𝑥(𝑡 + ℎ) − 𝑥(𝑡)
ℎ + 𝒪(ℎ) (8.5)

where ℎ = Δ𝑡 is the step size (or the size of each partition in the domain), so the differential
equation 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) becomes

𝑥(𝑡 + ℎ) − 𝑥(𝑡)
ℎ ≈ 𝑓(𝑡, 𝑥(𝑡)). (8.6)

Rewriting as a difference equation, letting 𝑥𝑛+1 = 𝑥(𝑡𝑛 + ℎ) and 𝑥𝑛 = 𝑥(𝑡𝑛), we get

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛, 𝑥𝑛) (8.7)

A way to think about Euler’s method is that at a given point, the slope is approximated by
the value of the right-hand side of the differential equation and then we step forward ℎ units
in time following that slope. Figure 8.3 shows a depiction of the idea. Notice in the figure that
in regions of high curvature Euler’s method will deviate a lot from the exact solution to the
differential equation. However, taking the limit as ℎ tends to 0 theoretically gives the exact
solution at the trade off of needing infinite computational resources.

Exercise 8.3. Why would Euler’s method do poorly in regions where the solution exhibits
high curvature?

Exercise 8.4. � Consider the differential equation 𝑥′(𝑡) = −2𝑥(𝑡)/3+4𝑡 with initial condition
𝑥(0) = 6. By hand perform four steps of the Euler method with stepsize ℎ = 1/2 to obtain an
approximation for 𝑥(1/2), 𝑥(1), 𝑥(3/2) and 𝑥(2).

Exercise 8.5. � Write code to implement Euler’s method for initial value problems. Your
function should accept as input a Python function 𝑓(𝑡, 𝑥), an initial condition, a start time,
an end time, and the value of ℎ = Δ𝑡. The output should be vectors for 𝑡 and 𝑥 that you can
easily plot to show the numerical solution. The code below will get you started.
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Figure 8.3: Numerical solutions to a differential equation using Euler’s method.

def euler1d(f, x0, t0, tmax, dt):
"""
Solves a first-order ordinary differential equation using the Euler method.

Parameters:
f : function, the function defining the differential equation. It should

take two arguments, the independent variable t and the dependent
variable x, and return the derivative of x with respect to t.

x0 : float, the initial value of the dependent variable.
t0 : float, the initial value of the independent variable.
tmax : float, the maximum value of the independent variable.
dt : float, the time step.

Returns:
tuple containing two numpy arrays:

- t : vector of time values.
- x : vector of solution values at each time value.

"""
# set up the grid with points from t0 to tmax with stepsize dt
t = np.aranbe(???, ???, ???)
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# set up an array for x that is the same size as t
x = np.zeros(len(t))
# fill in the initial condition
x[0] = ???
for n in range(???): # think about how far we should loop

# advance the solution forward in time with Euler
x[n+1] = ???

return t, x

Exercise 8.6. Test your code from the previous exercise on a first order differential equation
where you know an analytic solution. For example you could use the differential equation

𝑥′ = −1
3𝑥 + sin(𝑡) where 𝑥(0) = 1. (8.8)

This has the analytic solution

𝑥(𝑡) = 1
10 (19𝑒−𝑡/3 + 3 sin(𝑡) − 9 cos(𝑡)) . (8.9)

Make a plot of the approximate solution and the exact solution on the same plot for 𝑡 ∈ [0, 10]
The partial code below should get you started.

import numpy as np
import matplotlib.pyplot as plt

# Define the function giving x' in terms of t and x
f = lambda t, x: ???
x0 = ??? # initial condition
t0 = ??? # initial time
tmax = ??? # final time
dt = ??? # time step (your choice, but make it small)
t, x = euler1d(f, x0, t0, tmax, dt)
plt.plot(t, x, 'b-', label='Euler')

# Define a function giving the analytic solution
x_exact = lambda t: ???
# We will plot the exact solution at a higher resolution
t_hires = np.linspace(t0, tmax, 100)
plt.plot(t_highres, x_exact(t_highres), 'r--', label='Exact')
plt.grid()
plt.show()
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Experiment with different values for dt and see how the numerical solution changes.

Exercise 8.7. The goal of this problem will be to compare the maximum error when you
solve the differential equation from the previous exercise on the interval 𝑡 ∈ [0, 10] with the
Euler method for various values of Δ𝑡.
Write a function that produces a plot with the value of Δ𝑡 on the horizontal axis and the value
of the associated absolute error on the vertical axis. You should use a log-log plot. Obviously
you will need to run your code many times at many different values of Δ𝑡 to build your data
set. The following incomplete code will get you started.

# Create vector with different step sizes
dt = 10**(-np.linspace(0, 4, 50))
# Create vector with the same size as dt for holding the errors
errors = np.zeros_like(dt)
# Loop over the different step sizes to calculate the errors
for i in range(len(dt)):

# Approximate the solution with Euler's method
t, x = euler1d(f, x0, t0, tmax, dt[i])
errors[i] = ??? # Calculate maximum absolute error

# Plot the errors with logarithmic axes
plt.loglog(dt, errors)
plt.xlabel('Step size')
plt.ylabel('Maximum error')
plt.grid()

3. What does the plot tell you? In general, if you were to divide your value of Δ𝑡 by 10,
how much approximately does that reduce the error?

Exercise 8.8. Shelby solved a first order ODE 𝑥′ = 𝑓(𝑡, 𝑥) using Euler’s method with a step
size of 𝑑𝑡 = 0.1 on a domain 𝑡 ∈ [0, 3]. To test her code she used a differential equation where
she new the exact analytic solution and she found the maximum absolute error on the interval
to be 0.15. Jackson then solves the exact same differential equation, on the same interval, with
the same initial condition using Euler’s method and a step size of 𝑑𝑡 = 0.01. What would be
your best estimate of Jackson’s maximum absolute error?
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Theorem 8.1. Euler’s method is a first order method for approximating the solution to the
differential equation 𝑥′ = 𝑓(𝑡, 𝑥). Hence, if the step size ℎ of the partition of the domain
were to be divided by some positive constant 𝑀 then the maximum absolute error between the
numerical solution and the exact solution would ???
(Complete the last sentence.)

8.2 Higher-order equations and systems of equations

Exercise 8.9 (Harmonic oscillator). If a mass is hanging from a spring then Newton’s second
law, ∑𝐹 = 𝑚𝑎, gives us the differential equation 𝑚𝑥″ = 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 + 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 where 𝑥 is
the displacement of the mass from equilibrium, 𝑚 is the mass of the object hanging from the
spring, 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 is the force pulling the mass back to equilibrium, and 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 is the force
due to friction or air resistance that slows the mass down.

1. Which of the following is a good candidate for a restoring force in a spring? Defend your
answer.

a. 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 = 𝑘𝑥: The restoring force is proportional to the displacement away from
equilibrium.

b. 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 = 𝑘𝑥′: The restoring force is proportional to the velocity of the mass.

c. 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 = 𝑘𝑥″: The restoring force is proportional to the acceleration of the mass.

2. Which of the following is a good candidate for a damping force in a spring? Defend your
answer.

a. 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑏𝑥: The damping force is proportional to the displacement away from
equilibrium.

b. 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑏𝑥′: The damping force is proportional to the velocity of the mass.

c. 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑏𝑥″: The damping force is proportional to the acceleration of the mass.

3. Put your answers to parts (1) and (2) together and simplify to form a second-order
differential equation for position:

𝑥″ = 𝑥′ + 𝑥 (8.10)
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4. � If we want to solve a second order differential equation numerically we need to convert
it to first order differential equations (Euler’s method is only designed to deal with first
order differential equations, not second order). To do so we can introduce a new variable,
𝑥1, such that 𝑥1 = 𝑥′. For the sake of notational consistency we define 𝑥0 = 𝑥. The
result is a system of first-order differential equations.

𝑥′
0 = 𝑥1

𝑥′
1 = (8.11)

5. The code and Euler’s method algorithm that we have created thus far in this chapter
are only designed to work with a single differential equation instead of a system, so we
need to make some modifications. We can discretize the system of differential equations
using Euler’s method so that

𝑥′ = 𝐹(𝑡, 𝑥) (8.12)

where 𝐹 is a function that accepts a vector of inputs, plus time, and returns a vector of
outputs. In the context of this particular problem,

𝐹(𝑡, 𝑥) = (𝑥′
0

𝑥′
1
) = ( 𝑥1 ) (8.13)

6. We now need to discretize the derivatives in the system. As with 1D Euler’s method, we
will use a first-order approximation of the first derivative so that

𝑥𝑛+1 − 𝑥𝑛
ℎ = 𝐹(𝑡𝑛, 𝑥𝑛) + 𝒪(ℎ). (8.14)

Rearranging and solving for 𝑥𝑛+1 gives

𝑥𝑛+1 = + ℎ𝐹( , ). (8.15)

7. The following Python function will implement Euler’s method. Complete the code.

def euler(F, x0, t0, tmax, dt):
"""
Solves a system of first-order ordinary differential equations
using the Euler method.

Parameters:
F : function, the function defining the system of differential equations.

It should take two arguments, the independent variable t and the
dependent variable x (as a 1D numpy array), and return the
derivative of x with respect to t (as a 1D numpy array).

x0 : numpy vector, the initial values of the dependent variables.
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t0 : float, the initial value of the independent variable.
tmax : float, the maximum value of the independent variable.
dt : float, the time step.

Returns:
tuple containing two numpy arrays:

- t : vector of time values.
- x : array of solutions at each time value. Each column of x

corresponds to a different dependent variable.
"""
# set up the grid with points from t0 to tmax with stepsize dt
t = ???
# set up array x with one row for each dependent variable and one column
# for each grid point
x = np.zeros((len(t), len(x0)))
# store the initial condition in the first row of x
x[0, :] = x0
# loop over the different time steps
for n in range(???):

x[n+1, :] = x[???, ???] + dt * F(t[???], x[???, ???])
return t, x

8. To use the euler() function to solve the system of equations from part (4), complete
the following code. Use a mass of 𝑚 = 2kg, a damping force of 𝑏 = 40kg/s, and a spring
constant of 𝑘 = 128N/m. Consider an initial position of 𝑥 = 0 (equilibrium) and an
initial velocity of 𝑥1 = 0.6m/s.

m = 2
b = 40
k = 128
F = lambda t, x: np.array([x[1], ???])
x0 = [???, ???] # initial conditions
t0 = 0
tmax = 5 # pick something reasonable here
dt = 0.01 # your choice. pick something small
t, x = euler(F, x0, t0, tmax, dt)

9. � Complete the following code to make a plot that shows both position and velocity
versus time.
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plt.plot(t, x[???, ???], 'b-', t, x[???, ???], 'r--')
plt.grid()
plt.title('Time Evolution of Position and Velocity')
plt.legend(['which legend entry here','which legend entry here'])
plt.xlabel('time')
plt.ylabel('position and velocity')
plt.show()

10. Complete the following code to make a second plot, called a phase plot, that shows
position versus velocity. In a phase plot, time is implicit (not one of the axes).

plt.plot(x[???, ???], x[???, ???])
plt.grid()
plt.title('Phase Plot')
plt.xlabel('???')
plt.ylabel('???')
plt.show()

Exercise 8.10 (A Lotka-Volterra Predator-Prey Model). Let 𝑥0(𝑡) denote the number of
rabbits (prey) and 𝑥1(𝑡) denote the number of foxes (predator) at time 𝑡. The relationship
between the species can be modelled by the classic 1920’s Lotka-Volterra Model:

{ 𝑥′
0 = 𝛼𝑥0 − 𝛽𝑥0𝑥1

𝑥′
1 = 𝛿𝑥0𝑥1 − 𝛾𝑥1

(8.16)

where 𝛼, 𝛽, 𝛾, and 𝛿 are positive constants. For this problems take 𝛼 = 1, 𝛽 ≈ 0.1, 𝛾 = 1, and
𝛿 = 0.1.

1. First rewrite the system of ODEs in the form 𝑥′ = 𝐹(𝑡, 𝑥) so you can use your euler()
code.

2. Modify your code from the previous problem so that it works for this problem. Use tmax
= 20 and dt = 0.05. Start with initial conditions 𝑥0(0) = 10 rabbits and 𝑥1(0) = 5
foxes.

3. Create the time evolution plot. What does this plot tell you in context?

4. Create a phase plot. What does this plot tell you in context?

5. If you decrease the step size by a factor of 10, what do you see in the two plots? Why?
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Exercise 8.11 (The SIR Model). A classic model for predicting the spread of a virus or a
disease is the SIR Model. In these models, 𝑆 stands for the proportion of the population which
is susceptible to the virus, 𝐼 is the proportion of the population that is currently infected with
the virus, and 𝑅 is the proportion of the population that has recovered from the virus. The
idea behind the model is that

• Susceptible people become infected by having interaction with the infected people.
Hence, the rate of change of the susceptible people is proportional to the number of
interactions that can occur between the 𝑆 and the 𝐼 populations.

𝑆′ = −𝛽𝑆𝐼. (8.17)

• The infected population gains people from the interactions with the susceptible people,
but at the same time, infected people recover at a predictable rate.

𝐼′ = 𝛽𝑆𝐼 − 𝛾𝐼. (8.18)

• The people in the recovered class are then immune to the virus, so the recovered class 𝑅
only gains people from the recoveries from the 𝐼 class.

𝑅′ = 𝛾𝐼. (8.19)

Find a numerical solution to the system of equations using your euler() function. Use the
parameters 𝛽 = 0.0003 and 𝛾 = 0.1 with initial conditions 𝑆(0) = 999, 𝐼(0) = 1, and 𝑅(0) = 0.
Plot the solution against time. Explain all three curves in context.

8.3 The Midpoint Method

Now we get to improve upon Euler’s method. There is a long history of wonderful improve-
ments to the classic Euler’s method – some that work in special cases, some that resolve areas
where the error is going to be high, and some that are great for general purpose numerical solu-
tions to ODEs with relatively high accuracy. In this section we will make a simple modification
to Euler’s method that has a surprisingly great pay-off in the error rate.
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Exercise 8.12. In Euler’s method, if we are at the point 𝑡𝑛 then we approximate the slope
𝑥′(𝑡𝑛) = 𝑓(𝑡𝑛, 𝑥𝑛) and use the slope to propagate forward one time step. As you have seen,
this method can lead to an overshooting of the exact solution in regions of high curvature. It
would be nice to be able to look into the future and get a better approximation of the slope
so that we did not miss upcoming curvature. If you could build such a method that looks in
to the future, finds a slope in the future, and then uses that slope (instead of the slope from
Euler’s method) to advance forward in time, how far into the future would you look? Why?

Exercise 8.13. Let us return to the simple differential equation 𝑥′ = −0.5𝑥 with 𝑥(0) = 6
that we saw in Exercise 8.1. Now we will propose a slightly different method for approximating
the solution.

a. At 𝑡 = 0 we know that 𝑥(0) = 6. If we use the slope at time 𝑡 = 0 to step forward in
time then we will get the Euler approximation of the solution. Consider this alternative
approach:

• Use the slope at time 𝑡 = 0 and move half a step forward.

• Find the slope at the half-way point

• Then use the slope from the half way point to go a full step forward from time
𝑡 = 0.

Perhaps a bit confusing …let us build this idea together:

• What is the slope at time 𝑡 = 0? 𝑥′(0) =
• Use this slope to step a half step forward and find the 𝑥 value: 𝑥(0.5) ≈
• Now use the differential equation to find the slope at time 𝑡 = 0.5. 𝑥′(0.5) =
• Now take your answer from the previous step, and go one full step forward from

time 𝑡 = 0. What 𝑥 value do you end up with?

• Your answers to the previous bullets should be: 𝑥′(0) = −3, 𝑥(0.5) ≈ 4.5, 𝑥′(0.5) =
−2.25, so if we take a full step forward with slope 𝑚 = −2.25 starting from 𝑡 = 0
we get 𝑥(1) ≈ 3.75.

b. Repeat the process outlined in part (a) to approximate the solution to the differential
equation at times 𝑡 = 2, 3, 4. Also record the exact answer at each of these times by
noting that the exact solution is 𝑥(𝑡) = 6𝑒−0.5𝑡.
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𝑡 0 1 2 3 4
Euler approx of 𝑥(𝑡) 6
New approx of 𝑥(𝑡) 6
Exact value of 𝑥(𝑡) 6

c. Draw a clear picture of what this method is doing in order to approximate the slope at
each individual step.

d. How does your approximation compare to the Euler approximation that you found in
Exercise 8.1?

Definition 8.2 (The Midpoint Method). The midpoint method is defined by first taking a
half step with Euler’s method to approximate a solution at time 𝑡𝑛+1/2 There is no grid point
at 𝑡𝑛+1/2 so we define this as

𝑡𝑛+1/2 = (𝑡𝑛 + 𝑡𝑛+1)/2.
We then take a full step using the value of 𝑓 at 𝑡𝑛+1/2 and the approximate 𝑥𝑛+1/2.

𝑥𝑛+1/2 = 𝑥𝑛 + ℎ
2𝑓(𝑡𝑛, 𝑥𝑛)

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛+1/2, 𝑥𝑛+1/2)

Exercise 8.14. � As in in Exercise 8.4, consider the differential equation 𝑥′(𝑡) = −2𝑥(𝑡)/3+4𝑡
with initial condition 𝑥(0) = 6. By hand perform one step of the midpoint method with stepsize
ℎ = 1 to obtain an approximation for 𝑥(1).

Exercise 8.15. Complete the code below to implement the midpoint method in one dimension.

def midpoint1d(f, x0, t0, tmax, dt):
"""
Solves a first-order ordinary differential equation using
the midpoint method.

Parameters:
f : function, the function defining the differential equation. It should
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take two arguments, the independent variable t and the dependent
variable x, and return the derivative of x with respect to t.

x0 : float, the initial value of the dependent variable.
t0 : float, the initial value of the independent variable.
tmax : float, the maximum value of the independent variable.
dt : float, the time step.

Returns:
tuple containing two numpy arrays:

- t : vector of time values.
- x : vector of solution values at each time value.

"""
t = ??? # build the times
x = ??? # build an array for the x values
x[0] = # save the initial condition
# On the next line: be careful about how far you're looping
for n in range(???):

slope = ??? # get the slope at the current point
x_halfstep = ??? # take a half step forward
x[n+1] = ??? # take a full step forward

return t, x

Test your code on several differential equations where you know the solution (just to be sure
that it is working).

f = lambda t, x: # your ODE right hand side goes here
x0 = # initial condition
t0 = 0
tmax = # ending time (up to you)
dt = # pick something small
t, x = midpoint1d(???, ???, ???, ???, ???)
plt.plot(???, ???, ???)
x_exact = lambda t: # your exact solution goes here
plt.plot(???, ???, ???)
plt.legend(['Midpoint', 'Exact'])
plt.grid()
plt.show()

Exercise 8.16. The goal in building the midpoint method was to hopefully capture some
of the upcoming curvature in the solution before we overshot it. Consider the differential
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equation 𝑥′ = −1
3𝑥 + sin(𝑡) with initial condition 𝑥(0) = 1 on the domain 𝑡 ∈ [0, 10] as in

Exercise 8.6. First get a numerical solution with Euler’s method using Δ𝑡 = 1. Then get a
numerical solution with the midpoint method using the same value for Δ𝑡 = 1. Plot the two
solutions on top of each other along with the exact solution

𝑥(𝑡) = 1
10 (19𝑒−𝑡/3 + 3 sin(𝑡) − 9 cos(𝑡)) . (8.20)

What do you observe?

Exercise 8.17. � Repeat Exercise 8.7 with the midpoint method. Compare your results to
what you found with Euler’s method.

Exercise 8.18. We have studied two methods thus far: Euler’s method and the Midpoint
method. In Figure 8.5 we see a graphical depiction of how each method works on the differential
equation 𝑦′ = 𝑦 with Δ𝑡 = 1 and 𝑦(0) = 1. The exact solution at 𝑡 = 1 is 𝑦(1) = 𝑒1 ≈ 2.718
and is shown in red in each figure. The methods can be summarized in the table below.

Discuss what you observe as the pros and cons of each method based on the table and on the
Figure.

Euler’s Method Midpoint Method
1. Get the slope at time 𝑡𝑛 1. Get the slope at time 𝑡𝑛
2. Follow the slope for time Δ𝑡 2. Follow the slope for time Δ𝑡/2

3. Get the slope at the point 𝑡𝑛 +Δ𝑡/2
4. Follow the new slope from time 𝑡𝑛 for time Δ𝑡

When might you want to use Euler’s method instead of the midpoint method? When might
you want to use the midpoint method instead of Euler’s method?

Exercise 8.19 (Midpoint Method in Several Dimensions). � Write a function midpoint() that
can solve a system of first-order ordinary differential equations using the midpoint method.
Base your code on the euler() code from Exercise 8.9 . You should only have to add one
line of code and then be careful about the size of the arrays that are in play. Test your code
on several problems. Compare and contrast what you see with your Euler solutions and with
your Midpoint solutions.
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Figure 8.4: Graphical depictions of two numerical methods. Euler (left) and Midpoint (right).
The exact solution is shown in red.

