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1 Introduction

In our digital age, mathematics isn’t just an abstract pursuit; it’s an essential tool that powers a vast
array of applications. From weather forecasting to black hole simulations, from urban planning to
medical research, the application of mathematics has become indispensable. Central to this applied
force is Numerical Analysis.

Numerical Analysis is the discipline that bridges continuous mathematical theories with their concrete
implementation on digital computers. These computers, by design, work with discrete quantities, and
translating continuous problems into this discrete realm isn’t always straightforward. So why should
you want to venture into Numerical Analysis?

1. Precision and Stability: Computers, despite their power, can introduce significant errors if
mathematical problems are implemented without care. Numerical Analysis offers techniques to
ensure we obtain results that are both accurate and stable.

2. Efficiency: Real-world applications often demand not just correctness, but efficiency. By grasp-
ing the methods of Numerical Analysis, we can design algorithms that are both accurate and
resource-efficient.

3. Broad Applications: Whether your interest lies in physics, engineering, biology, finance, or
many other scientific fields, Numerical Analysis provides the computational tools to tackle com-
plex problems in these areas.

4. Basis for Modern Technologies: Core principles of Numerical Analysis are foundational in
emerging fields such as artificial intelligence, quantum computing, and data science.

In this module, we’ll explore the key techniques, algorithms, and principles of Numerical Analysis
that enable us to translate mathematical problems into computational solutions. We’ll delve into the
challenges that arise in this translation, the strategies to overcome them, and the interaction of theory
and practice.

By the end, you won’t merely understand the methods of scientific computing; you’ll be equipped
to apply them efficiently and effectively in diverse scenarios. With a strong foundation in Numerical
Analysis, you’ll be better prepared to engage with the practical challenges of the modern world.

The main topic of this module is finding approximate solutions to various mathematical problems. A
typical example for such a problem would be to find 𝑥 > 0 such that cos(𝑥) = 𝑥.
There is indeed one and only one such 𝑥; this is apparent from a graph (Figure 1.1), and can also
be proven rigorously without too much difficulty. However, it seems impossible to find a closed form
expression for this 𝑥: It’s not a fraction, a square root of a fraction, an integer multiple of 𝜋, etc.
For practical purposes, the best we can give is a numerical approximation of this 𝑥, that is, we can
compute it to, say, 10 decimal digits of accuracy.

This situation is pervasive in mathematics and its applications. Many problems of practical importance
can be solved only approximately, and for others an approximation is much more efficient to find than
the closed-form expression.

In Numerical Analysis, we aim to find approximation algorithms for mathematical problems, i.e.,
schemes that allow us to compute the solution approximately. These algorithms use only elementary
operations (+, −, ×, /) but often a long sequence of them, so that in practice they need to be run on
computers. This part of the problem—how to implement such algorithms on a computer—is called
Scientific Computing.
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2 Errors

As we embark on our exploration of Numerical Analysis, it might be tempting to dive directly into
the algorithms, tools, and techniques that form the core of this discipline. Yet, there’s a foundational
aspect that we must address before we venture further: errors. Just as a builder needs to understand
the properties and potential weaknesses of materials before constructing a robust building, a numerical
analyst must grasp the nuances of errors in order to craft effective and reliable algorithms.

Why start with errors? Here’s why this is the perfect launching pad:

1. Inherent Limitations of Computers: Digital computers, by their nature, represent numbers
using a finite number of bits. This limitation leads to rounding and truncation errors, which can
cascade through calculations and produce misleading results. Understanding these errors equips
us to prevent or minimize them.

2. Preventing Cumulative Mistakes: Even small errors, when compounded over many itera-
tions or operations, can result in significant discrepancies. Grasping the origins and types of
these errors is vital to ensuring our computations remain on track.

3. Building Robust Algorithms: A deep understanding of errors allows us to design algorithms
that are both accurate and stable. Ignoring errors or misunderstanding them can lead to algo-
rithms that produce wildly inaccurate results, even if they seem correct on the surface.

4. Gaining Confidence in Results: When we know where errors come from and how they
manifest, we can better judge the reliability of our results. This confidence is crucial when
numerical solutions are used for critical applications in engineering, medicine, finance, and more.

Errors are not just a minor consideration; they are central to the field of Numerical Analysis. By
addressing them upfront, we lay a solid foundation upon which the rest of our study will be built.
This chapter will shed light on the nature of rounding errors, demonstrate how seemingly benign
calculations can lead to substantial inaccuracies, and offer insights into mitigating these pitfalls.