Figure 8.5: Graphical depictions of two numerical methods: Euler (left) and Midpoint (right).
The exact solution is shown in red.
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8.4 Searching for a better Method

OK. Ready for some experimentation? We are going to build a few experiments that eventually
lead us to a very powerful method for finding numerical solutions to first order differential
equations than the midpoint method.

This section is optional. If you feel pressed for time, then you can skip forward to Section 8.5.

Exercise 8.20. Let us talk about the Midpoint Method for a moment. The geometric idea of
the midpoint method is outlined in the bullets below. Draw a picture along with the bullets.

• You are sitting at the point (𝑡𝑛, 𝑥𝑛).
• The slope of the solution curve to the ODE where you are standing is

slope at the point (𝑡𝑛, 𝑥𝑛) is: 𝑚𝑛 = 𝑓(𝑡𝑛, 𝑥𝑛) (8.21)

• You take a half a step forward using the slope where you are standing. The new point,
denoted 𝑥𝑛+1/2, is given by

location a half step forward is: 𝑥𝑛+1/2 = 𝑥𝑛 + Δ𝑡
2 𝑚𝑛. (8.22)

• Now you are standing at (𝑡𝑛 + Δ𝑡
2 , 𝑥𝑛+1/2) so there is a new slope here given by

slope after a half of an Euler step is: 𝑚𝑛+1/2 = 𝑓(𝑡𝑛 +Δ𝑡/2, 𝑥𝑛+1/2). (8.23)

• Go back to the point (𝑡𝑛, 𝑥𝑛) and step a full step forward using slope 𝑚𝑛+1/2. Hence the
new approximation is

𝑥𝑛+1 = 𝑥𝑛 +Δ𝑡 ⋅ 𝑚𝑛+1/2 (8.24)

Exercise 8.21. One of the troubles with the midpoint method is that it does not actually use
the information at the point (𝑡𝑛, 𝑥𝑛). Moreover, it does not leverage a slope at the next time
step 𝑡𝑛+1. Let us see what happens when we try a solution technique that combined the ideas
of Euler and Midpoint as follows:

• The slope at the point (𝑡𝑛, 𝑥𝑛) can be called 𝑚𝑛 and we find it by evaluating 𝑓(𝑡𝑛, 𝑥𝑛).
• The slope at the point (𝑡𝑛+1/2, 𝑥𝑛+1/2) can be called 𝑚𝑛+1/2 and we find it by evaluating

𝑓(𝑡𝑛+1/2, 𝑥𝑛+1/2).
• We can now take a full step using slope 𝑚𝑛+1/2 to get the point 𝑥𝑛+1 and the slope there

is 𝑚𝑛+1 = 𝑓(𝑡𝑛+1, 𝑥𝑛+1).
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• Now we have three estimates of the slope that we can use to actually propagate forward
from (𝑡𝑛, 𝑥𝑛):

– We could just use 𝑚𝑛. This is Euler’s method.

– We could just use 𝑚𝑛+1/2. This is the midpoint method.

– We could use 𝑚𝑛+1. Would this approach be any good?

– We could use the average of the three slopes.

– We could use a weighted average of the three slopes where some preference is given
to some slopes over the others.

In the code below you will find a function called ode_test() that you can use as a starting
point to test out the last three ideas. After the function you will see several lines of code that
test your method against the differential equation 𝑥′(𝑡) = −1

3𝑥 + sin(𝑡) with 𝑥(0) = 1. The
plots that come out are our typical error plots with the step size on the horizontal axis and
our maximum absolute error between the numerical solution and the exact solution on the
vertical axis. Recall that the exact solution to this differential equation is

𝑥(𝑡) = 1
10 (19𝑒−𝑡/3 + 3 sin(𝑡) − 9 cos(𝑡)) (8.25)

import numpy as np
import matplotlib.pyplot as plt

# *********
# You should copy your 1d euler and midpoint functions here.
# We will be comparing to these two existing methods.
# *********

def ode_test(f, x0, t0, tmax, dt):
t = np.arange(t0, tmax+dt, dt) # set up the times
x = np.zeros(len(t)) # set up the x
x[0] = x0 # initial condition
for n in range(len(t)-1):

m_n = f(t[n], x[n])
x_n_plus_half = x[n] + dt/2 * m_n
m_n_plus_half = f(t[n] + dt/2, x_n_plus_half)
x_n_plus_1 = x[n] + dt * m_n_plus_half
m_n_plus_1 = f(t[n] + dt, x_n_plus_1)
estimate_of_slope = # This is where you get to play
x[n+1] = x[n] + dt * estimate_of_slope

return t, x
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f = lambda t, x: -(1/3.0) * x + np.sin(t)
exact = lambda t: (1/10.0)*(19*np.exp(-t/3) + \

3*np.sin(t) - \
9*np.cos(t))

x0 = 1 # initial condition
t0 = 0 # initial time
tmax = 3 # max time
# set up blank arrays to keep track of the maximum absolute errorrs
err_euler = []
err_midpoint = []
err_ode_test = []
# Next give a list of Delta t values (what list did we give here)
H = 10.0**(-np.arange(1, 7, 1))
for dt in H:

# Build an euler approximation
t, xeuler = euler(f, x0, t0, tmax,dt)
# Measure the max abs error
err_euler.append(np.max(np.abs(xeuler - exact(t))))
# Build a midpoint approximation
t, xmidpoint = midpoint(f, x0, t0, tmax, dt)
# Measure the max abs error
err_midpoint.append(np.max(np.abs(xmidpoint - exact(t))))
# Build your new approximation
t, xtest = ode_test(f, x0, t0, tmax, dt)
# Measure the max abs error
err_ode_test.append(np.max(np.abs(xtest - exact(t))))

# Finally, we make a loglog plot of the errors.
# Keep an eye on the slopes since they tell you the order of
# the error for the method.
plt.loglog(H, err_euler, 'r*-',

H, err_midpoint, 'b*-',
H, err_ode_test, 'k*-')

plt.grid()
plt.legend(['euler', 'midpoint', 'test method'])
plt.show()

Exercise 8.22. In the previous exercise you should have found that an average of the three
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slopes did just a little bit better than the midpoint method but the order of the error (the
slope in the log-log plot) stayed about the same. You should have also found that the weighted
average

estimate of slope =
𝑚𝑛 + 2𝑚𝑛+1/2 +𝑚𝑛+1

4 (8.26)

did just a little bit better than just a plain average. Why might this be? (If you have not
tried this weighted average then go back and try it.) Do other weighted averages of this sort
work better or worse? Does it appear that we can improve upon the order of the error (the
slope in the log-log plot) using any of these methods?

Exercise 8.23. OK. Let us make one more modification. What if we built a fourth slope that
resulted from stepping a half step forward using 𝑚𝑛+1/2? We will call this 𝑚∗

𝑛+1/2 since it is
a new estimate of 𝑚𝑛+1/2.

𝑥∗
𝑛+1/2 = 𝑥𝑛 + Δ𝑡

2 𝑚𝑛+1/2 (8.27)

𝑚∗
𝑛+1/2 = 𝑓(𝑡𝑛 +Δ𝑡/2, 𝑥∗

𝑛+1/2) (8.28)

Then calculate a new estimat 𝑚∗
𝑛+1 of the slope at the end of the step using this new slope:

𝑥∗
𝑛+1 = 𝑥𝑛 +Δ𝑡𝑚∗

𝑛+1/2 (8.29)

𝑚∗
𝑛+1 = 𝑓(𝑡𝑛 +Δ𝑡, 𝑥∗

𝑛+1) (8.30)

1. Draw a picture showing where this slope was calculated.

2. Modify the code from above to include this fourth slope.

3. Experiment with several ideas about how to best combine the four slopes: 𝑚𝑛, 𝑚𝑛+1/2,
𝑚∗

𝑛+1/2, and 𝑚∗
𝑛+1.

• Should we just take an average of the four slopes?

• Should we give one or more of the slopes preferential treatment and do some sort
of weighted average?

• Should we do something else entirely?

Remember that we are looking to improve the slope in the log-log plot since that indicates an
improvement in the order of the error (the accuracy) of the method.
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Exercise 8.24. In the previous exercise you no doubt experimented with many different
linear combinations of 𝑚𝑛, 𝑚𝑛+1/2, 𝑚∗

𝑛+1/2, and 𝑚∗
𝑛+1. Many of the resulting numerical ODE

methods likely had the same order of accuracy (again, the order of the method is the slope in
the error plot), but some may have been much better or much worse. Work with your team
to fill in the following summary table of all of the methods that you devised. If you generated
linear combinations that are not listed below then just add them to the list (we have only
listed the most common ones here).

𝑚𝑛 𝑚𝑛+1/2 𝑚∗
𝑛+1/2 𝑚∗

𝑛+1 Order of Error Name

1 1 0 0 0 𝒪(Δ𝑡) Euler’s
Method

2 0 1 0 0 𝒪(Δ𝑡2) Midpoint
Method

3 1/2 1/2 0 0
4 1/3 1/3 0 1/3
5 1/4 2/4 0 1/4
6 0 0 1 0
7 0 1/2 1/2 0
8 1/3 1/3 1/3 0
9 1/4 1/4 1/4 1/4
10 1/5 2/5 1/5 1/5
11 1/5 1/5 2/5 1/5
12 1/6 2/6 2/6 1/6
13 1/6 3/6 1/6 1/6
14 1/6 1/6 3/6 1/6
15 1/7 2/7 3/7 1/7
16 1/8 3/8 3/8 1/8
17
18

Exercise 8.25. In the previous exercise you should have found at least one of the many
methods to be far superior to the others. State which linear combination of slopes seems to
have done the trick, draw a picture of what this method does to numerically approximate the
next slope for a numerical solution to an ODE, and clearly state what the order of the error
means about this method.

You probably discovered that the best method approximates the slope at the point 𝑡𝑛 by using
the weighted sum

estimated slope =
𝑚𝑛 + 2𝑚𝑛+1/2 + 2𝑚∗

𝑛+1/2 +𝑚∗
𝑛+1

6 . (8.31)
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If you have not already done so, you should try this method out in the code from Exercise 8.23
and see how it compares to the other methods that you have tried. You should find that
the slope in the log-log error plot for this method is 4, which means this is a fourth-order
method. That is a huge improvement over the midpoint method. This method is called the
Runge-Kutta 4 method and is one of the most commonly used method for solving ordinary
differential equations. We present this method in different notation in Definition 8.3. Please
make sure you see why that theorem defines the same method that you have just discovered.

8.5 Runge-Kutta Method

Definition 8.3 (The Runge-Kutta 4 Method). The Runge-Kutta 4 (RK4) method for approx-
imating the solution to the differential equation 𝑥′ = 𝑓(𝑡, 𝑥) approximates the slope 𝑚 at the
point 𝑡𝑛 by using the following calculations:

𝑘1 = 𝑓(𝑡𝑛, 𝑥𝑛)

𝑘2 = 𝑓(𝑡𝑛 + ℎ
2 , 𝑥𝑛 + ℎ

2𝑘1)

𝑘3 = 𝑓(𝑡𝑛 + ℎ
2 , 𝑥𝑛 + ℎ

2𝑘2)
𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑥𝑛 + ℎ𝑘3)

𝑚 = 1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

(8.32)

It then uses that slope to advance by one time step:

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑚 = 𝑥𝑛 + ℎ
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) . (8.33)

The order of the error in the RK4 method is 𝒪(Δ𝑡4).

Exercise 8.26. � Of course there is a price to pay for the improvement provided by the RK4
method over our earlier methods. How many evaluations of the function 𝑓(𝑡, 𝑥) do we need to
make at every time step of the RK4 method? Compare this Euler’s method and the midpoint
method.
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Exercise 8.27. � Let us step back for a second and just see what the RK4 method does
from a nuts-and-bolts point of view. Consider the differential equation 𝑥′ = 𝑥 with initial
condition 𝑥(0) = 1. The solution to this differential equation is clearly 𝑥(𝑡) = 𝑒𝑡. For the sake
of simplicity, take Δ𝑡 = 1 and perform 1 step of the RK4 method BY HAND to approximate
the value 𝑥(1).

Exercise 8.28. � Write a Python function that implements the Runge-Kutta 4 method in one
dimension.

import numpy as np
import matplotlib.pyplot as plt

def rk41d(f, x0, t0, tmax, dt):
t = np.arange(t0, tmax+dt, dt)
x = np.zeros(len(t))
x[0] = x0
for n in range(len(t)-1):

# the interesting bits of the code go here
return t, x

Test the problem on several differential equations where you know the solution.

Exercise 8.29 (RK4 Error plot). Make a log-log plot of the error in the RK4 method for a
differential equation whose solution you know exactly (you could use 𝑥′ = −1

3𝑥 + sin(𝑡) with
𝑥(0) = 1 on the domain 𝑡 ∈ [0, 10], similar to what you did for the Euler method and the
midpoint method earlier). Check that the error plot shows that the error is 𝒪(Δ𝑡4).

Exercise 8.30 (RK4 in Several Dimensions). � Modify your Runge-Kutta 4 code to work
for any number of dimensions. You may want to start from your euler() and midpoint()
functions that already do this. you will only need to make minor modifications from there.
Then test your new generalized RK4 method on all of the same problems which you used to
test your euler() and midpoint() functions.
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8.6 The Backwards Euler Method

We have now built up a variety of numerical ODE solvers. All of the solvers that we have built
thus far are called explicit numerical differential equation solvers since they try to advance
the solution explicitly forward in time. Wouldn’t it be nice if we could literally just say, what
slope is going to work best in the future time steps … let us use that? Seems like an unrealistic
hope, but that is exactly what the last method covered in this section does.

Definition 8.4 (Backward Euler Method). We want to solve 𝑥′ = 𝑓(𝑡, 𝑥) so:

• Approximate the derivative by looking forward in time(!)

𝑥𝑛+1 − 𝑥𝑛
ℎ ≈ 𝑓(𝑡𝑛+1, 𝑥𝑛+1) (8.34)

• Rearrange to get the difference equation

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑥𝑛+1). (8.35)

• We will always know the value of 𝑡𝑛+1 and we will always know the value of 𝑥𝑛, but we
do not know the value of 𝑥𝑛+1. In fact, that is exactly what we want. The major trouble
is that 𝑥𝑛+1 shows up on both sides of the equation. Can you think of a way to solve for
it? …you have code that does this step!!!

• This method is called the Backward Euler method and is known as an implicit
method since it does not explicitly give an expression for 𝑥𝑛+1 but instead it gives
an equation that still needs to be solved for 𝑥𝑛+1. We will see the main advantage of
implicit methods in Section 8.7.

Exercise 8.31. Let us take a few steps through the backward Euler method on a problem
that we know well: 𝑥′ = −0.5𝑥 with 𝑥(0) = 6.
Let us take ℎ = 1 for simplicity, so the backward Euler iteration scheme for this particular
differential equation is

𝑥𝑛+1 = 𝑥𝑛 − 1
2𝑥𝑛+1. (8.36)

Notice that 𝑥𝑛+1 shows up on both sides of the equation. A little bit of rearranging gives

3
2𝑥𝑛+1 = 𝑥𝑛 ⟹ 𝑥𝑛+1 = 2

3𝑥𝑛. (8.37)
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1. Complete the following table.

𝑡 0 1 2 3 4 5 6
Euler Approx. of 𝑥 6 3 1.5 0.75
Back. Euler Approx.of 𝑥 6 4 2.667 1.778
Exact value of 𝑥 6 3.64 2.207 1.339

2. Compare now to what we found for the midpoint method on this problem as well.

Exercise 8.32. � By hand, apply the backwards Euler method with stepsize ℎ = 1/2 to the
differential equation 𝑥′ = 𝑥𝑡 with initial condition 𝑥(0) = 1 to obtain an approximation for
𝑥(1/2). Do your calculations in terms of fractions.

Exercise 8.33. The previous problem could potentially lead you to believe that the backward
Euler method will always result in some other nice difference equation after some algebraic
rearranging. That is not true! Let us consider a slightly more complicated differential equation
and see what happens

𝑥′ = −1
2𝑥

2 with 𝑥(0) = 0. (8.38)

1. Recall that the backward Euler approximation is

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑥𝑛+1). (8.39)

Let us take ℎ = 1 for simplicity (we will make it smaller later). What is the backward
Euler formula for this particular differential equation?

2. You should notice that your backward Euler formula is now a quadratic function in
𝑥𝑛+1. That is to say, if you are given a value of 𝑥𝑛 then you need to solve a quadratic
polynomial equation to get 𝑥𝑛+1. Let us be more explicit:
We know that 𝑥(0) = 6 so in our numerical solutions, 𝑥0 = 6. In order to get 𝑥1 we
consider the equation

𝑥1 = 𝑥0 −
1
2𝑥

2
1.

Rearranging we see that we need to solve

1
2𝑥

2
1 + 𝑥1 − 6 = 0

in order to get 𝑥1. Doing so gives us 𝑥1 =
√
13 − 1 ≈ 2.606.
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3. Go two steps further with the backward Euler method on this problem. Then take the
same number of steps with regular (forward) Euler’s method.

4. Work out the analytic solution for this differential equation (using separation of variables
perhaps). Then compare the values that you found in parts (2) and (3) of this problem to
values of the analytic solution and values that you would find from the regular (forward)
Euler approximation. What do you notice?

The complications with the backward Euler’s method are that you have a nonlinear equation
to solve at every time step

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑥𝑛+1). (8.40)

Notice that this is the same as solving the equation

𝐺(𝑥𝑛+1) ∶= 𝑥𝑛+1 − ℎ𝑓(𝑡𝑛+1, 𝑥𝑛+1) − 𝑥𝑛 = 0. (8.41)

You know the values of ℎ = Δ𝑡, 𝑡𝑛+1 and 𝑥𝑛, and you know the function 𝑓 , so, in a practical
sense, you should use some sort of Newton’s method iteration to solve that equation – at each
time step. More simply, we could call upon scipy.optimize.fsolve() to quickly implement
a built in Python numerical root finding technique for us. For example, to find the root of the
function 𝐺(𝑥) = 𝑥2/2 + 𝑥 − 6 we could use the following code

import numpy as np
from scipy import optimize
G = lambda x: x**2/2 + x - 6
x0 = 6 # initial guess
x = optimize.fsolve(G, x0)[0]
x

np.float64(2.6055512754639896)

Exercise 8.34. � Complete the function backwardEuler1d() below. How do you define the
function G inside the for loop and what starting value do you use for the fsolve() command?
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import numpy as np
from scipy import optimize
def backwardEuler1d(f, x0, t0, tmax,dt):

t = np.arange(t0, tmax + dt, dt)
x = np.zeros(len(t))
x[0] = x0
for n in range(len(t)-1):

G = lambda X: ??? # define this function
# give an appropriate starting value for fsolve
x[n+1] = optimize.fsolve(G, ???)[0]

return t, x

Test your backwardEuler1d() function on several differential equations where you know the
solution.

Exercise 8.35. � Write a script that outputs a log-log plot with the step size on the horizontal
axis and the error in the numerical method on the vertical axis. Plot the errors for Euler,
Midpoint, Runge Kutta, and Backward Euler measured against a differential equation with a
known analytic solution. Use this plot to conjecture the convergence rates of the four methods.
You can use the differential equation 𝑥′ = −1

3𝑥 + sin(𝑡) with 𝑥(0) = 1 like we have for many
of our past algorithm since we know that the solution is

𝑥(𝑡) = 1
10 (19𝑒−𝑡/3 + 3 sin(𝑡) − 9 cos(𝑡)) . (8.42)

From the plot, what is the order of the error on the Backward Euler method?

8.7 Numerical Instabilities

Exercise 8.36. It may not be obvious at the outset, but the Backward Euler method will
actually behave better than our regular Euler’s method in some sense. Let us take a look.
Consider, for example, the really simple linear differential equation 𝑥′ = −10𝑥 with 𝑥(0) = 1
on the interval 𝑡 ∈ [0, 2]. The analytic solution is 𝑥(𝑡) = 𝑒−10𝑡. Write Python code that plots
the analytic solution, the Euler approximation, and the Backward Euler approximation on top
of each other. Use a time step that is larger than you normally would (such as Δ𝑡 = 0.25 or
Δ𝑡 = 0.5 or larger). What do you notice? Why do you think this is happening?
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Exercise 8.37. � Consider the linear differential equation 𝑥′ = −𝑐𝑥 with 𝑐 > 0 a constant.
If you solve this with the forward Euler’s method with a step size ℎ, then each step can be
written in the form

𝑥𝑛+1 = ??? ⋅ 𝑥𝑛.
Because the exact solution to this differential equation 𝑥(𝑡) = 𝑒−𝑐𝑡 goes towards 0 as 𝑡 goes to
infinity, Euler’s method should also go towards 0 as 𝑛 goes to infinity. What is the condition
on the ??? in the equation above that ensures that in Euler’s method 𝑥𝑛 will go towards 0 as
𝑛 goes to infinity? What condition does this impose on the step size ℎ?
If you now solve this same ODE with the same step size with the backward Euler method, you
can solve the equation for 𝑥𝑛+1 exactly to find that

𝑥𝑛+1 = ??? ⋅ 𝑥𝑛.

Again you would like this to go towards 0 as 𝑛 goes to infinity. What condition does this
impose on the step size ℎ now?

Because the observations you made in the previous two exercises are so important, I lectured
about them. Here are the lecture notes:

The stability of a numerical method is the property that the numerical solution does not diverge
from the exact solution as the step size goes to zero. In other words, if we take smaller and
smaller steps, the numerical solution should converge to the exact solution. If the numerical
solution diverges from the exact solution as the step size goes to zero, then we say that the
method is unstable.

To test the stability of a method we can apply it to a simple ODE with a known solution. We
can then compare the numerical solution to the exact solution. If the numerical solution is
stable, then it will converge to the exact solution as the step size goes to zero. If the numerical
solution is unstable, then it will diverge from the exact solution as the step size goes to zero.

The test equation that is always used for this purpose of studying the stability of a numerical
method is the linear ODE

𝑥′ = 𝜆𝑥.
The exact solution to this equation is 𝑥(𝑡) = 𝑥(0)0𝑒𝜆𝑡. So for negative 𝜆 the solution decays,
and for positive 𝜆 the solution grows. The stability of a numerical method can be tested by
applying it to this equation and comparing the numerical solution to the exact solution.
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Example 8.1 (Stability of Euler’s method). Euler’s method uses the formula 𝑥𝑛+1 = 𝑥𝑛 +
ℎ𝑓(𝑡𝑛, 𝑥𝑛). Applying this to the test equation 𝑥′ = 𝜆𝑥 gives

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝜆𝑥𝑛 = (1 + ℎ𝜆)𝑥𝑛.

So
𝑥𝑛+1 = (1 + ℎ𝜆)𝑥𝑛 = (1 + ℎ𝜆)2𝑥𝑛−1 = ⋯ = (1 + ℎ𝜆)𝑛+1𝑥0.

Because we know the exact solution, we can calculate the absolute error that Euler’s method
produces:

𝐸𝑛 ∶= |𝑥𝑛 − 𝑥(𝑡𝑛)| = |𝑥0(1 + ℎ𝜆)𝑛 − 𝑥0𝑒𝜆𝑡𝑛 |.
In the case where 𝜆 < 0 we have that the exact solution decays to zero as 𝑛 → ∞. So the
error will be determined by the behaviour of the first term:

lim
𝑛→∞

𝐸𝑛 = lim
𝑛→∞

|𝑥0(1 + ℎ𝜆)𝑛|

= {0 if |1 + ℎ𝜆| < 1
∞ if |1 + ℎ𝜆| > 1.

The error grows exponentially unless |1 + ℎ𝜆| < 1. This is the stability condition for Euler’s
method. It requires us to choose a step size

ℎ < 2
|𝜆|

In general, for a method that, when applied to the test equation 𝑥′ = 𝜆𝑥, gives

𝑥𝑛+1 = 𝑄(ℎ𝜆)𝑥𝑛

the stability condition is that
|𝑄(ℎ𝜆)| < 1.

Values of ℎ𝜆 =∶ 𝑧 for which |𝑄(𝑧)| < 1 form the *Region of absolute stability** of the method.
This is a region in the complex plane, because while the stepsize ℎ is of course always real, in
applications the transient term may be oscillatory, corresponding to a complex 𝜆.

Example 8.2 (Stability of the midpoint method). The midpoint method uses the formula

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛 + ℎ
2 , 𝑥𝑛 + ℎ

2𝑓(𝑡𝑛, 𝑥𝑛)).

Applying this to the test equation 𝑥′ = 𝜆𝑥 gives

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝜆(𝑥𝑛 + ℎ
2𝜆𝑥𝑛) = 𝑥𝑛 (1 + ℎ𝜆 + (ℎ𝜆)2

2 ) .

242



The region of absolute stability is the set of 𝑧 ∈ ℂ for which

∣1 + 𝑧 + 𝑧2
2 ∣ < 1.

Implicit methods tend to have a larger region of absolute stability, often including the entire
left half plane, in which case they are called “unconditionally stable”.

Example 8.3 (Stability of the backward Euler method). We demonstrate this in the case of
the backward Euler method, which uses the formula

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑥𝑛+1).

Applying this to the test equation 𝑥′ = 𝜆𝑥 gives

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝜆𝑥𝑛+1.

So
𝑥𝑛+1 = 𝑥𝑛

1 − ℎ𝜆.
The region of absolute stability is the set of 𝑧 ∈ ℂ for which

∣ 1
1 − 𝑧 ∣ < 1,

or, equivalently,
|𝑧 − 1| > 1.

This is almost the entire complex plane, except for the circle of radius 1 around the point
𝑧 = 1. In particular it contains the entire left half plane, so stiff equations do not require any
particular choice of step size for the backward Euler method to be stable. We therefore say
that the backward Euler method is unconditionally stable.

8.8 Stiff Equations

A differential equation is called “stiff” if the exact solution has a term that decays very rapidly.
This is a problem for numerical methods because the step size must be very small to capture
the rapid decay. The step size must be small for the entire solution, not just the rapidly
decaying part. This can make the solution very slow to compute.

An example of such a rapidly decaying term would be a term of the form 𝑒−𝛾𝑡 with 𝛾 large.
As an example consider the ODE

𝑥′ = −10𝑥 + sin 𝑡.

243



This is similar to equations we solved in Exercise 8.6, just with a larger negative coefficient in
front of 𝑥. The solution to this equation is

𝑥(𝑡) = 𝐶𝑒−100𝑡 + 100
10001 sin 𝑡 − 1

10001 cos 𝑡.

The term 𝑒−100𝑡 decays very rapidly. We refer to such a term in the solution as a “transient”
because it becomes irrelevant after a short time. In spite of the fact that this term is irrelevant,
it forces us to take a very small step size in order to avoid an instability if we are using an
explicit method. Thus for a stiff equation it is advisable to use an implicit method instead.

8.9 Algorithm Summaries

Exercise 8.38. Consider the first-order differential equation 𝑥′ = 𝑓(𝑡, 𝑥). What is Euler’s
method for approximating the solution to this differential equation? What is the order of
accuracy of Euler’s method? Explain the meaning of the order of the method in the context
of solving a differential equation.

Exercise 8.39. Explain in clear language what Euler’s method does geometrically.

Exercise 8.40. Consider the first-order differential equation 𝑥′ = 𝑓(𝑡, 𝑥). What is the Mid-
point method for approximating the solution to this differential equation? What is the order
of accuracy of the Midpoint method?

Exercise 8.41. Explain in clear language what the Midpoint method does geometrically.

Exercise 8.42. Consider the first-order differential equation 𝑥′ = 𝑓(𝑡, 𝑥). What is the Runge
Kutta 4 method for approximating the solution to this differential equation? What is the order
of accuracy of the Runge Kutta 4 method?
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Exercise 8.43. Explain in clear language what the Runge Kutta 4 method does geometrically.

Exercise 8.44. Consider the first-order differential equation 𝑥′ = 𝑓(𝑡, 𝑥). What is the Back-
ward Euler method for approximating the solution to this differential equation? What is the
order of accuracy of the Backward Euler method?

Exercise 8.45. Explain in clear language what the Backward Euler method does geometri-
cally.

8.10 Problems

Exercise 8.46. Consider the differential equation 𝑥″ + 𝑥′ + 𝑥 = 0 with initial conditions
𝑥(0) = 0 and 𝑥′(0) = 1.

1. Solve this differential equation by hand using any appropriate technique. Show your
work.

2. Write code to demonstrate the first order convergence rate of Euler’s method, the second
order convergence rate of the Midpoint method, and the fourth order convergence rate
of the Runge-Kutta 4 method. Take note that this is a second order differential equation
so you will need to start by converting it to a system of differential equations. Then
take care that you are comparing the correct term from the numerical solution to your
analytic solution in part (1).

Exercise 8.47. Test the Euler, Midpoint, and Runge Kutta methods on the differential equa-
tion

𝑥′ = 𝜆 (𝑥 − cos(𝑡)) − sin(𝑡) with 𝑥(0) = 1.5. (8.43)

Find the exact solution by hand using the method of undetermined coefficients and note that
your exact solution will involve the parameter 𝜆. Produce log-log plots for the error between
your numerical solution and the exact solution for 𝜆 = −1, 𝜆 = −10, 𝜆 = −102, …, 𝜆 = −106.
In other words, create 7 plots (one for each 𝜆) showing how each of the 3 methods performs
for that value of 𝜆 at different values for Δ𝑡.
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Exercise 8.48. Two versions of Python code for one dimensional Euler’s method are given
below. Compare and contrast the two implementations. What are the advantages / disadvan-
tages to one over the other? Once you have made your pro/con list, devise an experiment to
see which of the methods will actually perform faster when solving a differential equation with
a very small Δ𝑡. (You may want to look up how to time the execution of code in Python.)

def euler(f,x0,t0,tmax,dt):
t = [t0]
x = [x0]
steps = int(np.floor((tmax-t0)/dt))
for n in range(steps):

t.append(t[n] + dt)
x.append(x[n] + dt*f(t[n],x[n]))

return t, x

def euler(f,x0,t0,tmax,dt):
t = np.arange(t0,tmax+dt,dt)
x = np.zeros(len(t))
x[0] = x0
for n in range(len(t)-1):

x[n+1] = x[n] + dt*f(t[n],x[n])
return t, x

Exercise 8.49. We wish to solve the boundary valued problem 𝑥″ + 4𝑥 = sin(𝑡) with initial
condition 𝑥(0) = 1 and boundary condition 𝑥(1) = 2 on the domain 𝑡 ∈ (0, 1). Notice that
you do not have the initial position and initial velocity as you normally would with a second
order differential equation. Devise a method for finding a numerical solution to this problem.

Exercise 8.50. Write code to numerically solve the boundary valued differential equation

𝑥″ = cos(𝑡)𝑥′ + sin(𝑡)𝑥 with 𝑥(0) = 0 and 𝑥(1) = 1. (8.44)
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Exercise 8.51. In this model there are two characters, Romeo and Juliet, whose affection is
quantified on the scale from −5 to 5 described below:

• −5: Hysterical Hatred
• −2.5: Disgust

• 0: Indifference
• 2.5: Sweet Affection
• 5: Ecstatic Love

The characters struggle with frustrated love due to the lack of reciprocity of their feelings.
Mathematically,

• Romeo: “My feelings for Juliet decrease in proportion to her love for me.”

• Juliet: “My love for Romeo grows in proportion to his love for me.”

• Juliet’s emotional swings lead to many sleepless nights, which consequently dampens her
emotions.

This give rise to

{
𝑑𝑥
𝑑𝑡 = −𝛼𝑦
𝑑𝑦
𝑑𝑡 = 𝛽𝑥 − 𝛾𝑦2 (8.45)

where 𝑥(𝑡) is Romeo’s love for Juliet and 𝑦(𝑡) is Juliet’s love for Romeo at time 𝑡.
Your tasks:

1. First implement this 2D system with 𝑥(0) = 2, 𝑦(0) = 0, 𝛼 = 0.2, 𝛽 = 0.8, and 𝛾 = 0.1
for 𝑡 ∈ [0, 60]. What is the fate of this pair’s love under these assumptions?

2. Write code that approximates the parameter 𝛾 that will result in Juliet having a feeling
of indifference at 𝑡 = 30. Your code should not need human supervision: you should be
able to tell it that you are looking for indifference at 𝑡 = 30 and turn it loose to find an
approximation for 𝛾. Assume throughout this problem that 𝛼 = 0.2, 𝛽 = 0.8, 𝑥(0) = 2,
and 𝑦(0) = 0. Write a description for how your code works in your homework document.

Exercise 8.52. In this problem we will look at the orbit of a celestial body around the sun.
The body could be a satellite, comet, planet, or any other object whose mass is negligible
compared to the mass of the sun. We assume that the motion takes place in a two dimensional
plane so we can describe the path of the orbit with two coordinates, 𝑥 and 𝑦 with the point
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(0, 0) being used as the reference point for the sun. According to Newton’s law of universal
gravitation the system of differential equations that describes the motion is

𝑥″(𝑡) = −𝑥
(√𝑥2 + 𝑦2)3

and 𝑦″(𝑡) = −𝑦
(√𝑥2 + 𝑦2)3

. (8.46)

1. Define the two velocity functions 𝑣𝑥(𝑡) = 𝑥′(𝑡) and 𝑣𝑦(𝑡) = 𝑦′(𝑡). Using these functions
we can now write the system of two second-order differential equations as a system of
four first-order equations

𝑥′ =
𝑣′𝑥 =
𝑦′ =
𝑣′𝑦 =

(8.47)

2. Solve the system of equations from part (a) using an appropriate solver. Start with
𝑥(0) = 4, 𝑦(0) = 0, the initial 𝑥 velocity as 0, and the initial 𝑦 velocity as 0.5. Create
several plots showing how the dynamics of the system change for various values of the
initial 𝑦 velocity in the interval 𝑡 ∈ (0, 100).

3. Give an animated plot showing 𝑥(𝑡) versus 𝑦(𝑡).

Exercise 8.53. In this problem we consider the pursuit and evasion problem where 𝐸(𝑡) is
the vector for an evader (e.g. a rabbit or a bank robber) and 𝑃(𝑡) is the vector for a pursuer
(e.g. a fox chasing the rabbit or the police chasing the bank robber)

𝐸(𝑡) = (𝑥𝑒(𝑡)
𝑦𝑒(𝑡)

) and 𝑃(𝑡) = (𝑥𝑝(𝑡)
𝑦𝑝(𝑡)

) . (8.48)

Let us presume the following:

Assumption 1: the evader has a predetermined path (known only to him/her),

Assumption 2: the pursuer heads directly toward the evader at all times, and

Assumption 3: the pursuer’s speed is directly proportional to the evader’s speed.

From the third assumption we have

‖𝑃 ′(𝑡)‖ = 𝑘‖𝐸′(𝑡)‖ (8.49)

and from the second assumption we have

𝑃 ′(𝑡)
‖𝑃 ′(𝑡)‖ = 𝐸(𝑡) − 𝑃(𝑡)

‖𝐸(𝑡) − 𝑃(𝑡)‖ . (8.50)
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Solving for 𝑃 ′(𝑡) the differential equation that we need to solve becomes

𝑃 ′(𝑡) = 𝑘‖𝐸′(𝑡)‖ 𝐸(𝑡) − 𝑃(𝑡)
‖𝐸(𝑡) − 𝑃(𝑡)‖ . (8.51)

Your Tasks:

1. Explain assumption #2 mathematically.

2. Explain assumption #3 physically. Why is this assumption necessary mathematically?

3. Write code to find the path of the pursuer if the evader has the parametrised path

𝐸(𝑡) = ( 0
5𝑡) for 𝑡 ≥ 0 (8.52)

and the pursuer initially starts at the point 𝑃(0) = (2
3). Write your code so that it

stops when the pursuer is within 0.1 units of the evader. Run your code for several values
of 𝑘. The resulting plot should be animated.

4. Modify your code from part (c) to find the path of the pursuer if the evader has the
parametrised path

𝐸(𝑡) = (5 + cos(2𝜋𝑡) + 2 sin(4𝜋𝑡)
4 + 3 cos(3𝜋𝑡) ) for 𝑡 ≥ 0 (8.53)

and the pursuer initially starts at the point 𝑃(0) = ( 0
50). Write your code so that it

stops when the pursuer is within 0.1 units of the evader. Run your code for several values
of 𝑘. The resulting plot should be animated.

5. Create your own smooth path for the evader that is challenging for the pursuer to catch.
Write your code so that it stops when the pursuer is within 0.1 units of the evader. Run
your code for several values of 𝑘.

6. (Challenge) If you extend this problem to three spatial dimensions you can have the
pursuer and the evader moving on a multivariable surface (i.e. hilly terrain). Implement
a path along an appropriate surface but be sure that the velocities of both parties are
appropriately related to the gradient of the surface.

Note: It may be easiest to build this code from scratch instead of using one of our pre-written
codes.
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Exercise 8.54. (This problem is modified from (Meerschaert 2013))

One of the favourite foods of the blue whale is krill. Blue whales are baleen whales and feed
almost exclusively on krill. These tiny shrimp-like creatures are devoured in massive amounts
to provide the principal food source for the huge whales. In the absence of predators, in
uncrowded conditions, the krill population density grows at a rate of 25% per year. The
presence of 500 tons/acre of krill increases the blue whale population growth rate by 2% per
year, and the presence of 150,000 blue whales decreases krill growth rate by 10% per year. The
population of blue whales decreases at a rate of 5% per year in the absence of krill.

These assumptions yield a pair of differential equations (a Lotka-Volterra model) that describe
the population of the blue whales (𝐵) and the krill population density (𝐾) over time given by

𝑑𝐵
𝑑𝑡 = −0.05𝐵 + (0.02

500 )𝐵𝐾
𝑑𝐾
𝑑𝑡 = 0.25𝐾 − ( 0.10

150000)𝐵𝐾.
(8.54)

1. What are the units of 𝑑𝐵
𝑑𝑡 and 𝑑𝐾

𝑑𝑡 ?

2. Explain what each of the four terms on the right-hand sides of the differential equations
mean in the context of the problem. Include a reason for why each term is positive or
negative.

3. Find a numerical solution to the differential equation model using 𝐵(0) = 75, 000 whales
and 𝐾(0) = 150 tons per acre.

4. Whaling is a huge concern in the oceans world wide. Implement a harvesting term into
the whale differential equation, defend your mathematical choices and provide a thorough
exploration of any parameters that are introduced.

Exercise 8.55. (This problem is modified from (Spindler 2022))

You just received a new long-range helicopter drone for your birthday! After a little practice,
you try a long-range test of it by having it carry a small package to your home. A friend
volunteers to take it 5 miles east of your home with the goal of flying directly back to your
home. So you program and guide the drone to always head directly toward home at a speed of
6 miles per hour. However, a wind is blowing from the south at a steady 4 miles per hour. The
drone, though, always attempts to head directly home. We will assume the drone always flies
at the same height. What is the drone’s flight path? Does it get the package to your home?
What happens if the speeds are different? What if the initial distance is different? How much
time does the drone’s battery have to last to get home? When you make plots of your solution
they must be animated.
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Exercise 8.56. A trebuchet catapult throws a cow vertically into the air. The differential
equation describing its acceleration is

𝑑2𝑥
𝑑𝑡2 = −𝑔 − 𝑐𝑑𝑥𝑑𝑡 ∣𝑑𝑥𝑑𝑡 ∣ (8.55)

where 𝑔 ≈ 9.8 m/s2 and 𝑐 ≈ 0.02 m−1 for a typical cow. If the cow is launched at an initial
upward velocity of 30 m/s, how high will it go, and when will it crash back into the ground?
Hint: Change this second order differential equation into a system of first order differential
equations.

Exercise 8.57 (Scipy ODEINT). It should come as no surprise that the scipy library
has some built-in tools to solve differential equations numerically. One such tool is
scipy.integrate.odeint(). The code below shows how to use the .odeint() tool to solve
the differential equation 𝑥′ = −1

3𝑥 + sin(𝑡) with 𝑥(0) = 1. Take note that the .odeint()
function expects a Python function (or lambda function), an initial condition, and an array
of times.

Make careful note of the following:

• The function scipy.integrate.odeint() expects the function 𝑓 to have the arguments
in the order 𝑥 (or 𝑦) then 𝑡. In other words, they expect you to define 𝑓 as 𝑓 = 𝑓(𝑥, 𝑡).
This is opposite from our convention in this chapter where we have defined 𝑓 as 𝑓 =
𝑓(𝑡, 𝑥).

• The output of scipy.integrate.odeint() is an array. This is designed so that
.odeint() can handle systems of ODEs as well as scalar ODEs. In the code below
notice that we plot x[:,0] instead of just x. This is overkill in the case of a scalar ODE,
but in a system of ODEs this will be important.

• You have to specify the array of time for the scipy.integrate.odeint() function. It
is typically easiest to use np.linspace() to build the array of times.

import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
f = lambda x, t: -(1/3.0)*x + np.sin(t)
x0 = 1
t = np.linspace(0,5,1000)
x = scipy.integrate.odeint(f,x0,t)
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plt.plot(t,x[:,0],'b--')
plt.grid()
plt.show()

Now let us consider the system of ODEs

𝑥′ = 𝑦
𝑦′ = −𝑏𝑦 − 𝑐 sin(𝑥). (8.56)

In this ODE 𝑥(𝑡) is the angle from equilibrium of a pendulum, and 𝑦(𝑡) is the angular velocity
of the pendulum. To solve this ODE with scipy.integrate.odeint() using the parameters
𝑏 = 0.25 and 𝑐 = 5 and the initial conditions 𝑥(0) = 𝜋 − 0.1 and 𝑦(0) = 0 we can use
the code below. (The idea to use this ODE was taken from the documentation page for
scipy.integrate.odeint().)

import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
F = lambda x, t, b, c: [x[1], -b*x[1] - c*np.sin(x[0])]
x0 = [np.pi - 0.1, 0]
t = np.linspace(0, 10, 1000)
b = 0.25
c = 5
x = scipy.integrate.odeint(F, x0, t, args=(b, c))
plt.plot(t, x[:,0], 'b', t, x[:,1], 'r')
plt.grid()
plt.show()

Your Tasks:

1. First implement the two blocks of Python code given above. Be sure to understand what
each line of code is doing. Fully comment your code, and then try the code with several
different initial conditions.