So, as we delve into the world of errors, remember: understanding our limitations and challenges is
the first step to overcoming them. Let us begin our journey with a clear-eyed view of the obstacles,
so we are best prepared to navigate the rich landscape of Numerical Analysis.

As mentioned, our goal is to find approximate rather than exact solutions to problems. That is, our
results will always contain errors. Errors can arise in several ways:

(a) The input data (e.g., experimental data) may contain errors.

(b) On computers, numbers are represented only to a finite number of digits, thus we encounter
roundoff errors – when storing numbers in the first place, or in arithmetic operations.

(c) The numerical method as such usually involves approximation errors of some kind.

Item a is outside our scope in this course. In this chapter, we will discuss roundoff errors (item b).
Approximation errors (item c) will be discussed in later chapters.
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2.1 Floating point numbers

We can write any real number in floating point notation

𝑥 = ±0.𝑑1𝑑2𝑑3 … 𝑑𝑘𝑑𝑘+1𝑑𝑘+2 ⋯ × 10𝑛. (2.1)

The number ±0.𝑑1𝑑2𝑑3 … 𝑑𝑘 … is called the mantissa and the power of ten is called the exponent.
However, a computer can work only with finite set of digits. Therefore, we truncate the mantissa and
limit the range of the exponent 𝑛 to produce a 𝑘-digit (decimal) machine number. This can be done
in two ways:

• Chopping results in
𝑥∗ = ±0.𝑑1𝑑2...𝑑𝑘 × 10𝑛. (2.2)

• Rounding results in
𝑥∗ = ±0.𝑑1𝑑2...𝑑𝑘−1𝑑∗

𝑘 × 10𝑛, (2.3)

where 𝑥∗ is obtained by adding 0.5 × 10𝑛−𝑘 (or, equivalently, 5 × 10𝑛−𝑘−1 to 𝑥 and chopping.

Either machine number is called (decimal) 𝑘-digit floating point representation of 𝑥, and denoted
by 𝑓𝑙(𝑥).

Example 2.1. The floating point representation of 𝜋 = 3.14159265 … is

𝜋 = 0.314159265 … × 101. (2.4)

The five-digit floating-point form of 𝜋 is given by

𝑓𝑙(𝜋) = 0.31415 × 101 = 3.1415 (2.5)

if chopping is used. In the case of rounding, we first compute

𝜋 + 0.5 × 101−5 = 0.314159265 … × 101 + 0.000005 … × 101

= 0.314164265 … × 101 (2.6)

and then chop to obtain
𝑓𝑙(𝜋) = 0.31416 × 101 = 3.1416. (2.7)

Remark. In this module, we represent numbers in decimal (base 10) form. Computers actually use
binary (base 2) form, but we will usually ignore this difference. Industry standards exist for repre-
senting floating point numbers in binary form. For example, a double-precision floating-point number
according to Binary Floating Point Arithmetic Standard 574–1985 developed by the IEEE (Institute
for Electrical and Electronic Engineers) consists of

(a) 1-bit (binary digit) sign indicator,

(b) 11-bit exponent with a base of 2,

(c) 52-bit mantissa.

This provides between 15 and 16 decimal digits of precision and a range of approximately 10−308 to
10+308 (and similarly −10+308 to −10−308 for negative numbers). If numbers occurring in calculations
have a magnitude of less than the lower limit (≈ 10−308), they are set to zero; this is called underflow.
Numbers greater than the upper limit (≈ 10+308) result in overflow and computations are halted.

The error resulting from replacing a number by its floating-point form is called roundoff error. In
order to quantify roundoff errors (and other errors), we introduce:
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Definition 2.1. If 𝑥∗ is an approximation to 𝑥, the absolute error is

𝐸𝑎𝑏𝑠 ∶= |𝑥 − 𝑥∗|, (2.8)

and the relative error (for 𝑥 ≠ 0) is
𝐸𝑟𝑒𝑙 ∶= |𝑥 − 𝑥∗|

|𝑥| . (2.9)

With these notions, our roundoff errors can be estimated. If 𝑥∗ = 𝑓𝑙(𝑥) is obtained by 𝑘-digit chopping,
then (prove it!)

|𝑥 − 𝑥∗|
|𝑥| ≤ 10−𝑘+1. (2.10)