2. For the pendulum system be sure to describe what your initial conditions mean in the
physical setup.

3. Use scipy.integrate.odeint() to solve a non-trivial scalar ODE of your choosing.
Clearly show your ODE and give plots of your solutions with several different initial
conditions.

4. Build a numerical experiment to determine the relationship between your choice of Δ𝑡
and the absolute maximum error between the solution from .odeint() and a known
analytic solution to a scalar ODE. Support your work with appropriate plots and discus-
sion.
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5. Solve the system of differential equations from Exercise 8.52 using scipy.integrate.odeint().
Show appropriate plots of your solution.

8.11 Projects

In this section we propose several ideas for projects related to numerical ordinary differential
equations. These projects are meant to be open ended, to encourage creative mathematics, to
push your coding skills, and to require you to write and communicate your mathematics.

8.11.1 The COVID-19 Pandemic

In the paper Modeling the COVID-19 epidemic and implementation of population-wide inter-
ventions in Italy, by G. Giordana et al., the authors propose a robust extension to the SIR
model, which they call the “SIDARTHE” model, to model the spread of the COVID-19 virus
in Italy. The acronym stands for

• 𝑆 = proportion of the population which is Susceptible.

• 𝐼 = proportion of the population which is presently Infected. Asymptomatic, infected,
and undetected.

• 𝐷 = proportion of the population which has been Diagnosed. Asymptomatic, infected,
and detected.

• 𝐴 = proportion of the population which is Ailing. Symptomatic, infected, and unde-
tected.

• 𝑅 = proportion of the population which is Recognized. Symptomatic, infected, and
detected.

• 𝑇 = proportion of the population which is Threatened. Acutely symptomatic, infected,
and detected.

• 𝐻 = proportion of the population which is Healed.

• 𝐸 = proportion of the population which is Extinct.

In the Methods section of the paper (in the paragraph that begins with “In particular, …”)
the authors propose initial conditions and values for all of the parameters in the model. Using
these values create a numerical solution to the system of differential equations and verify
that the basic reproduction number for the model is 𝑅0 = 2.38 as the authors say. In the
subsequent paragraphs the authors propose ways to modify the parameters to account for
social distancing, stay at home orders, and other such measures. Reproduce the authors’
results from these paragraphs and fully explain all of your work. Provide sufficient plots to
show the dynamics of the situation.
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8.11.2 Pain Management

When a patient undergoing surgery is asked about their pain the doctors often ask patients
to rate their pain on a subjective 0 to 10 scale with 0 meaning no pain and 10 meaning
excruciating pain. After surgery the unmitigated pain level in a typical patient will be quite
high and as such doctors typically treat with narcotics. A mathematical model (inspired by
THIS article and THIS paper) of a patient’s subjective pain level as treated pharmaceutically
by three drugs is given as:

𝑑𝑃
𝑑𝑡 = − (𝑘0 + 𝑘1𝐷1 + 𝑘2𝐷2 + 𝑘3𝐷3) 𝑃 + 𝑘0𝑢

𝑑𝐷1
𝑑𝑡 = −𝑘𝐷1

𝐷1 +
𝑁1

∑
𝑗=1

𝛿(𝑡 − 𝜏1,𝑗)

𝑑𝐷2
𝑑𝑡 = −𝑘𝐷2

𝐷2 +
𝑁2

∑
𝑗=1

𝛿(𝑡 − 𝜏2,𝑗)

𝑑𝐷3
𝑑𝑡 = −𝑘𝐷3

𝐷3 +
𝑁3

∑
𝑗=1

𝛿(𝑡 − 𝜏3,𝑗)

(8.57)

where

• 𝑃 is a patient’s subjective pain level on a 0 to 10 scale,

• 𝐷𝑖 is the amount of the 𝑖𝑡ℎ drug in the patient’s bloodstream,

– 𝐷1 is a long-acting opioid

– 𝐷2 is a short-acting opioid

– 𝐷3 is a non-opioid

• 𝑘0 is the relaxation rate to baseline pain without drugs,

• 𝑘𝑖 is the impact of the 𝑖𝑡ℎ drug on the relaxation rate,

• 𝑢 is the patient’s baseline (unmitigated) pain,

• 𝑘𝐷𝑖
is the elimination rate of the 𝑖𝑡ℎ drug from the bloodstream,

• 𝑁𝑖 is the total number of the 𝑖𝑡ℎ drug doses taken, and

• 𝜏𝑖,𝑗 are the time times the patient takes the 𝑖𝑡ℎ drug.

• 𝛿() is the Dirac delta function.
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Implement this model with parameters 𝑢 = 8.01, 𝑘0 = log(2)/2, 𝑘1 = 0.319, 𝑘2 = 0.184,
𝑘3 = 0.201, 𝑘𝐷1

= log(0.5)/(−10), 𝑘𝐷2
= log(0.5)/(−4), and 𝑘𝐷3

= log(0.5)/(−4). Take the
initial pain level to be 𝑃(0) = 3 with no drugs on board. Assume that the patient begins
dosing the long-acting opioid at hour 2 and takes 1 dose periodically every 24 hours. Assume
that the patient begins dosing the short-acting opioid at hour 0 and takes 1 dose periodically
every 12 hours. Finally assume that the patient takes 1 dose of the non-opioid drug every 48
hours starts at hour 24. Of particular interest are how the pain level evolves over the first
week out of surgery and how the drug concentrations evolve over this time.

Other questions:

• What does this medication schedule do to the patient’s pain level?

• What happens to the patient’s pain level if he/she forgets the non-opioid drug?

• What happens to the patient’s pain level if he/she has a bad reaction to opioids and only
takes the non-opioid drug?

• What happens to the dynamics of the system if the patient’s pain starts at 9/10?

• In reality, the unmitigated pain 𝑢 will decrease in time. Propose a differential equation
model for the unmitigated pain that will have a stable equilibrium at 3 and has a value
of 5 on day 5. Add this fifth differential equation to the pain model and examine what
happens to the patient’s pain over the first week. In this model, what happens after the
first week if the narcotics are ceased?

8.11.3 The H1N1 Virus

The H1N1 virus, also known as the “bird flu,” is a particularly virulent bug but thankfully is
also very predicable. Once a person is infected they are infectious for 9 days. Assume that
a closed population of 𝑁 = 1500 people (like a small college campus) starts with exactly 1
infected person and hence the remainder of the population is considered susceptible to the
virus. Furthermore, once a person is recovered they have an immunity that typically lasts
longer than the outbreak. Mathematically we can model an H1N1 outbreak of this kind using
11 compartments: susceptible people (𝑆), 9 groups of infected people (𝐼𝑗 for 𝑗 = 1, 2,⋯ , 9),
and recovered people (𝑅). Write and numerically solve a system of 11 differential equations
modelling the H1N1 outbreak assuming that susceptible people become infected at a rate
proportional to the product of the number of susceptible people and the total number of
infected people. You may assume that the initial infected person is on the first day of their
infection and determine and unknown parameters using the fact that 1 week after the infection
starts there are 10 total people infected.

255



8.11.4 The Artillery Problem

The goal of artillery is to fire a shell (e.g. a cannon ball) so that it lands on a specific target. If
we ignore the effects of air resistance the differential equations describing its acceleration are
very simple:

𝑑𝑣𝑥
𝑑𝑡 = 0 and 𝑑𝑣𝑧

𝑑𝑡 = −𝑔 (8.58)

where 𝑣𝑥 and 𝑣𝑧 are the velocities in the 𝑥 and 𝑧 directions respectively and 𝑔 is the acceleration
due to gravity (𝑔 = 9.8 m/s2). We can use these equations to easily show that the resulting
trajectory is parabolic. Once we know this we can easily calculate the initial speed 𝑣0 and
angle 𝜃0 above the horizontal necessary for the shell to reach the target. We will undoubtedly
find that the maximum range will always result from an angle of 𝜃0 = 45∘.
The effects of air resistance are significant when the shell must travel a large distance or when
the speed is large. If we modify the equations to include a simple model of air resistance the
governing equations become

𝑑𝑣𝑥
𝑑𝑡 = −𝑐𝑣𝑥√𝑣2𝑥 + 𝑣2𝑧 and 𝑑𝑣𝑧

𝑑𝑡 = −𝑔 − 𝑐𝑣𝑧√𝑣2𝑥 + 𝑣2𝑧 (8.59)

where the constant 𝑐 depends on the shape and density of the shell and the density of air. For
this project assume that 𝑐 = 10−3𝑚−1. To calculate the components of the position vector
recall that since the derivative of position, 𝑠(𝑡), is velocity we have

𝑠𝑥(𝑡) = ∫
𝑡

0
𝑣𝑥(𝜏)𝑑𝜏 and 𝑠𝑧(𝑡) = ∫

𝑡

0
𝑣𝑧(𝜏)𝑑𝜏. (8.60)

Now, imagine that you are living 200 years ago, acting as a consultant to an artillery officer who
will be going into battle (perhaps against Napoleon – he was known for hiring mathematicians
to help his war efforts). Although computers have not yet been invented, given a few hours
or a few days to work, a person living in this time could project trajectories using numerical
methods (yes, numerical solutions to differential equations were well known back then too).
Using this, you can try various initial speeds 𝑣0 and angles 𝜃0 until you find a pair that reach
any target. However, the artillery officer needs a faster and simpler method. He can do maths,
but performing hundreds or thousands of numerical calculations on the battlefield is simply
not practical. Suppose that our artillery piece will be firing at a target that is a distance Δ𝑥
away, and that Δ𝑥 is approximately half a mile away – not exactly half a mile, but in that
general neighbourhood.

1. Develop a method for estimating 𝑣0 and 𝜃0 with reasonable accuracy given the exact
range to the target, Δ𝑥. Your method needs to be simple enough to use in real time on a
historic (Napoleon-era) battle field without the aid of a computer. (Be sure to persuade
me that your numerical solution is accurate enough.)

2. Discuss the sensitivity in your solutions to variations in the constant 𝑐.
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3. Extend this problem to make it more realistic. A few possible extensions are listed below
but please do not restrict yourselves just to this list and do not think that you need to
do everything on the list.

• You could consider the effects of targets at different altitudes Δ𝑧.
• You could consider moving targets.

• You could consider headwinds and/or tailwinds.

• You could consider winds coming from an angle outside the 𝑥𝑧-plane.
• You could consider shooting the cannon from a boat with the target on shore (the

waves could be interesting!).

• …You could consider any other physical situation which I have not listed here, but
you have to do some amount of extension from the basics.

The final product of this project will be:

• a technical paper describing your method to a mathematically sophisticated audience,
and

• a field manual instructing the artillery officer how to use your method.

You can put both products in one paper. Just use a section header to start the field manual.
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9 Partial Differential Equations

When you open the toolkit of differential equations you see the hammers and saws
of engineering and physics for the past two centuries and for the foreseeable future.
–Benoit Mandelbrot

9.1 Intro to PDEs

Partial differential equations (PDEs) are differential equations involving the partial derivatives
of an unknown multivariable function. In most of this chapter we will examine two classical
problems from physics: heat transport phenomena and wave phenomena. Do not think, how-
ever, that just because we are focusing on these two primary examples that this is the extent
of the utility of PDEs. Basically, every scientific field has been impacted by (or has directly
impacted) the study of PDEs. Any phenomenon that can be modelled via the change in multi-
ple continuous variables (not restricted to space and time) is likely governed by a PDE model.
Some common phenomena that are modelled by PDEs are:

• heat transport

– The heat equation models heat energy (temperature) diffusing through a metal rod
or a solid body

• diffusion of a concentrated substance

– The diffusion equation is a PDE model for the diffusion of smells, contaminants, or
the motion of a solute

• wave propagation

– The wave equation is a PDE that can be used to model the standing waves on a
guitar string, the waves on lake, or sound waves traveling through the air

• travelling waves

– The traveling wave equation is a PDE that can be used to model pulses of light
propagating through a fiber optic cable or regions of high density traffic moving
along a highway.
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• quantum mechanics

– The wave functions of quantum mechanics are described by a PDE called the
Schrodinger Equation.

• electro-magnetism

– Maxwell’s Equations are a system of PDEs describing the relationships between
electricity and magnetism.

• fluid flow

– The Navier-Stokes equations are a system of PDEs that model fluids in three di-
mensions – including turbulent flow.

– Darcy’s Law and Richard’s equation are PDE models for the motion of fluids moving
through saturated and unsaturated soils.

• stress and strain in structures

– The Linear Elasticity equation is a PDE that models the stresses in a solid body
(like a bridge or a building) under load.

• spatial patterns

– Solutions to the Helmholtz equation are known for exhibiting Turing patterns which
are patterns like leopard spots or zebra stripes.

• … and many more …

In many cases we are interested in solving PDEs in terms of our usual three spatial dimensions
along with an extra dimension for time. Often we do not have to work with all three spatial
dimensions (like if the domain is much larger in one or two directions versus the others) or in
some cases (like in linear elasticity) we do not need to worry about time.

There is a wealth of wonderful theory for finding analytic solutions to many special classes of
PDEs. However, most PDEs simply do not lend themselves to analytic solutions that we can
write down in terms of the regular mathematical operations of sums, products, powers, roots,
trigonometric functions, logarithms, etc. For these PDEs we must turn to numerical methods
to approximate the solution.

Recall that numerical solutions to ODEs were approximations of the value of the unknown
function at a discrete set of times. Similarly, numerical solutions to PDEs are going to be
approximations of the value of the unknown function at a discrete set of points in time AND
space.

What we will cover in this chapter will include one primary and powerful technique for approx-
imating solutions to PDEs: the finite difference method. There are many other techniques
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for approximating solutions to PDEs, and the field of numerical PDEs is still an active area
of mathematical and scientific research.

9.2 The Heat Equation

You have probably met the heat equation, also known as the diffusion equation, in a previous
module. The heat equation is a partial differential equation that describes how heat diffuses
through a material. The heat equation is a parabolic PDE and is given by

𝜕𝑢
𝜕𝑡 = 𝐷∇2𝑢

where 𝑢(𝑡, 𝑥) is the temperature of the material at time 𝑡 and position 𝑥 and 𝐷 is the diffusion
coefficient. The heat equation is a simple model for heat diffusion but also describes diffusion
in general, like the diffusion of a solute in a solvent or of plants in a field or, …. well, you get
the idea.

In the remainder of this section we will use a technique called the finite difference method
to build numerical approximations to solutions of the heat equation in 1D, 2D, and 3D. You
of course know that the heat equation is easy to solve analytically, given that it is a linear
homogeneous PDE with constant coefficients. However, the finite difference method is a pow-
erful tool for solving similar PDEs that do not have simple analytic solutions. The advantage
of using the heat equation as a test case for the finite difference method is that we can eas-
ily verify the accuracy of our numerical solutions by comparing them to the known analytic
solutions.

9.2.1 In One Spatial Dimensions

For the sake of simplicity we will start by considering the heat equation in 1 spatial dimen-
sion:

𝜕𝑢
𝜕𝑡 = 𝐷𝜕2𝑢

𝜕𝑥2 .

We will also use the alternative notation

𝑢𝑡 = 𝐷𝑢𝑥𝑥, (9.1)

where the subscripts denote partial derivatives.

Exercise 9.1. Just as we did in Chapter 8 to approximate solutions to ODEs, we will start
by partitioning the spatial domain into finitely many pieces and we will partition time into
finitely many pieces. We do this by introducing a grid of points (𝑡𝑛, 𝑥𝑖) where 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡
and 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥. Then we want to build a numerical approximation to the function 𝑢(𝑡, 𝑥)
at these grid points.
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First we need to introduce some notation for the numerical solution. As you will see in a
moment, there is a lot to keep track of in numerical PDEs so careful indexing and well-chosen
notation is essential. Let 𝑈𝑛

𝑖 be the approximation of the solution to 𝑢(𝑡, 𝑥) at the point
𝑡 = 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡 and 𝑥 = 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 (since we have two variables we need two indices).
For example, 𝑈1

4 is the value of the approximation at time 𝑡1 and at the spatial point 𝑥4.

Next we need to approximate both derivatives 𝑢𝑡 and 𝑢𝑥𝑥 in the PDE using methods that
we have used before. Now would be a good time to go back to Chapter 5 and refresh your
memory for how we build approximations of derivatives.

(a) Use the forward-difference formula to approximate the time derivative 𝑢𝑡 at the point
𝑡 = 𝑡𝑛 and 𝑥 = 𝑥𝑖.

𝑢𝑡(𝑡𝑛, 𝑥𝑖) ≈
??? − ???

??? .

(b) Use the centred-difference formula to approximate the second spatial derivative 𝑢𝑥𝑥 at
the point 𝑡 = 𝑡𝑛 and 𝑥 = 𝑥𝑖.

𝑢𝑥𝑥(𝑡𝑛, 𝑥𝑖) ≈
??? − ??? + ???

??? .

(c) Put your answers from parts (a) and (b) together using the 1D heat equation (Eq. 9.1)

??? − ???
Δ𝑡 = 𝐷(??? − ??? + ???

Δ𝑥2 ) .

Be sure that your indexing is correct: the superscript 𝑛 is the index for time and the
subscript 𝑖 is the index for space.

(d) Rearrange your result from part (c) to solve for 𝑈𝑛+1
𝑖 :

𝑈𝑛+1
𝑖 = ??? + 𝐷Δ𝑡

Δ𝑥2 (??? − ??? + ???) .

The iterative scheme which you just derived is called the forward difference scheme
for the heat equation. Notice that the term on the left is the only term at the next time
step 𝑛+1. So, for every spatial point 𝑥𝑖 we can build 𝑈𝑛+1

𝑖 by evaluating the right-hand
side of the finite difference scheme.

(e) The numerical errors made by using the forward difference scheme we just built come from
two sources: from the approximation of the time derivative and from the approximation
of the second spatial derivative. Fill in the question marks in the powers of the following
expression:

Numerical Error = 𝒪(Δ𝑡???) + 𝒪(Δ𝑥???).

(f) Explain what the result from part (e) means in plain English?
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There are many different finite difference schemes due to the fact that there are many different
ways to approximate derivatives (See Chapter 5). One convenient way to keep track of which
information you are using and what you are calculating in a finite difference scheme is to
use a finite difference stencil image. Figure 9.1 shows the finite difference stencil for the
approximation to the heat equation that you built in the previous exercise. In this figure we
are showing that the function values 𝑈𝑛

𝑖−1, 𝑈𝑛
𝑖 , and 𝑈𝑛

𝑖+1 at the points 𝑥𝑖−1, 𝑥𝑖, and 𝑥𝑖+1 at
time step 𝑡𝑛 are used to calculate 𝑈𝑛+1

𝑖 . We will build similar stencil diagrams for other finite
difference schemes throughout this chapter.

Figure 9.1: The forward difference stencil for the 1D heat equation.

Exercise 9.2. Now we want to implement your answer to part (d) of the previous exercise to
approximate the solution to the following problem: Solve

𝑢𝑡 = 0.1𝑢𝑥𝑥

on the domain 0 < 𝑥 < 1 and 0 < 𝑡 < 1 with the initial condition with

𝑢(0, 𝑥) = sin(2𝜋𝑥)
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and boundary conditions
𝑢(𝑡, 0) = 0, and𝑢(𝑡, 1) = 0.

For this purpose divide the 𝑥 domain into 20 equal pieces and the 𝑡 domain into 100 equal
pieces.

Some partial code is given below to get you started.

• First we import the proper libraries, set up the time domain, and set up the spatial
domain.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interactive

# Write code to give a vector of times starting at t=0 and ending
# at t=1 that divides the interval into 100 equal pieces.

# Calculate the step size `dt`.

# Write code to give a vector of x values starting at x=0 and
# ending exactly at x=1 that divides the interval into 20 equal pieces.

# Calculate the step size `dx`.

# Specify the diffusion coefficient
D = 0.01
# The coefficient "a" appears in the forward difference scheme.
a = D*dt / dx**2

print("dt=", dt, ", dx=", dx, " and D dt/dx^2=", a)

• Next we build the array 𝑈 so we can store all of the approximations at all times and
at all spatial points. The array will have the dimensions len(t) by len(x). We then
need to enforce the boundary conditions so for all times we fill the proper portions of the
array with the proper boundary conditions. Lastly, we will build the initial condition for
all spatial steps in the first time step.

U = np.zeros((len(t),len(x)))
U[:,0] = # left boundary condition
U[:,-1] = # right boundary condition
U[0,:] = # the function for the init. condition (should depend on x)
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• Now we step through a loop that fills the 𝑈 array one row at a time. Keep in mind
that we want to leave the boundary conditions fixed so we will only fill indices 1 through
-2 (stop and explain this). Be careful to get the indexing correct. For example, if we
want 𝑈𝑛

𝑖 we use U[n,1:-1], if we want 𝑈𝑛
𝑖+1 we use U[n,2:], if we want 𝑈𝑛+1

𝑖 we use
U[n+1,1:-1], etc.

for n in range(len(t)-1):
U[n+1,1:-1] = U[n,?:?] + a*( U[n,?:] - 2*U[n,?:?] + U[n,:?])

• It remains to visualise the solutions. You can either make a plot or an animation to
illustrate the time evolution of 𝑢. For each of these there a various Python packages you
could use. Below is a function plot_solution_1d() using plotly to make a plot and a
function animate_solution_1d() using matplotlib to make an animated 2D plot. You
can use either of these or you can use your own plotting code.

import plotly.graph_objects as go

def plot_solution_1d(t, x, U):
"""Plots the numerical approximation to a function u(t,x).

Args:
t: A vector of time values.
x: A vector of spatial values.
U: A 2D array approximating the solution u(x,t) at each grid point.

"""
fig = go.Figure(data=[go.Surface(z=U, x=x, y=t)])
fig.update_layout(

width=800, height=600,
scene=dict(

yaxis_title='t',
zaxis_title='u'

)
)
return fig

import matplotlib.pyplot as plt
from matplotlib import animation, rc
from IPython.display import HTML

def animate_solution_1d(t, x, U):
"""Animates the numerical approximation to a function u(t,x).
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Args:
t: A vector of time values.
x: A vector of spatial values.
U: A 2D array approximating the solution u(x,t) at each grid point.

"""
fig, ax = plt.subplots()
plt.close()
ax.grid()
ax.set_xlabel("x")
ax.set_ylabel("u")
ax.set_xlim((np.min(x), np.max(x)))
ax.set_ylim((np.min(U), np.max(U)))
frame, = ax.plot([], [], linewidth=2)

# Don't display every time
step = int(len(t)/30)+1
frames = range(0, int(len(t)/step), 1)

def animator(i):
n = i*step
ax.set_title(f"t = {t[n]:.2f}")
frame.set_data(x, U[n,:])
return (frame, )

ani = animation.FuncAnimation(fig, animator, frames=frames, interval=100)
rc('animation', html='jshtml') # embed in the HTML for Google Colab
return ani

Exercise 9.3. � Now wrap up your code for solving the one-dimensional heat equation as a
function so that you can easily call it with different parameters.

def heat1d(u_0, D=0.1, t_0=0, t_max=1, N_t=100, x_left=0, x_right=1, N_x=20):
"""Solves the 1D heat equation using the forward difference method.

This function solves the 1D heat equation with given initial and
boundary conditions. It also prints a diagnostic message stating
the step sizes `dt` and `dx` used and the value of `a = D*dt/dx**2`.

Args:
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u_0: A function giving the initial condition u(0,x).
D: The diffusion coefficient. Defaults to 1.
t_0: The initial time. Defaults to 0.
t_max: The maximum time. Defaults to 1.
N_t: The number of time steps. Defaults to 100.
x_left: The left boundary of the spatial domain. Defaults to 0.
x_right: The right boundary of the spatial domain. Defaults to 1.
N_x: The number of spatial steps. Defaults to 20.

Returns:
A tuple containing the following:

t: A vector of time values.
x: A vector of spatial values.
U: A 2D array approximating the solution u(t,x) at each grid point.

"""
# Your code goes here

Use your function to solve the heat equation with diffusion coefficient𝐷 = 0.1 and the following
initial and boundary conditions:

𝑢(0, 𝑥) = sin(2𝜋𝑥), 𝑢(𝑡, 0) = 0, and𝑢(𝑡, 1)

Use stepsizes Δ𝑡 = 0.01 and Δ𝑥 = 0.01 to determine an approximate value for 𝑢(0.2, 0.25).

Exercise 9.4. Now run the solution method from the previous exercise with the same diffusion
coefficient 𝐷 = 0.1, the same step sizes Δ𝑡 = 0.01 and Δ𝑥 = 0.01, and the same initial and
boundary conditions but run it for a longer time 𝑡 = 0.5 and plot the solution on the domain
𝑡 ∈ [0, 0.5] and 𝑥 ∈ [0, 1]. Do you believe what you see? What is happening to the solution?

Exercise 9.5. � You will have found that you did not get a sensible solution from your method
for the previous problem. The point of this exercise is to show that value of 𝑎 = 𝐷 Δ𝑡

Δ𝑥2 controls
the stability of the forward difference solution to the heat equation, and furthermore that there
is a threshold for 𝑎 above which the forward difference scheme will be unstable. Experiment
with values of Δ𝑡 and Δ𝑥 and conjecture the values of 𝑎 = 𝐷 Δ𝑡

Δ𝑥2 that give a stable result.
Your conjecture should take the form:

If 𝑎 = 𝐷 Δ𝑡
Δ𝑥2 < then the forward difference solution for the 1D heat equation is stable.

Otherwise it is unstable.
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Hint: the threshold is a simple fraction. If you think you have found a value for 𝑎 at which the
method is stable, run the simulation for longer (while keeping the same Δ𝑡) to check that it is
really stable. Close to the threshold the errors grow more slowly (albeit still exponentially).

Exercise 9.6. Consider the one dimensional heat equation with diffusion coefficient 𝐷 = 1:

𝑢𝑡 = 𝑢𝑥𝑥.

We want to solve this equation on the domain 𝑥 ∈ [0, 1] and 𝑡 ∈ [0, 0.1] subject to the initial
condition 𝑢(0, 𝑥) = sin(𝜋𝑥) and the boundary conditions 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0.

(a) Show that the function 𝑢(𝑡, 𝑥) = 𝑒−𝜋2𝑡 sin(𝜋𝑥) is a solution to this heat equation, satisfies
the initial condition, and satisfies the boundary conditions.

(b) Pick values of Δ𝑡 and Δ𝑥 so that you can get a stable forward difference solution to this
heat equation. Then make a plot of your numerical solution.

(c) Compare your plot to the plot of the exact solution that you can get with

X, T = np.meshgrid(x, t)
u_exact = np.exp(-np.pi**2*T)*np.sin(np.pi*X)
plot_solution_1d(t, x, u_exact)

Exercise 9.7. � Now let us change the initial condition to 𝑢(0, 𝑥) = sin(𝜋𝑥) + sin(3𝜋𝑥). We
will keep the same boundary conditions as before: 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0.

(a) Show that the function 𝑢(𝑡, 𝑥) = 𝑒−𝜋2𝑡 sin(𝜋𝑥)+𝑒−9𝜋2𝑡 sin(3𝜋𝑥) is a solution to this heat
equation, matches this new initial condition, and matches the boundary conditions.

(b) Pick values of Δ𝑡 and Δ𝑥 so that you can get a stable forward difference solution to this
heat equation. Make a 3d plot of your numerical solution.

(c) Compare your plot to the plot of the exact solution.
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9.2.2 Different Boundary Conditions

In any initial and boundary value problem such as the heat equation, the boundary are often
of Dirichlet or Neumann type. In Dirichlet boundary conditions the values of the solution at
the boundary are specified. In contrast, Neumann boundary conditions specify the flux at the
boundary instead of the value of the solution.

Exercise 9.8 (Time-dependent Dirichlet Boundary Condition). Modify your 1D heat equation
code to plot an approximate solution of the diffusion equation 𝑢𝑡 = 0.5𝑢𝑥𝑥 with 𝑥 ∈ (0, 1),
𝑢(0, 𝑥) = sin(2𝜋𝑥), 𝑢(𝑡, 0) = 0 and 𝑢(𝑡, 1) = sin(5𝜋𝑡).

Exercise 9.9 (Neumann Boundary Condition). � Consider the 1D heat equation 𝑢𝑡 = 𝑢𝑥𝑥 with
boundary conditions 𝑢𝑥(𝑡, 0) = 0 and 𝑢(𝑡, 1) = 0 with initial condition 𝑢(0, 𝑥) = cos(𝜋𝑥/2).
Notice that the initial condition satisfies both boundary conditions: 𝑑

𝑑𝑥(cos(𝜋 ⋅ 𝑥/2))∣
𝑥=0

= 0
and cos(𝜋 ⋅ 1/2) = 0. As the heat profile evolves in time the Neumann boundary condition
𝑢𝑥(𝑡, 0) = 0 says that the slope of the solution needs to be fixed at 0 at the left-hand boundary.

(a) Draw several images of what the solution to the PDE should look like as time evolves.
Be sure that all boundary conditions are satisfied and that your solution appears to solve
the heat equation.

(b) The Neumann boundary condition 𝑢𝑥(𝑡, 0) = 0 can be approximated with the first order
approximation

𝑢𝑥(𝑡𝑛, 0) ≈
𝑈𝑛

1 − 𝑈𝑛
0

Δ𝑥 for all 𝑛.

If we set this approximation to 0 (since 𝑢𝑥(𝑡, 0) = 0) and solve for 𝑈𝑛
0 we get an additional

constraint at every time step of the numerical solution to the heat equation:

𝑈𝑛
0 = ??? for all 𝑛.

(c) Modify your 1D heat equation code to implement this Neumann boundary condition,
plot the numerical solution and verify visually that the Neumann boundary is satisfied.

9.2.3 In Two Spatial Dimensions

Now we transition to the two dimensional heat equation. Instead of thinking of this as heating
a long metal rod we can think of heating a thin plate of metal (like a flat cookie sheet). The
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heat equation models the propagation of the heat energy throughout the 2D surface. In two
spatial dimensions the heat equation is

𝜕𝑢
𝜕𝑡 = 𝐷(𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2) ,

or, using subscript notation for the partial derivatives,

𝑢𝑡 = 𝐷(𝑢𝑥𝑥 + 𝑢𝑦𝑦) .

Exercise 9.10. Let us build a numerical solution to the 2D heat equation. We need to make
a minor modification to our notation since there is now one more spatial dimension to keep
track of. Let 𝑈𝑛

𝑖,𝑗 be the approximation to 𝑢 at the point (𝑡𝑛, 𝑥𝑖, 𝑦𝑗). For example, 𝑈4
2,3 will be

the approximation to the solution at the point (𝑡4, 𝑥2, 𝑦3).

(a) We already know how to approximate the time derivative in the heat equation:

𝑢𝑡(𝑡𝑛, 𝑥𝑖, 𝑦𝑗) ≈
𝑈𝑛+1

𝑖,𝑗 − 𝑈𝑛
𝑖,𝑗

Δ𝑡 .

The new challenge now is that we have two spatial partial derivatives: one in 𝑥 and one
in 𝑦. Use what you learned in Chapter 5 to write the approximations of 𝑢𝑥𝑥 and 𝑢𝑦𝑦.

𝑢𝑥𝑥(𝑡𝑛, 𝑥𝑖, 𝑦𝑗) ≈
??? − ??? + ???

Δ𝑥2

𝑢𝑦𝑦(𝑡𝑛, 𝑥𝑖, 𝑦𝑗) ≈
??? − ??? + ???

Δ𝑦2
Take careful note that the index 𝑖 is the only one that changes for the 𝑥 derivative.
Similarly, the index 𝑗 is the only one that changes for the 𝑦 derivative.

(b) Put your answers to part (a) together with the 2D heat equation

𝑈𝑛+1
𝑖,𝑗 − 𝑈𝑛

𝑖,𝑗
Δ𝑡 = 𝐷(??? − ??? + ???

Δ𝑥2 + ??? − ??? + ???
Δ𝑦2 ) .

(c) Let us make one simplifying assumption. Choose the partition of the domain so that
Δ𝑥 = Δ𝑦. Note that we can usually do this in square domains. In more complicated
domains we will need to be more careful. Simplify the right-hand side of your answer to
part (b) under this assumption.

𝑈𝑛+1
𝑖,𝑗 − 𝑈𝑛

𝑖,𝑗
Δ𝑡 = 𝐷(??? + ??? − ??? + ??? + ???

??? ) .
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(d) Now solve your result from part (c) for 𝑈𝑛+1
𝑖,𝑗 . Your answer is the explicit forward

difference scheme for the 2D heat equation.

𝑈𝑛+1
𝑖,𝑗 = 𝑈???

???,??? +
𝐷 ⋅ ???
??? (??? + ??? − ??? + ??? + ???)

The finite difference stencil for the 2D heat equation is a bit more complicated since we now
have three indices to track. Hence, the stencil is naturally three dimensional. Figure 9.2
shows the stencil for the forward difference scheme that we built in the previous exercise. The
left-hand subplot in the figure shows the five points used in time step 𝑡𝑛, and the right-hand
subplot shows the one point that is calculated at time step 𝑡𝑛+1.

Figure 9.2: The finite difference stencil for the 2D heat equation.

Exercise 9.11. Now we need to implement the finite difference scheme that you developed in
the previous problem. As a model problem, consider the 2D heat equation 𝑢𝑡 = 𝐷(𝑢𝑥𝑥 +𝑢𝑦𝑦)
on the domain (𝑥, 𝑦) ∈ [0, 1] × [0, 1] with the initial condition 𝑢(0, 𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦),
Dirichlet boundary conditions 𝑢(𝑡, 𝑥, 0) = 𝑢(𝑡, 𝑥, 1) = 𝑢(𝑡, 0, 𝑦) = 𝑢(𝑡, 1, 𝑦) = 0, and 𝐷 = 1.
Fill in the holes in the following code chunks.

• First we import the proper libraries and set up the domains for 𝑥, 𝑦, and 𝑡.
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import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm # this allows for color maps
from ipywidgets import interactive

# Write code to build a linearly spaced array of x values
# starting at 0 and ending at exactly 1
x = # your code here
y = x # this could be generalised later
# The consequence of the previous line is that dy = dx.
dx = # Extract dx from your array of x values.
# Now write code to build a linearly spaced array of time values
# starting at 0 and ending at 0.1.
# You will want to use many more values for time than for space
# (think about the stability conditions from the 1D heat equation).
t = # your code here
dt = # Extract dt from your array of t values

# Next we will use the np.meshgrid() command to turn the arrays of
# x and y values into 2D grids of x and y values.
# If you match the corresponding entries of X and Y then you get
# every ordered pair in the domain.
Y, X = np.meshgrid(y, x)

# Next we set up a 3 dimensional array of zeros to store all of
# the time steps of the solutions.
U = np.zeros((len(t), len(x), len(y)))

• Next we have to set up the boundary and initial conditions for the given problem.

U[0,:,:] = # initial condition depending on X and Y
U[:,0,:] = # boundary condition for x=0
U[:,-1,:] = # boundary condition for x=1
U[:,:,0] = # boundary condition for y=0
U[:,:,-1] = # boundary condition for y=1

• We know that the value of 𝐷Δ𝑡/Δ𝑥2 controls the stability of the forward difference
method. Therefore, the next step in our code is to calculate this value and print it.

D = 1
a = D*dt/dx**2
print(a)
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• Next for the part of the code that actually calculates all of the time steps. Be sure to
keep the indexing straight. Also be sure that we are calculating all of the spatial indices
inside the domain since the boundary conditions dictate what happens on the boundary.

for n in range(len(t)-1):
U[n+1,1:-1,1:-1] = U[n,1:-1,1:-1] + \

a*(U[n, ?:? , ?:?] + \
U[n, ?:?, ?:?] - \
4*U[n, ?:?, ?:?] + \
U[n, ?:?, ?:?] + \
U[n, ?:?, ?:?])

• Finally, we just need to visualize the solution. We can no longer make a plot of 𝑢 against
𝑡, 𝑥 and 𝑦 because that would require four dimensions. So we will animate the solution.
You can use the following function:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
from IPython.display import HTML

def animate_solution_2d(t, x, y, U):
Y, X = np.meshgrid(y, x)

# Set up the figure and axis
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# Initialize the surface plot
surface = [ax.plot_surface(X, Y, U[0, :, :], cmap='viridis')]

# Don't display every time
step = int(len(t)/30)+1
frames = int(len(t)/step)

def animate(i):
n = i*step
# Update the data of the surface plot for each frame
ax.clear() # Clear the previous frame
surface[0] = ax.plot_surface(X, Y, U[n, :, :], cmap='viridis')
ax.set_zlim(np.min(U), np.max(U))
ax.set_title(f"Time: {t[n]:.2f}")
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# Create animation
ani = animation.FuncAnimation(fig, animate, frames=frames, repeat=True)
plt.close()

# Display the animation
return HTML(ani.to_jshtml())

Exercise 9.12. � Time to do some experimentation with your new 2D heat equation code!
Numerically solve the 2D heat equation with different boundary conditions (both Dirichlet
and Neumann). Be prepared to present your solutions.

Exercise 9.13. In order for the forward difference solution to the 2D heat equation on a
square domain to be stable we need 𝐷Δ𝑡/Δ𝑥2 < .

Experiment with several parameters to empirically determine the bound.

Exercise 9.14. Now solve the 2D heat equation on a rectangular domain. You will need to
make some modifications to your code since it is unlikely that assuming that Δ𝑥 = Δ𝑦 is a
good assumption any longer. Again, be prepared to present your solutions.

9.2.4 Variations on the Heat Equation

The heat equation is a parabolic PDE and the forward-difference method that we have devel-
oped can be adapted to work for other parabolic PDEs.
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9.2.4.1 Reaction-Diffusion Equations

For example, the heat equation can be modified to include a reaction term. The reaction-
diffusion equation is a PDE that models the diffusion of a substance in space and time with a
reaction term that describes the rate of change of the substance due to some reaction. While
it has its origin in chemistry, it shows up in many other fields as well, for example in ecology
and epidemiology.

Exercise 9.15 (Fisher-KPP Equation). � Modify your 1D heat equation code to calculate an
approximate solution of the Fisher-KPP equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢)
with 𝑡 ∈ [0, 10], 𝑥 ∈ (0, 50), boundary conditions

𝑢(𝑡, 0) = 0, 𝑢(𝑡, 50) = 1
and initial condition

𝑢(0, 𝑥) =
1 + tanh(𝑥 − 40

2 )
2 .

Use animate_solution_1d() to visualize the solution. How does the solution change as time
evolves?

9.2.4.2 Advective-Diffusion Equations

The diffusion term usually arises from random spatial motion of particles. However, in some
cases the particles are advected by a flow field. In this case we need to add an advection term
to the diffusion equation. The advection-diffusion equation is a PDE that models the diffusion
of a substance in space and time with an advection term that describes the rate of change of
the substance due to some flow field.

Exercise 9.16. � Modify your 1D heat equation code to plot an approximate solution of the
following simple advection-diffusion equation:

𝑢𝑡 = 0.1𝑢𝑥𝑥 − 𝑢𝑥

Use the forward difference formula for the 𝑢𝑥 term and the centred difference formula for the
𝑢𝑥𝑥 term. Use the initial condition 𝑢(0, 𝑥) = sin(𝜋𝑥), Dirichlet boundary conditions 𝑢(𝑡, 0) = 0
and 𝑢(𝑡, 1) = 0, and 𝑡 ∈ [0, 1]. Use 20 spatial steps and 100 time steps. Make a plot and an
animation of the solution.
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9.2.5 Implicit Methods

Let us summarize the stability criteria for the forward difference solutions to the heat equa-
tion.

• In the 1D heat equation the forward difference solution is stable if 𝐷Δ𝑡/Δ𝑥2 < .

• In the 2D heat equation the forward difference solution is stable if 𝐷Δ𝑡/Δ𝑥2 <
(assuming a square domain where Δ𝑥 = Δ𝑦)

Exercise 9.17 (Sawtooth Errors). We have already seen that the 1D heat equation is stable
if 𝐷Δ𝑡/Δ𝑥2 < 0.5. The goal of this problem is to show what, exactly, occurs when we choose
parameters in the unstable region. We will solve the PDE 𝑢𝑡 = 𝑢𝑥𝑥 on the domain 𝑥 ∈
[0, 1] with initial conditions 𝑢(0, 𝑥) = sin(𝜋𝑥) and homogeneous Dirichlet boundary conditions
𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 for all 𝑡 ∈ [0, 0.25]. The analytic solution is 𝑢(𝑡, 𝑥) = 𝑒−𝜋2𝑡 sin(𝜋𝑥). To
build the spatial and temporal grid use 20 spatial steps and 100 time steps. This means that
Δ𝑥 = 0.05 and Δ𝑡 = 0.0025 so the ratio 𝐷Δ𝑡/Δ𝑥2 = 1 > 0.5 (certainly in the unstable region).
Solve the heat equation with your heat1d() function using these parameters. Make plots of
the approximate solution on top of the exact solution at time steps 0, 10, 20, 30, 31, 32, 33,
34, etc. Describe what you observe.

Exercise 9.18 (Hedgehog Errors). Solve the 2D heat equation on the unit square with homo-
geneous Dirichlet boundary conditions with the following parameters:

• A diffusion coefficient of 𝐷 = 1;
• A partition of 21 points in both the 𝑥 and 𝑦 direction;

• 301 points between 0 and 0.25 for time;

• An initial condition of 𝑢(0, 𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).