If 𝑥∗ = 𝑓𝑙(𝑥) is obtained by 𝑘-digit rounding, then (prove it!)

|𝑥 − 𝑥∗|
|𝑥| ≤ 0.5 × 10−𝑘+1. (2.11)

Definition 2.2. Suppose that a number 𝑥∗ approximates 𝑥 and that 𝑥∗ ≠ 𝑥. We say that 𝑥∗

approximates 𝑥 to 𝑘 significant digits (or 𝑥∗ has 𝑘 significant digits with respect to 𝑥) if

(i) the floating point representations of 𝑥∗ and 𝑥 have the same exponent, say 𝑛;
(ii) the exponent of |𝑥∗ − 𝑥| is 𝑛 − 𝑘 and the first digit of its mantissa is less than or equal to 5.

In other words, 𝑥∗ approximates 𝑥 to 𝑘 significant digits if and only if:

0.1 × 10𝑛−𝑘 ≤ |𝑥∗ − 𝑥| < 0.5 × 10𝑛−𝑘. (2.12)

Example 2.2. Suppose that 𝑥 = 23.492 = 0.23492 × 102 and 𝑥∗ = 23.489 = 0.23489 × 102. Then the
absolute error is

|𝑥∗ − 𝑥| = 0.00003 × 102 = 0.3 × 10−2, (2.13)

so 𝑥∗ approximates 𝑥 to 4 significant digits. The relative error is

|𝑥 − 𝑥∗|
|𝑥| = 0.3 × 10−2

0.23492 × 102 ≈ 0.1277 × 10−3. (2.14)

It can be shown that if 𝑥∗ = 𝑓𝑙(𝑥) is obtained by 𝑘-digit rounding, then 𝑥∗ has at least 𝑘 significant
digits with respect to 𝑥.
Further reading: Section 1.2 of (Burden and Faires 2010).

2.2 Error-generating computations

In each arithmetic computation performed by a computer on floating point numbers, additional round-
off error may occur. Let us illustrate this in the example of addition. Let 𝑥, 𝑦 be two real numbers
and 𝑥∗ = 𝑓𝑙(𝑥), 𝑦∗ = 𝑓𝑙(𝑦). We denote the computer-performed addition of 𝑥∗ and 𝑦∗ as 𝑥∗ ⊕ 𝑦∗, as
opposed to the normal addition +. In a simple model, we will assume that ⊕ is just normal addition
followed by rounding:

𝑥∗ ⊕ 𝑦∗ = 𝑓𝑙(𝑥∗ + 𝑦∗). (2.15)

Rounding is unavoidable in general due to the finite length of the mantissa, and generates additional
error. Let us quantify this by estimating the absolute error of 𝑥∗ ⊕ 𝑦∗, as an approximation for 𝑥 + 𝑦.
Using the triangle inequality, we obtain

|𝑥 + 𝑦 − 𝑥∗ ⊕ 𝑦∗| = |𝑥 − 𝑥∗ + 𝑦 − 𝑦∗ + 𝑥∗ + 𝑦∗ − 𝑓𝑙(𝑥∗ + 𝑦∗)|
≤ |𝑥 − 𝑥∗| + |𝑦 − 𝑦∗| + |𝑥∗ + 𝑦∗ − 𝑓𝑙(𝑥∗ + 𝑦∗)|. (2.16)
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Thus, the total absolute error is the sum of the individual absolute errors for 𝑥∗ and 𝑦∗, plus an extra
term arising from rounding.

From this, it might seem that addition is relatively unaffected by rounding—after all, the rounding
error occurs in the last digit of the mantissa. However, there are several situations where the rounding
error can become very relevant. First, if we are performing a large number of additions (say, several
thousands), then every one of these can cause an additional (small) rounding error, and the sum of
these may be quite large. Second, the relative error can increase significantly in the case of subtraction,
which is included in the above by considering 𝑦 < 0.

Example 2.3. Consider 5-digit rounding and set

𝑥 = 1 + 𝜋
1000, 𝑥∗ = 1.0031, 𝑦 = 𝑦∗ = −1. (2.17)

In this case, 𝑥∗ ⊕ 𝑦∗ = 𝑓𝑙(0.0031) = 3.1 × 10−3. The absolute errors of 𝑥∗ and 𝑥∗ ⊕ 𝑦∗, as well as the
relative error of 𝑥∗, are approximately 0.4×10−4. However, the relative error of 𝑥∗⊕𝑦∗ is approximately
0.4 × 10−4/3.1 × 10−3 ≈ 10−2—subtraction has increased it significantly, and 𝑥∗ ⊕ 𝑦∗ has only 2 valid
digits.