What happens near time step number 70?

It is actually possible to beat the stability criteria given in the previous exercises! What follows
are two implicit methods that use a forward-looking scheme to help completely avoid unstable
solutions. The primary advantage to these schemes is that we will not need to pay as close
attention to the ratio of the time step to the square of the spatial step. Instead, we can take
time and spatial steps that are appropriate for the application we have in mind.
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Exercise 9.19 (Backward Difference Scheme). � For the 1D heat equation 𝑢𝑡 = 𝐷𝑢𝑥𝑥 we have
been finding the numerical solution using the explicit finite difference scheme

𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖
Δ𝑡 = 𝐷𝑈𝑛

𝑖+1 − 2𝑈𝑛
𝑖 + 𝑈𝑛

𝑖−1
Δ𝑥2

where we approximate the spatial derivative with the centred difference and the time derivative
with the usual forward difference. If, however, we use the backward difference formula for the
time derivative we get the finite difference scheme

𝑈𝑛
𝑖 − 𝑈𝑛−1

𝑖
Δ𝑡 = 𝐷𝑈𝑛

𝑖+1 − 2𝑈𝑛
𝑖 + 𝑈𝑛

𝑖−1
Δ𝑥2 .

or, shifting to the next timestep,

𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖
Δ𝑡 = 𝐷𝑈𝑛+1

𝑖+1 − 2𝑈𝑛+1
𝑖 + 𝑈𝑛+1

𝑖−1
Δ𝑥2 .

This may seem completely ridiculous since we do not yet know the information at time step
𝑛 + 1 but some algebraic rearrangement shows that we can treat this as a system of linear
equations which can be solved (using something like np.linalg.solve()) for the (𝑛 + 1)𝑠𝑡
time step.

We again introduce the coefficient 𝑎 = 𝐷Δ𝑡/Δ𝑥2. This will save a little bit of writing in the
coming steps.

1. Rearrange the new finite difference scheme so that all of the terms at the (𝑛 + 1)𝑠𝑡
time step are on the left-hand side and all of the term at the 𝑛𝑡ℎ time step are on the
right-hand side.

( )𝑈𝑛+1
𝑖−1 + ( )𝑈𝑛+1

𝑖 + ( )𝑈𝑛+1
𝑖+1 = 𝑈𝑛

𝑖

2. Now we are going to build a very small example with only 6 spatial points so that you
can clearly see the structure of the resulting linear system.

a. If we have 6 total points in the spatial grid (𝑥0, 𝑥1,… , 𝑥5) then we have the following
equations (fill in the blanks):

(for 𝑥1: ) 𝑈𝑛+1
0 + 𝑈𝑛+1

1 + 𝑈𝑛+1
2 = 𝑈𝑛

1
(for 𝑥2: ) 𝑈𝑛+1

1 + 𝑈𝑛+1
2 + 𝑈𝑛+1

3 = 𝑈𝑛
2

(for 𝑥3: ) 𝑈𝑛+1
2 + 𝑈𝑛+1

3 + 𝑈𝑛+1
4 = 𝑈𝑛

3
(for 𝑥4: ) 𝑈𝑛+1

3 + 𝑈𝑛+1
4 + 𝑈𝑛+1

5 = 𝑈𝑛
4
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b. Notice that we aready know 𝑈𝑛+1
0 and 𝑈𝑛+1

5 since these are dictated by the boundary
conditions (assuming Dirichlet boundary conditions). Hence we can move these
known quantities to the right-hand side of the equations and hence rewrite the
system of equations as:

(for 𝑥1: ) 𝑈𝑛+1
1 + 𝑈𝑛+1

2 = 𝑈𝑛
1 + 𝑈𝑛+1

0
(for 𝑥2: ) 𝑈𝑛+1

1 + 𝑈𝑛+1
2 + 𝑈𝑛+1

3 = 𝑈𝑛
2

(for 𝑥3: ) 𝑈𝑛+1
2 + 𝑈𝑛+1

3 + 𝑈𝑛+1
4 = 𝑈𝑛

3
(for 𝑥4: ) 𝑈𝑛+1

3 + 𝑈𝑛+1
4 = 𝑈𝑛

4 + 𝑈𝑛+1
5

c. Now we can write this as a matrix equation:

⎛⎜⎜⎜⎜
⎝

0 0
0

0
0 0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑈𝑛+1
1

𝑈𝑛+1
2

𝑈𝑛+1
3

𝑈𝑛+1
4

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑈𝑛
1

𝑈𝑛
2

𝑈𝑛
3

𝑈𝑛
4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

𝑈𝑛+1
0

0
0
𝑈𝑛+1

5

⎞⎟⎟⎟⎟
⎠

3. At this point the structure of the coefficient matrix on the left and the vector sum on
the right should be clear (even for more spatial points). It is time for us to start writing
some code. we will start with the basic setup of the problem.

import numpy as np
import matplotlib.pyplot as plt

D = 1
x = # set up a linearly spaced spatial domain
t = # set up a linearly spaced temporal domain
dx = x[1]-x[0]
dt = t[1]-t[0]
a = D*dt/dx**2
IC = lambda x: # write a function for the initial condition
BCleft = lambda t: 0*t # left boundary condition
BCright = lambda t: 0*t # right boundary condition

U = np.zeros((len(t), len(x))) # set up a blank array for U
U[0,:] = IC(x) # set up the initial condition
U[:,0] = BCleft(t) # set up the left boundary condition
U[:,-1] = BCright(t) # set up the right boundary condition

4. Next we write a function that takes in the number of spatial points and returns the
coefficient matrix for the linear system. Take note that the first and last rows take a
little more care than the rest.
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def coeffMatrix(M,a): # we are using M=len(x) as the first input
A = np.zeros((M-2, M-2))
# why are we using M-2 x M-2 for the size?
A[0,0] = # top left entry
A[0,1] = # entry in the first row second column
A[-1,-1] = # bottom right entry
A[-1,-2] = # entry in the last row second to last column
for i in range(1,M-3): # now loop through all of the other rows

A[i,i] = # entry on the main diagonal
A[i,i-1] = # entry on the lower diagonal
A[i,i+1] = # entry on the upper diagonal

return A

A = coeffMatrix(len(x),a)
print(A)
plt.spy(A)
# spy is a handy plotting tool that shows the structure
# of a matrix (optional)
plt.show()

5. Next we write a loop that iteratively solves the system of equations for each new time
step.

for n in range(len(t)-1):
b1 = U[n,???]
# b1 is a vector of U at step n for the inner spatial nodes
b2 = np.zeros(length(b1)) # set up the second right-hand vector
b2[0] = ???*BCleft(t[n+1]) # fill in the correct first entry
b2[-1] = ???*BCright(t[n+1]) # fill in the correct last entry
b = b1 + b2 # The vector "b" is the right side of the equation
#
# finally use a linear algebra solver to fill in the
# inner spatial nodes at step n+1
U[n+1,???] = ???

6. All of the hard work is now done. It remains to plot the solution. Try this method
on several sets of initial and boundary conditions for the 1D heat equation. Be sure to
demonstrate that the method is stable no matter the values of Δ𝑡 and Δ𝑥.

7. What are the primary advantages and disadvantages to the implicit method described
in this problem?

278



Exercise 9.20 (The Crank-Nicolson Method). � We conclude this section with one more
implicit scheme: the Crank-Nicolson Method. In this method we take the average of the
forward and backward difference schemes:

𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖
Δ𝑡 = 1

2 [𝐷(𝑈𝑛
𝑖−1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖+1

Δ𝑥2 ) +𝐷(𝑈𝑛+1
𝑖−1 − 2𝑈𝑛+1

𝑖 + 𝑈𝑛+1
𝑖+1

Δ𝑥2 )] .

Letting 𝑟 = 𝐷Δ𝑡/(2Δ𝑥2) we can rearrange to get

𝑈𝑛+1
𝑖−1 + 𝑈𝑛+1

𝑖 + 𝑈𝑛+1
𝑖+1 = 𝑈𝑛

𝑖−1 + 𝑈𝑛
𝑖 + 𝑈𝑛

𝑖+1.
This can now be viewed as a system of equations. Let us build this system carefully and then
write code to solve the heat equation from the previous problems with the Crank-Nicolson
method. For this problem we will assume fixed Dirichlet boundary conditions on both the left-
and right-hand sides of the domain.

1. First let us write the equations for several values of 𝑖.
(𝑥1 ) ∶ 𝑈𝑛+1

0 + 𝑈𝑛+1
1 + 𝑈𝑛+1

2 = 𝑈𝑛
0 + 𝑈𝑛

1 + 𝑈𝑛
2

(𝑥2 ) ∶ 𝑈𝑛+1
1 + 𝑈𝑛+1

2 + 𝑈𝑛+1
3 = 𝑈𝑛

1 + 𝑈𝑛
2 + 𝑈𝑛

3
(𝑥3 ) ∶ 𝑈𝑛+1

2 + 𝑈𝑛+1
3 + 𝑈𝑛+1

4 = 𝑈𝑛
2 + 𝑈𝑛

3 + 𝑈𝑛
4

⋮ ⋮
(𝑥𝑀−2 ) ∶ 𝑈𝑛+1

𝑀−3 + 𝑈𝑛+1
𝑀−2 + 𝑈𝑛+1

𝑀−1 = 𝑈𝑛
𝑀−3 + 𝑈𝑛

𝑀−2 + 𝑈𝑛
𝑀−1

where 𝑀 is the number of spatial points (enumerated 𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑀−1).

2. The first and last equations can be simplified since we are assuming that we have Dirichlet
boundary conditions. Therefore for 𝑥1 we can rearrange to move the 𝑈𝑛+1

0 term to the
right-hand side since it is given for all time. Similarly for 𝑥𝑀−2 we can move the 𝑈𝑛+1

𝑀−1
term to the right-hand side since it is fixed for all time. Rewrite these two equations.

3. Verify that the left-hand side of the equations that we have built in parts (1) and (2)
can be written as the following matrix-vector product:

⎛⎜⎜⎜⎜⎜⎜
⎝

(1 + 2𝑟) −𝑟 0 0 ⋯ 0
−𝑟 (1 + 2𝑟) −𝑟 0 ⋯ 0
0 −𝑟 (1 + 2𝑟) −𝑟 ⋯ 0
⋮ 0
0 ⋯ 0 −𝑟 (1 + 2𝑟)

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑈𝑛+1
1

𝑈𝑛+1
2

𝑈𝑛+1
3
⋮

𝑈𝑛+1
𝑀−2

⎞⎟⎟⎟⎟⎟⎟
⎠

4. Verify that the right-hand side of the equations that we built in parts (1) and (2) can be
written as

⎛⎜⎜⎜⎜⎜⎜
⎝

(1 − 2𝑟) 𝑟 0 0 ⋯ 0
𝑟 (1 − 2𝑟) 𝑟 0 ⋯ 0
0 𝑟 (1 − 2𝑟) 𝑟 0
⋮

𝑟 (1 − 2𝑟)

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑈𝑛
1

𝑈𝑛
2

𝑈𝑛
3
⋮

𝑈𝑛
𝑀−2

⎞⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑟(𝑈𝑛+1
0 + 𝑈𝑛

0 )
0
⋮
0

𝑟(𝑈𝑛
𝑀−1 + 𝑈𝑛+1

𝑀−1)

⎞⎟⎟⎟⎟⎟⎟
⎠
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5. Now for the wonderful part! The entire system of equations from part (a) can be written
as

𝐴𝒰𝑛+1 = 𝐵𝒰𝑛 +𝐷.
What are the matrices 𝐴 and 𝐵 and what are the vectors 𝒰𝑛+1, 𝒰𝑛, and 𝐷?

6. To solve for 𝒰𝑛+1 at each time step we simply need to do a linear solve:

𝒰𝑛+1 = 𝐴−1 (𝐵𝒰𝑛 +𝐷) .

Of course, we will never do a matrix inverse on a computer. Instead we can lean on tools
such as np.linalg.solve() to do the linear solve for us.

7. Finally. Write code to solve the 1D Heat Equation implementing the Crank Nicolson
method described in this problem. The setup of your code should be largely the same
as for the implicit method from Exercise 9.19. You will need to construct the matrices
𝐴 and 𝐵 as well as the vector 𝐷. Then your time stepping loop will contain the code
from part 6 of this problem.

Exercise 9.21. To graphically show the Crank Nicolson method we can again use a finite
difference stencil to show where the information is coming from and where it is going to. In
Figure 9.3 notice that there are three points at the new time step that are used to calculate
the value of 𝑈𝑛+1

𝑖 at the new time step. Sketch a similar image for the original implicit scheme
from Exercise 9.19

It turns out that the error terms for the forward and backward difference methods have the
form 𝐶Δ𝑡+𝑂(Δ𝑡2) and 𝐶Δ𝑡+𝑂(Δ𝑡2). Taking the average cancels the ±𝐶Δ𝑡 terms and leaves
an error of order 𝑂(Δ𝑡2); in combination with the space variable, we have an error of order
𝑂(Δ𝑡2) + 𝑂(Δ𝑥2) for the whole method, as compared with 𝑂(Δ𝑡) + 𝑂(Δ𝑥2) for the forward
and backward difference methods. Like the backward difference method, the Crank-Nicolson
method is absolutely stable.

9.2.6 Stability

While exploring the explicit finite-difference method for solving the 1d heat equation 𝑢𝑡 = 𝐷𝑢𝑥𝑥
we encountered the stability condition

𝑎 = 𝐷Δ𝑡
(Δ𝑥)2 ≤ 1

2.

We now want to understand where this condition comes from.
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Figure 9.3: The finite difference stencil for the Crank Nicolson method.

We start by setting up the notation for solving the heat equation using the explicit finite-
difference method. We discretise the spatial variable 𝑥 into 𝑁 intervals with grid points
𝑥0,… , 𝑥𝑁 with stepsize Δ𝑥 = (𝑥𝑁 −𝑥0)/𝑁 . We discretise the time variable 𝑡 into 𝑀 intervals
with grid points 𝑡0,… , 𝑡𝑀 with stepsize Δ𝑡 = (𝑡𝑀 − 𝑡0)/𝑀 . We denote the approximation
of 𝑢(𝑡𝑛, 𝑥𝑖) by 𝑈𝑛

𝑖 . The initial condition sets 𝑈0
𝑖 = 𝑢(𝑡0, 𝑥𝑖). We work with homogeneous

Dirichlet boundary conditions, so 𝑈𝑛
0 = 𝑈𝑛

𝑁 = 0 for all 𝑛.
The approximations at the remaining points is then calculated by the formula

𝑈𝑛+1
𝑖 = 𝑈𝑛

𝑖 + 𝑎(𝑈𝑛
𝑖+1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖−1)

for 𝑖 = 1,… ,𝑁 − 1. You derived this in Section 9.2.1 using the finite-difference formulae for
the derivatives from Chapter 5. We rewrite this in matrix notation:

⎛⎜
⎝

𝑈𝑛+1
1
⋮

𝑈𝑛+1
𝑁−1

⎞⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 − 2𝑎 𝑎
𝑎 1 − 2𝑎 𝑎

⋱ ⋱ ⋱
𝑎 1 − 2𝑎

⎞⎟⎟⎟⎟
⎠

⎛⎜
⎝

𝑈𝑛
1
⋮

𝑈𝑛
𝑁−1

⎞⎟
⎠

.

The matrix is tridiagonal, with 1 − 2𝑎 on the diagonal and 𝑎 on the two off-diagonals. We
denote the matrix by 𝐴 and the two vectors by U𝑛+1 and U𝑛 respectively. So we have the
formula

U𝑛+1 = 𝐴U𝑛.
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The solution at time 𝑡𝑛 is then given by

U𝑛 = 𝐴𝑛U0.

We want to understand how errors evolve over time. If errors grow exponentially over time
then we call the method unstable and the method is not useful.

Let us assume that at some step, for convenience let us choose step 0, an error � is introduced:

Ũ0 = U0 + �.

Then after 𝑛 steps we have

Ũ𝑛 = 𝐴𝑛Ũ0 = 𝐴𝑛(U0 + �) = 𝐴𝑛U0 +𝐴𝑛� = U𝑛 +𝐴𝑛�.

So the error at time 𝑡𝑛 is
�𝑛 = 𝐴𝑛�.

To see if the error grows exponentially over time, we expand the initial error in terms of the
eigenvectors of the matrix 𝐴:

� = ∑
𝑖

𝜖𝑖v𝑖,

where
𝐴v𝑖 = 𝜆𝑖v𝑖

and the sum is over all eigenvectors v𝑖 of 𝐴. Then

�𝑛 = ∑
𝑖

𝜖𝑖𝜆𝑛
𝑖 v𝑖.

This shows that if all eigenvalues have absolute value less than 1, then the method is stable. If
at least one eigenvalue has absolute value greater than 1, then the corresponding component
of the error will grow exponentially with time and the method is unstable.

The eigenvalues of the matrix 𝐴 are the roots of the characteristic polynomial

det(𝐴 − 𝜆𝐼) = 0.

There is a nice method to determine the eigenvalues of the matrix 𝐴, using Fourier analysis.
We will not discuss this in this module and instead just give the result and then look at a
simple example. The result (which you do not need to remember) is that the eigenvalues of
the matrix 𝐴 are given by

𝜆𝑘 = 1 − 4𝑎(sin( 𝑘𝜋
2𝑁 ))

2

for 𝑘 = 1,… ,𝑁 − 1. For stability we need |𝜆𝑘| < 1 for all 𝑘, i.e.,

0 ≤ 𝑎(sin( 𝑘𝜋
2𝑁 ))

2
≤ 1

2
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for all 𝑘. The most stringent condition is that coming from 𝑘 = 𝑁−1, so the stability condition
is

𝑎 ≤ 1
2 (sin((𝑁 − 1)𝜋

2𝑁 ))
−2

.

In the limit 𝑁 → ∞ this gives the condition 𝑎 ≤ 1/2.

Example 9.1. Consider the heat equation on the spatial domain 𝑥 ∈ [0, 1] and divide this
into three subintervals, so that our spatial grid consists of 𝑥0 = 0, 𝑥1 = 1/3, 𝑥2 = 2/3 and
𝑥3 = 1. The matrix 𝐴 is then

𝐴 = (1 − 2𝑎 𝑎
𝑎 1 − 2𝑎 ) .

The characteristic polynomial is

det(𝐴 − 𝜆𝐼) = ∣1 − 2𝑎 − 𝜆 𝑎
𝑎 1 − 2𝑎 − 𝜆∣

= (1 − 2𝑎 − 𝜆)2 − 𝑎2
= 𝜆2 − 2(1 − 2𝑎)𝜆 + (1 − 2𝑎)2 − 𝑎2.

The roots of this polynomial are
𝜆± = 1 − 2𝑎 ± 𝑎.

We need both of these to have a magnitude less than 1 for the method to be stable. This gives
us an upper bound on the allowed 𝑎. The eigenvalue whose magnitude will increase above 1
first as 𝑎 increases is 𝜆− = 1 − 3𝑎, which has magnitude 1 when 𝑎 = 2/3. So the stability
condition is 𝑎 ≤ 2/3.

9.3 The Wave Equation

Any material below this point is optional and will not be assessed.

The problems that we have dealt with thus far all model natural diffusion processes: heat
transport, molecular diffusion, etc. Another interesting physical phenomenon is that of wave
propagation. The 1D wave equation is

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥

where 𝑐 is a parameter modelling the stiffness of the medium the wave is travelling through.
With homogeneous Dirichlet boundary conditions we can think of this as the behaviour of a
guitar string after it has been plucked. If the boundaries are in motion then the model might
be of someone wiggling a taught string from one end.
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Exercise 9.22. Let us write code to numerically solve the 1D wave equation. As before, we
use the notation 𝑈𝑛

𝑖 to represent the approximate solution 𝑢(𝑡, 𝑥) at the point 𝑡 = 𝑡𝑛 and
𝑥 = 𝑥𝑖.

1. Give a reasonable discretization of the second derivative in time:

𝑢𝑡𝑡(𝑡𝑛, 𝑥𝑖) ≈ .

2. Give a reasonable discretization of the second derivative in space:

𝑢𝑥𝑥(𝑡𝑛, 𝑥𝑖) ≈ .

3. Put your answers to parts (a) and (b) together with the wave equation to get

??? − ??? + ???
Δ𝑡2 = 𝑐2 ??? − ??? + ???

Δ𝑥2 .

4. Solve the equation from part 3 for 𝑈𝑛+1
𝑖 . The resulting difference equation is the finite

difference scheme for the 1D wave equation.

5. You should notice that the finite difference scheme for the wave equation references two
different times: 𝑈𝑛

𝑖 and 𝑈𝑛−1
𝑖 . Based on this observation, what information do we need

to in order to actually start our numerical solution?

6. Consider the wave equation 𝑢𝑡𝑡 = 2𝑢𝑥𝑥 in 𝑥 ∈ (0, 1) with 𝑢(0, 𝑥) = 4𝑥(1−𝑥), 𝑢𝑡(0, 𝑥) = 0,
and 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0. Use the finite difference scheme that you built in this problem
to approximate the solution to this PDE.

Figure 9.4 shows the finite difference stencil for the 1D wave equation. Notice that we need
two prior time steps in order to advance to the new time step. This means that in order to
start the finite difference scheme for the wave equation we need to have information about
time 𝑡0 and also time 𝑡1. We get this information by using the two initial conditions 𝑢(0, 𝑥)
and 𝑢𝑡(0, 𝑥).
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Figure 9.4: The finite difference stencil for the 1D wave equation.

Exercise 9.23. The ratio 𝑐2Δ𝑡2/Δ𝑥2 shows up explicitly in the finite difference scheme for
the 1D wave equation. Just like in the heat equation, this parameter controls when the
finite difference solution will be stable. Experiment with your finite difference solution and
conjecture a value of 𝑎 = 𝑐2Δ𝑡2/Δ𝑥2 which divides the regions of stability versus instability.
Your answer should be in the form:

If 𝑎 = 𝑐2Δ𝑡2/Δ𝑥2 < then the finite difference scheme for the 1D wave equation will
be stable. Otherwise it will be unstable.

Exercise 9.24. Show several plots demonstrating what occurs to the finite difference solution
of the wave equation when the parameters are in the unstable region and right on the edge of
the unstable region.

Exercise 9.25. What is the expected error in the finite difference scheme for the 1D wave
equation? What does this mean in plain English?
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Exercise 9.26. Use your finite difference code to solve the 1D wave equation

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥

with boundary conditions 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0, initial condition 𝑢(0, 𝑥) = 4𝑥(1 − 𝑥), and zero
initial velocity. Experiment with different values of 𝑐2. What does the parameter 𝑐 do to the
wave? Give a physical interpretation of 𝑐.

Exercise 9.27. Solve the 1D wave equation

𝑢𝑡𝑡 = 𝑢𝑥𝑥

with Dirichlet boundary conditions 𝑢(𝑡, 0) = 0.4 sin(𝜋𝑡) and 𝑢(𝑡, 1) = 0 along with initial
condition 𝑢(0, 𝑥) = 0 and zero initial velocity. This time the left-hand boundary is being
controlled externally and the string starts off at equilibrium. Give a physical situation where
this sort of setup might arise. Then modify your solution so that both sides of the string are
being wiggled at different frequencies.

Exercise 9.28. Now consider the 2D wave equation

𝑢𝑡𝑡 = 𝑐2 (𝑢𝑥𝑥 + 𝑢𝑦𝑦) .

We want to build a numerical solution to this new PDE. Just like with the 2D heat equation
we propose the notation 𝑈𝑛

𝑖,𝑗 for the approximation of the function 𝑢(𝑡, 𝑥, 𝑦) at the point 𝑡 = 𝑡𝑛,
𝑥 = 𝑥𝑖, and 𝑦 = 𝑦𝑗.

1. Give discretizations of the derivatives 𝑢𝑡𝑡, 𝑢𝑥𝑥, and 𝑢𝑦𝑦.

2. Substitute your discretizations into the 2D wave equation, make the simplifying assump-
tion that Δ𝑥 = Δ𝑦, and solve for 𝑈𝑛+1

𝑖,𝑗 . This is the finite difference scheme for the 2D
wave equation.

3. Write code to implement the finite difference scheme from part 2 on the domain
(𝑥, 𝑦) ∈ (0, 1)× (0, 1) with homogeneous Dirichlet boundary conditions, initial condition
𝑢(0, 𝑥, 𝑦) = sin(2𝜋(𝑥 − 0.5)) sin(2𝜋(𝑦 − 0.5)), and zero initial velocity.

4. Draw the finite difference stencil for the 2D heat equation.
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Exercise 9.29. What is the region of stability for the finite difference scheme on the 2D wave
equation? Produce several plots showing what happens when we are in the unstable region as
well as when we are right on the edge of the stable region.

Exercise 9.30. Solve the 2D wave equation on the unit square with 𝑢 starting at rest and
being driven by a wave coming in from one boundary.

9.4 The Travelling Wave Equation

Now we turn our attention to a new PDE: the transport equation

𝑢𝑡 + 𝑣𝑢𝑥 = 0.

In this equation 𝑢(𝑡, 𝑥) is the height of a wave at time 𝑡 and spatial location 𝑥. The parameter
𝑣 is the velocity of the wave. Imagine this as sending a single solitary wave pulsing down a
taught rope or as sending a single pulse of light down a fibre optic cable.

Exercise 9.31. Consider the PDE 𝑢𝑡 + 𝑣𝑢𝑥 = 0. There is a very easy way to get an analytic
solution to this equation that describes a travelling wave. If we have the initial condition
𝑢(0, 𝑥) = 𝑓(𝑥) = 𝑒−(𝑥−4)2 then we claim that 𝑢(𝑡, 𝑥) = 𝑓(𝑥 − 𝑣𝑡) is an analytic solution to the
PDE. More explicitly, we are claiming that

𝑢(𝑡, 𝑥) = 𝑒−(𝑥−𝑣𝑡−4)2

is the analytic solution to the PDE. Let us prove this.

1. Take the 𝑡 derivative of 𝑢(𝑡, 𝑥).
2. Take the 𝑥 derivative of 𝑢(𝑡, 𝑥).
3. The PDE claims that 𝑢𝑡 + 𝑣𝑢𝑥 = 0. Verify that this equal sign is indeed true.

Exercise 9.32. Now we would like to visualize the solution to the PDE from the previous
exercise. The Python code below gives an interactive visual of the solution. Experiment with
different values of 𝑣 and different initial conditions.
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import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from IPython.display import HTML

v = 1
f = lambda x: np.exp(-(x-4)**2)
u = lambda t, x: f(x - v*t)
x = np.linspace(0,10,101)
t = np.linspace(0,10,101)

fig, ax = plt.subplots()
plt.close()
ax.grid()
ax.set_xlabel('x')
ax.set_xlim(( 0, 10))
ax.set_ylim(( -0.1, 1))
frame, = ax.plot([], [], linewidth=2, linestyle='--')

def animator(N):
ax.set_title(f"Time = {t[N]:.2f}")
frame.set_data(x,???) # plot the correct time step for u(t,x)
return (frame,)

PlotFrames = range(0,len(t),1)
anim = animation.FuncAnimation(fig,

animator,
frames=PlotFrames,
interval=100,
)

rc('animation', html='jshtml') # embed in the HTML for Google Colab
anim

Exercise 9.33. Use the chain rule to prove that for any differentiable function 𝑓(𝑥) the
function 𝑢(𝑡, 𝑥) = 𝑓(𝑥−𝑣𝑡) is an analytic solution to the transport equation 𝑢𝑡+𝑣𝑢𝑥 = 0 with
initial condition 𝑢(0, 𝑥) = 𝑓(𝑥).
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Thus the travelling wave equation 𝑢𝑡 +𝑣𝑢𝑥 = 0 has a very nice analytic solution which we can
always find. Therefore there is no need to ever find a numerical solution – we can just write
down the analytic solution if we are given the initial condition. As it turns out though, the
numerical solutions exhibit some very interesting behaviour.

Exercise 9.34. Consider the travelling wave equation 𝑢𝑡 + 𝑣𝑢𝑥 = 0 with initial condition
𝑢(0, 𝑥) = 𝑓(𝑥) for some given function 𝑓 and boundary condition 𝑢(𝑡, 0) = 0. To build a
numerical solution we will again adopt the notation 𝑈𝑛

𝑖 for the approximation to 𝑢(𝑡, 𝑥) at the
point 𝑡 = 𝑡𝑛 and 𝑥 = 𝑥𝑖.

(a) Write an approximation of 𝑢𝑡 using 𝑈𝑛+1
𝑖 and 𝑈𝑛

𝑖 .

(b) Write an approximation of 𝑢𝑥 using 𝑈𝑛
𝑖+1 and 𝑈𝑛

𝑖 .

(c) Substitute your answers from parts (a) and (b) into the travelling wave equation and
solve for 𝑈𝑛+1

𝑖 . This is our first finite difference scheme for the travelling wave equation.

(d) Write Python code to get the finite difference approximation of the solution to the PDE.
Plot your finite difference solution on top of the analytic solution for 𝑓(𝑥) = 𝑒−(𝑥−4)2 .
What do you notice? Can you stabilize this method by changing the values of Δ𝑡 and
Δ𝑥 like with did with the heat and wave equations?

The finite difference scheme that you built in the previous exercise is called the downwind
scheme for the travelling wave equation. Figure 9.5 shows the finite difference stencil for this
scheme. We call this scheme “downwind” since we expect the wave to travel from left to right
and we can think of a fictitious wind blowing the solution from left to right. Notice that we
are using information from “downwind” of the point at the new time step.

Exercise 9.35. You should have noticed in the previous exercise that you cannot reasonably
stabilize the finite difference scheme. Propose several reasons why this method appears to be
unstable no matter what you use for the ratio 𝑣Δ𝑡/Δ𝑥.
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Figure 9.5: The finite difference stencil for the 1D downwind scheme on the traveling wave
equation.

Exercise 9.36. One of the troubles with the finite difference scheme that we have built for the
travelling wave equation is that we are using the information at our present spatial location
and the next spatial location to the right to propagate the solution forward in time. The
trouble here is that the wave is moving from left to right, so the interesting information about
the next time step’s solution is actually coming from the left, not the right. We call this
“looking upwind” since you can think of a fictitious wind blowing from left to right, and we
need to look “upwind” to see what is coming at us. If we write the spatial derivative as

𝑢𝑥 ≈ 𝑈𝑛
𝑖 − 𝑈𝑛

𝑖−1
Δ𝑥

we still have a first-order approximation of the derivative but we are now looking left instead
of right for our spatial derivative. Make this modification in your finite difference code for the
travelling wave equation (call it the “upwind method”). Approximate the solution to the same
PDE as we worked with in the previous exercises. What do you notice now?

Figure 9.6 shows the finite difference stencil for the upwind scheme. We call this scheme “up”
since we expect the wave to travel from left to right and we can think of a fictitious wind
blowing the solution from left to right. Notice that we are using information from “upwind”
of the point at the new time step.
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Figure 9.6: The finite difference stencil for the 1D downwind scheme on the traveling wave
equation.

Exercise 9.37. Complete the following sentences:

1. In the downwind finite difference scheme for the travelling wave equation, the approxi-
mate solution moves at the correct speed, but …

2. In the upwind finite difference scheme for the travelling wave equation, the approximate
solution moves at the correct speed, but …

Exercise 9.38. Neither the downwind nor the upwind solutions for the travelling wave equa-
tion are satisfactory. They completely miss the interesting dynamics of the analytic solution
to the PDE. Some ideas for stabilizing the finite difference solution for the travelling wave
equation are as follows. Implement each of these ideas and discuss pros and cons of each. Also
draw a finite difference stencil for each of these methods.

1. Perhaps one of the issues is that we are using first-order methods to approximate 𝑢𝑡 and
𝑢𝑥. What if we used a second-order approximation for these first derivatives

𝑢𝑡 ≈
𝑈𝑛+1

𝑖 − 𝑈𝑛−1
𝑖

2Δ𝑡 and 𝑢𝑥 ≈ 𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖−1
2Δ𝑥 ?
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Solve for 𝑈𝑛+1
𝑖 and implement this method. This is called the leapfrog method.

2. For this next method let us stick with the second-order approximation of 𝑢𝑥 but we will
do something clever for 𝑢𝑡. For the time derivative we originally used

𝑢𝑡 ≈
𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖

Δ𝑡
what happens if we replace 𝑈𝑛

𝑖 with the average value from the two surrounding spatial
points

𝑈𝑛
𝑖 ≈ 1

2 (𝑈𝑛
𝑖+1 + 𝑈𝑛

𝑖−1) ?

This would make our approximation of the time derivative

𝑢𝑡 ≈
𝑈𝑛+1

𝑖 − 1
2 (𝑈𝑛

𝑖+1 + 𝑈𝑛
𝑖−1)

Δ𝑡 .

Solve this modified finite difference equation for 𝑈𝑛+1
𝑖 and implement this method. This

is called the Lax-Friedrichs method.

3. Finally we will do something very clever (and very counter intuitive). What if we inserted
some artificial diffusion into the problem? You know from your work with the heat
equation that diffusion spreads a solution out. The downwind scheme seemed to have
the issue that it was bunching up at the beginning and end of the wave, so artificial
diffusion might smooth this out. The Lax-Wendroff method does exactly that: take
a regular Euler-type step in time

𝑢𝑡 ≈
𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖

Δ𝑡 ,

use a second-order centred difference scheme in space to approximate 𝑢𝑥

𝑢𝑥 ≈ 𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖−1
2Δ𝑥 ,

but add on the term
(𝑣2Δ𝑡2

2Δ𝑥2 )(𝑈𝑛
𝑖−1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖+1)

to the right-hand side of the equation. Notice that this new term is a scalar multiple
of the second-order approximation of the second derivative 𝑢𝑥𝑥. Solve this equation for
𝑈𝑛+1

𝑖 and implement the Lax-Wendroff method.

9.5 The Laplace and Poisson Equations

Exercise 9.39. Consider the 1D heat equation 𝑢𝑡 = 1𝑢𝑥𝑥 with boundary conditions 𝑢(𝑡, 0) = 0
and 𝑢(𝑡, 1) = 1 and initial condition 𝑢(0, 𝑥) = 0.
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1. Describe the physical setup for this problem.

2. Recall that the solution to a differential equation reaches a steady state (or equilibrium)
when the time rate of change is zero. Based on the physical system, what is the steady
state heat profile for this PDE?

3. Use your 1D heat equation code to show the full time evolution of this PDE. Run the
simulation long enough so that you see the steady state heat profile.

Exercise 9.40. Now consider the forced 1D heat equation 𝑢𝑡 = 𝑢𝑥𝑥+𝑒−(𝑥−0.5)2 with the same
boundary and initial conditions as the previous exercise. The exponential forcing function
introduced in this equation is an external source of heat (like a flame held to the middle of
the metal rod).

1. Conjecture what the steady state heat profile will look like for this particular setup. Be
able to defend your answer.

2. Modify your 1D heat equation code to show the full time evolution of this PDE. Run
the simulation long enough so that you see the steady state heat profile.

Exercise 9.41. Next we will examine 2D steady state heat profiles. Consider the PDE
𝑢𝑡 = 𝑢𝑥𝑥+𝑢𝑦𝑦 with boundary conditions 𝑢(𝑡, 0, 𝑦) = 𝑢(𝑡, 𝑥, 0) = 𝑢(𝑡, 𝑥, 1) = 0 and 𝑢(𝑡, 1, 𝑦) = 1
with initial condition 𝑢(0, 𝑥, 𝑦) = 0.

1. Describe the physical setup for this problem.

2. Based on the physical system, describe the steady state heat profile for this PDE. Be
sure that your steady state solution still satisfies the boundary conditions.

3. Use your 2D heat equation code to show the full time evolution of this PDE. Run the
simulation long enough so that you see the steady state heat profile.

Exercise 9.42. Now consider the forced 2D heat equation 𝑢𝑡 = 𝑢𝑥𝑥+𝑢𝑦𝑦+10𝑒−(𝑥−0.5)2−(𝑦−0.5)2

with the same boundary and initial conditions as the previous exercise. The exponential forcing
function introduced in this equation is an external source of heat (like a flame held to the middle
of the metal sheet).
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1. Conjecture what the steady state heat profile will look like for this particular setup. Be
able to defend your answer.

2. Modify your 2D heat equation code to show the full time evolution of this PDE. Run
the simulation long enough so that you see the steady state heat profile.

Up to this point we have studied PDEs that all depend on time. In many applications, however,
we are not interested in the transient (time dependent) behaviour of a system. Instead we are
often interested in the steady state solution when the forces in question are in static equilibrium.
Two very famous time-independent PDEs are the Laplace Equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0

and the Poisson equation
𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 𝑓(𝑥, 𝑦, 𝑧).

Notice that both the Laplace and Poisson equations are the equations that we get when we
consider the limit 𝑢𝑡 → 0. In the limit when the time rate of change goes to zero we are actually
just looking at the eventual steady state heat profile resulting from the initial and boundary
conditions of the heat equation. In the previous exercises you already wrote code that will
show the steady state profiles in a few setups. The trouble with the approach of letting the
time-dependent simulation run for a long time is that the finite difference solution for the heat
equation is known to have stability issues. Moreover, it may take a lot of computational time
for the solution to reach the eventual steady state. In the remainder of this section we look
at methods of solving for the steady state directly – without examining any of the transient
behaviour. We will first examine a 1D version of the Laplace and Poisson equations.

Exercise 9.43. Consider a 1-dimensional rod that is infinitely thin and has unit length. For
the sake of simplicity assume the following:

• the specific heat of the rod is exactly 1 for the entire length of the rod,

• the temperature of the left end is held fixed at 𝑢(0) = 0,
• the temperature of the right end is held fixed at 𝑢(1) = 1, and
• the temperature has reached a steady state.
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You can assume that the temperatures are reference temperatures instead of absolute temper-
atures, so a temperature of “0” might represent room temperature.

Since there are no external sources of heat we model the steady-state heat profile we must
have 𝑢𝑡 = 0 in the heat equation. Thus the heat equation collapses to 𝑢𝑥𝑥 = 0. This is exactly
the one dimensional Laplace equation.

(a) To get an exact solution of the Laplace equation in this situation we simply need to
integrate twice. Do the integration and write the analytic solution (there should be no
surprises here).

(b) To get a numerical solution we first need to partition the domain into finitely many
point. For the sake of simplicity let us say that we subdivide the interval into 5 equal
sub intervals (so there are 6 points including the endpoints). Furthermore, we know that
we can approximate 𝑢𝑥𝑥 as

𝑢𝑥𝑥 ≈ 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1
Δ𝑥2 .

Thus we have 6 linear equations:

𝑈0 = 1 (left boundary condition)
𝑈2 − 2𝑈1 + 𝑈0

Δ𝑥2 = 0
𝑈3 − 2𝑈2 + 𝑈1

Δ𝑥2 = 0
𝑈4 − 2𝑈3 + 𝑈2

Δ𝑥2 = 0
𝑈5 − 2𝑈4 + 𝑈3

Δ𝑥2 = 0
𝑈5 = 0 (right boundary condition).

Notice that there are really only four unknowns since the boundary conditions dictate
two of the temperature values. Rearrange this system of equations into a matrix equation
and solve for the unknowns 𝑈1, 𝑈2, 𝑈3, and 𝑈4. Your coefficient matrix should be 4 × 4.

(c) Compare your answers from parts (a) and (b).

(d) Write code to build the numerical solution with an arbitrary value forΔ𝑥 (i.e. an arbitrary
number of sub intervals). You should build the linear system automatically in your code.

Solving the 1D Laplace equation with Dirichlet boundary conditions is rather uninteresting
since the answer will always be a linear function connecting the two boundary conditions. The
Poisson equation 𝑢𝑥𝑥 = 𝑓(𝑥) is more interesting than the Laplace equation in 1D. The function
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𝑓(𝑥) is called a forcing function. You can think of it this way: if 𝑢 is the amount of force on a
linear bridge, then 𝑓 might be a function that gives the distribution of the forces on the bridge
due to the cars sitting on the bridge. In terms of heat we can think of this as an external
source of heat energy warming up the one-dimensional rod somewhere in the middle (like a
flame being held to one place on the rod).

Exercise 9.44. How would we analytically solve the Poisson equation 𝑢𝑥𝑥 = 𝑓(𝑥) in one
spatial dimension? As a sample problem consider 𝑥 ∈ [0, 1], the forcing function 𝑓(𝑥) =
5 sin(2𝜋𝑥) and boundary conditions 𝑢(0) = 2 and 𝑢(1) = 0.5. Of course you need to check
your answer by taking two derivatives and making sure that the second derivative exactly
matches 𝑓(𝑥). Also be sure that your solution matches the boundary conditions exactly.

Exercise 9.45. Now we can solve the Poisson equation from the previous problem numerically.
Let us again build this with a partition that contains only 6 points just like we did with the
Laplace equation a few exercise ago. We know the approximation for 𝑢𝑥𝑥 so we have the linear
system

𝑈0 = 2 (left boundary condition)
𝑈2 − 2𝑈1 + 𝑈0

Δ𝑥2 = 𝑓(𝑥1)
𝑈3 − 2𝑈2 + 𝑈1

Δ𝑥2 = 𝑓(𝑥2)
𝑈4 − 2𝑈3 + 𝑈2

Δ𝑥2 = 𝑓(𝑥3)
𝑈5 − 2𝑈4 + 𝑈3

Δ𝑥2 = 𝑓(𝑥4)
𝑈5 = 0.5 (right boundary condition).

(a) Rearrange the system of equations as a matrix equation and then solve the system for
𝑈1, 𝑈2, 𝑈3, and 𝑈4. There are really only four equations so your matrix should be 4 × 4.

(b) Compare your solution from part (a) to the function values that you found in the previous
exercise.

(c) Now generalize the process of solving the 1D Poisson equation for an arbitrary value of
Δ𝑥. You will need to build the matrix and the right-hand side in your code. Test your
code on new forcing functions and new boundary conditions.
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Exercise 9.46. The previous exercises only account for Dirichlet boundary conditions (fixed
boundary conditions). We would now like to modify our Poisson solution to allow for a Neu-
mann condition: where we know the derivative of 𝑢 at one of the boundaries. The statement
of the problem is as follows:

Solve: 𝑢𝑥𝑥 = 𝑓(𝑥) on 𝑥 ∈ (0, 1) with 𝑢𝑥(0) = 𝛼 and 𝑢(1) = 𝛽.

The derivative condition on the boundary can be approximated by using a first-order approx-
imation of the derivative, and as a consequence we have one new equation. Specifically, if we
know that 𝑢𝑥(0) = 𝛼 then we can approximate this condition as

𝑈1 − 𝑈0
Δ𝑥 = 𝛼,

and we simply need to add this equation to the system that we were solving in the previous
exercise. If we go back to our example of a partition with 6 points the system becomes

𝑈1 − 𝑈0
Δ𝑥 = 𝛼 (left boundary condition)

𝑈2 − 2𝑈1 + 𝑈0
Δ𝑥2 = 𝑓(𝑥1)

𝑈3 − 2𝑈2 + 𝑈1
Δ𝑥2 = 𝑓(𝑥2)

𝑈4 − 2𝑈3 + 𝑈2
Δ𝑥2 = 𝑓(𝑥3)

𝑈5 − 2𝑈4 + 𝑈3
Δ𝑥2 = 𝑓(𝑥4)

𝑈5 = 𝛽 (right boundary condition).

There are 5 equations this time.

(a) With a 6 point grid solve the Poisson equation 𝑢𝑥𝑥 = 5 sin(2𝜋𝑥) with 𝑢𝑥(0) = 0 and
𝑢(1) = 3.

(b) Modify your code from part (a) to solve the same problem but with a much smaller value
of Δ𝑥. You will need to build the matrix equation in your code.

Exercise 9.47 (The 2D Poisson Equation). We conclude this section, and chapter, by ex-
amining the two dimensional Poisson equations. As a sample problem, we want to solve the
Poisson equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑓(𝑥, 𝑦)
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on the domain (𝑥, 𝑦) ∈ (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions and
forcing function

𝑓(𝑥, 𝑦) = −20exp(−(𝑥 − 0.5)2 + (𝑦 − 0.5)2
0.05 )

numerically.

We are going to start with a 6×6 grid of points and explicitly write down all of the equations.
In Figure 9.7 the red stars represent boundary points where the value of 𝑢(𝑥, 𝑦) is known and
the blue interior points are the ones where 𝑢(𝑥, 𝑦) is yet unknown. It should be clear that we
should have two indices for each point (one for the 𝑥 position and one for the 𝑦 position), but
it should also be clear that this will cause problems when writing down the resulting system of
equations as a matrix equation (stop and think carefully about this). Therefore, in Figure 9.7
we propose an index, 𝑘, starting at the top left of the unknown nodes and reading left to right
(just like we do with Python arrays).

(a) Start by discretizing the 2D Poisson equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑓(𝑥, 𝑦). For simplicity we
assume that Δ𝑥 = Δ𝑦 so that we can combine like terms from the 𝑥 derivative and the
𝑦 derivative. Fill in the missing coefficients and indices below.

𝑈𝑖+1,𝑗 + 𝑈𝑖,𝑗−1 − ( )𝑈 , + 𝑈 , + 𝑈 , = Δ𝑥2𝑓(𝑥𝑖, 𝑦𝑖)

(b) In Figure 9.7 we see that there are 16 total equations resulting from the discretization
of the Poisson equation. Your first task is to write all 16 of these equations. we will get
you started:

𝑘 = 0: 𝑈𝑘=1 + 𝑈𝑖=1,𝑗=0 − 4𝑈𝑘=0 + 𝑈𝑖=0,𝑗=1 + 𝑈𝑘=4 = Δ𝑥2𝑓(𝑥1, 𝑦1)
𝑘 = 1: 𝑈𝑘=2 + 𝑈𝑘=0 − 4𝑈𝑘=1 + 𝑈𝑖=0,𝑗=2 + 𝑈𝑘=5 = Δ𝑥2𝑓(𝑥1, 𝑦2)

⋮
𝑘 = 15: 𝑈𝑖=4,𝑗=5 + 𝑈𝑘=14 − 4𝑈𝑘=15 + 𝑈𝑘=11 + 𝑈𝑖=5,𝑗=4 = Δ𝑥2𝑓(𝑥4, 𝑦4)

In this particular example we have homogeneous Dirichlet boundary conditions so all of
the boundary values are zero. If this was not the case then every boundary value would
need to be moved to the right-hand sides of the equations.

(c) We now have a 16 × 16 matrix equation to write based on the equations from part (b).
Each row and column of the matrix equation is indexed by 𝑘. The coefficient matrix 𝐴
is started for you below. Write the whole thing out and fill in the blanks. Notice that
this matrix has a much more complicated structure than the coefficient matrix in the 1D
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Poisson and Laplace equations.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−4 1 0 0 1 0 0 0 ⋯ 0
1 −4 1 0 0 1 0 0 ⋯ 0
0 1 −4 1 0 0 1 0 ⋯ 0
0 0 1 −4 1 0 0 1
1 0 0 0 −4 1 0 0 ⋱
0
⋮

−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(d) In the coefficient matrix from part (c) notice that the small matrix

⎛⎜⎜⎜⎜
⎝

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

⎞⎟⎟⎟⎟
⎠

shows up in blocks along the main diagonal. If you have a hard copy of the matrix go
back and draw a box around these blocks in the coefficient matrix. Also notice that
there are diagonal bands of 1𝑠. Discuss the following:

1. Why are the blocks 4 × 4?
2. How could you have predicted the location of the diagonal bands of 1𝑠?
3. What would the structure of the matrix look like if we partitioned the domain into a

10 × 10 grid of points instead of a 6 × 6 grid (including the boundary points)?

4. Why is it helpful to notice this structure?

(e) The right-hand side of the matrix equation resulting the your system of equations from
part (b) is

𝑏 = Δ𝑥2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓(𝑥1, 𝑦1)
𝑓(𝑥1, 𝑦2)
𝑓(𝑥1, 𝑦3)
𝑓(𝑥1, 𝑦4)
𝑓(𝑥2, 𝑦1)
𝑓(𝑥2, 𝑦2)

⋮

𝑓(𝑥4, 𝑦𝑦)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Notice the structure of this vector. Why is it structured this way? Why is it useful to
notice this?
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(f) Write Python code to solve the problem at hand. Recall that 𝑓(𝑥, 𝑦) = −20 exp(−−(𝑥−0.5)2+(𝑦−0.5)2
0.05 ).

Show a contour plot of your solution. This will take a little work changing the indices
back from 𝑘 to 𝑖 and 𝑗. Think carefully about how you want to code this before you
put fingers to keyboard. You might want to use the np.block() command to build the
coefficient matrix efficiently or you can use loops with carefully chosen indices.

(g) (Challenge) Generalize your code to solve the Poisson equation with a much smaller value
of Δ𝑥 = Δ𝑦.

(h) One more significant observation should be made about the 2D Poisson equation on
this square domain. Notice that the corner points of the domain (e.g. 𝑖 = 0, 𝑗 = 0 or
𝑖 = 5, 𝑗 = 0) are never included in the system of equations. What does this mean about
trying to enforce boundary conditions that only apply at the corners?

Figure 9.7: A finite difference grid for the Poisson equation with 6 grid points in each direction.
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9.6 Algorithm Summaries

Exercise 9.48. Show the full mathematical details for building a first-order in time and
second-order in space approximation method for the one-dimensional heat equation. Explain
what the order of the error means in this context

Exercise 9.49. Show the full mathematical details for building a second-order in time and
second-order in space approximation method for the one-dimensional wave equation. Explain
what the order of the error means in this context

Exercise 9.50. Show the full mathematical details for building a first-order in time and
second-order in space approximation method for the two-dimensional heat equation. Explain
what the order of the error means in this context

Exercise 9.51. Show the full mathematical details for building a second-order in time and
second-order in space approximation method for the two-dimensional wave equation. Explain
what the order of the error means in this context

Exercise 9.52. Explain in clear language what it means for a finite difference method to be
stable versus unstable.

Exercise 9.53. Show the full mathematical details for solving the 1D heat equation using the
implicit and Crank-Nicolson methods.

Exercise 9.54. Show the full mathematical details for building a downwind finite difference
scheme for the travelling wave equation. Discuss the primary disadvantages of the downwind
scheme.
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Exercise 9.55. Show the full mathematical details for building an upwind finite difference
scheme for the travelling wave equation. Discuss the primary disadvantages of the upwind
scheme.

Exercise 9.56. Show the full mathematical details for numerically solving the 1D Laplace
and Poisson equations.

9.7 Problems

Exercise 9.57. In this problem we will solve a more realistic 1D heat equation. We will allow
the diffusivity to change spatially, so 𝐷 = 𝐷(𝑥) and we want to solve

𝑢𝑡 = (𝐷(𝑥)𝑢𝑥)𝑥
on 𝑥 ∈ (0, 1) with Dirichlet boundary conditions 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 and initial condition
𝑢(0, 𝑥) = sin(2𝜋𝑥). This is “more realistic” since it would be rare to have a perfectly homoge-
neous medium, and the function 𝐷 reflects any heterogeneities in the way the diffusion occurs.
In this problem we will take 𝐷(𝑥) to be the parabola 𝐷(𝑥) = 𝑥3(1 − 𝑥). We start by doing
some calculus to rewrite the differential equation:

𝑢𝑡 = 𝐷(𝑥)𝑢𝑥𝑥(𝑥) + 𝐷′(𝑥)𝑢𝑥(𝑥).

Your jobs are:

1. Describe what this choice of 𝐷(𝑥) might mean physically in the heat equation.

2. Write an explicit scheme to solve this problem by using centred differences for the spatial
derivatives and an Euler-type discretization for the temporal derivative. Write a clear
and thorough explanation for how you are doing the discretization as well as a discussion
for the errors that are being made with each discretization.

3. Write a script to find an approximate solution to this problem.

4. Write a clear and thorough discussion about how your will choose Δ𝑥 and Δ𝑡 to give
stable solutions to this equation.
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5. Graphically compare your solution to this problem with a heat equation where 𝐷 is taken
to be the constant average diffusivity found by calculating 𝐷𝑎𝑣𝑒 = ∫1

0 𝐷(𝑥)𝑑𝑥. How does
the changing diffusivity change the shape of the solution?

Exercise 9.58. In a square domain create a function 𝑢(0, 𝑥, 𝑦) that looks like the university
logo. The simplest way to do this might be to take a photo of the logo, crop it to a square,
and use the scipy.ndimage.imread command to read in the image. Use this function as
the initial condition for the heat equation on a square domain with homogeneous Dirichlet
boundary conditions. Numerically solve the heat equation and show an animation for what
happens to the logo as time evolves.

Exercise 9.59. Repeat the previous exercise but this time solve the wave equation with the
logo as the initial condition.

Exercise 9.60. The explicit finite difference scheme that we built for the 1D heat equation
in this chapter has error on the order of 𝒪(Δ𝑡) + 𝒪(Δ𝑥2). Explain clearly what this means.
Then devise a numerical experiment to empirically test this fact. Clearly explain your thought
process and show sufficient plots and mathematics to support your work.

Exercise 9.61. Suppose that we have a concrete slab that is 10 meters in length, with the
left boundary held at a temperature of 75∘ and the right boundary held at a temperature of
90∘. Assume that the thermal diffusivity of concrete is about 𝑘 = 10−5 m2/s. Assume that
the initial temperature of the slab is given by the function 𝑇 (𝑥) = 75 + 1.5𝑥 − 20 sin(𝜋𝑥/10).
In this case, the temperature can be analytically solved by the function 𝑇 (𝑡, 𝑥) = 75 + 1.5𝑥 −
20 sin(𝜋𝑥/10)𝑒−𝑐𝑡 for some value of 𝑐.

1. Working by hand (no computers!) test the proposed analytic solution by substituting it
into the 1D heat equation and verifying that it is indeed a solution. In doing so you will
be able to find the correct value of 𝑐.

2. Write numerical code to solve this 1D heat equation. The output of your code should
be an animation showing how the error between the numerical solution and the analytic
solution evolve in time.
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Exercise 9.62. (This problem is modified from (Kimberly Spayd and James Puckett 2022)).
The data given below is real experimental data provided courtesy of the authors.)

Harry and Sally set up an experiment to gather data specifically for the heat diffusion through
a long thin metal rod. Their experimental setup was as follows.

• The ends of the rod are submerged in water baths at different temperatures and the heat
from the hot water bath (on the right hand side) travels through the metal to the cooler
end (on the left hand side).

• The temperature of the rod is measured at four locations; those measurements are sent to
a Raspberry Pi, which processes the raw data and sends the collated data to be displayed
on the computer screen.

• They used a metal rod of length 𝐿 = 300𝑚𝑚 and square cross-sectional width 3.2𝑚𝑚.

• The temperature sensors were placed at 𝑥1 = 47𝑚𝑚, 𝑥2 = 94𝑚𝑚, 𝑥3 = 141𝑚𝑚, and
𝑥4 = 188𝑚𝑚 as measured from the cool end (the left end).

• Foam tubing, with a thickness of 25 mm, was wrapped around the rod and sensors to
provide some insulation.

• The ambient temperature in the room was 22∘𝐶 and the cool water bath is a large enough
reservoir that the left side of the rod is kept at 22∘𝐶.

The data table below gives temperature measurements at 60 second intervals for each of the
four sensors.

Time (sec) Sensor 188 Sensor 141 Sensor 94 Sensor 47
0 22.8 22 22 22
60 29.3 24.4 23.2 22.8
120 35.7 27.5 25.9 25.2
180 41.8 30.3 27.9 26.8
240 45.8 33.8 30.6 29.2
300 48.2 36.5 32.6 31.2
360 50.6 37.7 34.2 32
420 53.4 38.5 34.9 32.8
480 53 38.9 35.3 33.6
540 53 40.4 36.5 34.8
600 55.1 41.2 37.3 35.2
660 54.7 42 38.1 35.6
720 54.7 42.4 38.1 36
780 54.7 42.4 38.1 36.4
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Time (sec) Sensor 188 Sensor 141 Sensor 94 Sensor 47
840 54.7 42 38.5 36
900 57.5 41.2 37.7 35.6
960 56.3 40.8 37.3 35.6

1. At time time 𝑡 = 960 seconds the temperatures of the rod are essentially at a steady state.
Use this data to make a prediction of the temperature of the hot water bath located at
𝑥 = 300𝑚𝑚.

2. The thermal diffusivity, 𝐷, of the metal is unknown. Use your numerical solution in
conjunction with the data to approximate the value of 𝐷. Be sure to fully defend your
process.

3. It is unlikely that your numerical solution to the heat equation and the data from part
2 match very well. What are some sources of error in the data or in the heat equation
model?

You can load the data directly with the following code.

import numpy as np
import pandas as pd
URL = 'https://github.com/gustavdelius/NumericalAnalysis2025/raw/main/data/PDE/'
data = np.array(pd.read_csv(URL+'1dheatdata.csv'))

Exercise 9.63. You may recall from your differential equations class that population growth
under limited resources is governed by the logistic equation 𝑥′ = 𝑘1𝑥(1−𝑥/𝑘2) where 𝑥 = 𝑥(𝑡)
is the population, 𝑘1 is the intrinsic growth rate of the population, and 𝑘2 is the carrying
capacity of the population. The carrying capacity is the maximum population that can be
supported by the environment. The trouble with this model is that the species is presumed
to be fixed to a spatial location. Let us make a modification to this model that allows the
species to spread out over time while they reproduce. We have seen throughout this chapter
that the heat equation 𝑢𝑡 = 𝐷(𝑢𝑥𝑥 + 𝑢𝑦𝑦) models the diffusion of a substance (like heat or
concentration). We therefore propose the model

𝜕𝑢
𝜕𝑡 = 𝑘1𝑢(1 − 𝑢

𝑘2
)+𝐷(𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2)

where 𝑢(𝑡, 𝑥, 𝑦) is the population density of the species at time 𝑡 and spatial point (𝑥, 𝑦), (𝑥, 𝑦)
is a point in some square spatial domain, 𝑘1 is the growth rate of the population, 𝑘2 is the
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carrying capacity of the population, and 𝐷 is the rate of diffusion. Develop a finite difference
scheme to solve this PDE. Experiment with this model showing the interplay between the
parameters 𝐷, 𝑘1, and 𝑘2. Take an initial condition of

𝑢(0, 𝑥, 𝑦) = 𝑒−((𝑥−0.5)2+(𝑦−0.5)2)/0.05.

Exercise 9.64. In Exercise 9.47 you solved the Poisson equation, 𝑢𝑥𝑥 +𝑢𝑦𝑦 = 𝑓(𝑥, 𝑦), on the
unit square with homogeneous Dirichlet boundary conditions and a forcing function 𝑓(𝑥, 𝑦) =
−20 exp(− (𝑥−0.5)2+(𝑦−0.5)2

0.05 ). Use a 10×10 grid of points to solve the Poisson equation on the
same domain with the same forcing function but with boundary conditions

𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑢(𝑥, 0) = − sin(𝜋𝑥), 𝑢(𝑥, 1) = 0.

Show a contour plot of your solution.

9.8 Projects

In this section we propose several ideas for projects related to numerical partial differential
equations. These projects are meant to be open ended, to encourage creative mathematics, to
push your coding skills, and to require you to write and communicate your mathematics.

9.8.1 Hunting and Diffusion

Let 𝑢 be a function modelling a mobile population in an environment where it has an intrinsic
growth rate of 𝑟 and a carrying capacity of 𝐾. If we were only worried about the size of the
population we could solve the differential equation

𝑑𝑢
𝑑𝑡 = 𝑟𝑢(1 − 𝑢

𝐾) ,

but there is more to the story.

Hunters harvest the population at a per-capita rate ℎ so we can append the differential equation
with the harvesting term −ℎ𝑢 to arrive at the ordinary differential equation

𝑑𝑢
𝑑𝑡 = 𝑟𝑢(1 − 𝑢

𝐾) − ℎ𝑢.

Since the population is mobile let us make a few assumptions about the environment that they
are in and how the individuals move.
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• The growing conditions for the population are the same everywhere

• Individuals move around randomly.

Clearly these assumptions imply that our model is a simplification of real populations and real
environments, but let us go with it for now. Given the nature of these assumptions we assume
that a diffusion term models the spread of the individuals in the population. Hence, the PDE
model is

𝜕𝑢
𝜕𝑡 = 𝑟𝑢(1 − 𝑢

𝐾) − ℎ𝑢 +𝐷(𝑢𝑥𝑥 + 𝑢𝑦𝑦) .

1. Use any of your ODE codes to solve the ordinary differential equation with harvesting.
Give a complete description of the parameter space.

2. Write code to solve the spatial+temporal PDE equation on the 2D domain (𝑥, 𝑦) ∈
[0, 1] × [0, 1]. Choose an appropriate initial condition and choose appropriate boundary
conditions.

3. The third assumption is not necessary true for rough terrain. The true form of the spatial
component of the differential equation is ∇⋅(𝐷(𝑥, 𝑦)∇𝑢) where 𝐷(𝑥, 𝑦) is a multivariable
function dictating the ease of diffusion in different spatial locations. Propose a (non-
negative) function 𝐷(𝑥, 𝑦) and repeat part 2 with this new diffusion term.

9.8.2 Heating Adobe Houses

Adobe houses, typically built in desert climates, are known for their great thermal efficiency.
The heat equation

𝜕𝑇
𝜕𝑡 = 𝑘

𝑐𝑝𝜌
(𝑇𝑥𝑥 + 𝑇𝑦𝑦 + 𝑇𝑧𝑧) ,

where 𝑐𝑝 is the specific heat of the adobe, 𝜌 is the mass density of the adobe, and 𝑘 is the
thermal conductivity of the adobe, can be used to model the heat transfer through the adobe
from the outside of the house to the inside. Clearly, the thicker the adobe walls the better,
but there is a trade off to be considered:

• it would be prohibitively expensive to build walls so think that the inside temperature
was (nearly) constant, and

• if the walls are too thin then the cost is low but the temperature inside has a large
amount of variability.

Your Tasks:

1. Pick a desert location in the southwestern US (New Mexico, Arizona, Nevada, or South-
ern California) and find some basic temperature data to model the outside temperature
during typical summer and winter months.
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2. Do some research on the cost of building adobe walls and find approximations for the
parameters in the heat equation.

3. Use a numerical model to find the optimal thickness of an adobe wall. Be sure to fully
describe your criteria for optimality, the initial and boundary conditions used, and any
other simplifying assumptions needed for your model.
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