This phenomenon is called cancellation of digits and occurs whenever two almost equal numbers
are subtracted from each other.

Multiplication behaves similar to addition, only that the relative error is the sum of the individual
relative errors, plus an extra error arising from rounding. Also, multiplying a machine number 𝑥∗ by a
large number (or dividing by a small number) will not much affect the relative error, but significantly
increase the absolute error.

To summarize, typical sources of significant roundoff error are

(a) performing a large number of individual arithmetic operations (e.g., additions),

(b) subtraction of almost equal numbers,

(c) multiplication by a very large number, or division by a very small number.

Where these occur, it can be worthwhile to reformulate the algebraic expressions suitably in order to
circumvent the roundoff problem. Several examples for this can be found in Practical A1.

Roundoff errors occur in virtually all numerical methods that we will consider. However, for reasons
of simplicity, we will usually ignore roundoff errors in the theoretical discussion, and mention them
only where they become particularly relevant.

Further reading: Section 1.2 of (Burden and Faires 2010).
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3 Solving nonlinear equations

Having navigated the intricacies of rounding errors and understanding the nuances they introduce,
it is time to delve into one of the cornerstones of Numerical Analysis: solving nonlinear equations,
also known as the root-finding problem. The challenge of finding the roots of equations that do not
lend themselves to simple algebraic solutions has been a persistent one throughout the history of
mathematics. Yet, it is exactly these challenges that have spurred the development of a rich array of
techniques, many of which are iterative in nature.

Why start with nonlinear equations? The reasons are manifold:

1. Pervasiveness of Nonlinear Problems: In the real world, many problems—ranging from
physics to engineering to economics—are inherently nonlinear. Understanding how to tackle
these equations is foundational for addressing a multitude of real-world scenarios.

2. Introduction to Iterative Algorithms: Solving nonlinear equations provides a natural and
practical context to introduce iterative methods. These methods, which involve refining solutions
progressively to approach the true answer, are central to many areas within Numerical Analysis.

3. Variety of Techniques: This chapter introduces a spectrum of methods, from the simple yet
effective bisection method to the powerful Newton’s method. By studying a range of techniques,
students will gain both a broad overview and a deep understanding of the strategies at their
disposal.

4. Laying Groundwork for Convergence: As the first foray into iterative solutions, this chapter
also paves the way for discussing the order of convergence, a crucial concept that measures the
efficiency of iterative processes.

Throughout this chapter, we will dissect each method, understanding its mechanics, advantages, draw-
backs, and areas of application. Through hands-on examples and explorations, you will gain not just
theoretical knowledge, but practical skills that are immediately applicable.

3.1 Defining the problem

Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be a continuous function, i.e. 𝑓 ∈ 𝐶[𝑎, 𝑏]. The task is to find an 𝑝 ∈ [𝑎, 𝑏] such that

𝑓(𝑝) = 0. (3.1)

The number 𝑝 is called a root of the equation or a zero of the function 𝑓 . In our example in the
introduction, we had 𝑓(𝑥) = cos(𝑥) − 𝑥.
The first question to clarify is whether such a root exists. If we assume that 𝑓 changes sign on [𝑎, 𝑏],
that is, that 𝑓(𝑎)𝑓(𝑏) < 0, then we know (by the Intermediate Value Theorem) that 𝑓 must have a
zero in [𝑎, 𝑏]. However, in general there could be more than one zero in the interval. For our purposes,
we will always assume that 𝑓 has a unique zero 𝑝 ∈ (𝑎, 𝑏), and we will investigate our algorithms
under that assumptions. In practice, one would first need to choose the interval [𝑎, 𝑏] suitably so that
it contains a unique zero.

11



3.2 Bisection method

The bisection method is a very simple approach to the root finding problem, and one where the
approximation error is very easy to control. The idea behind it is as follows: One divides the interval
[𝑎, 𝑏] into halves, and decides in which subinterval the zero is located (by looking at the sign of 𝑓(𝑥)
in the midpoint of the interval). Then one repeats the method for this subinterval, and continues this
until sufficient precision is reached.

More formally, the bisection method would be described as follows:

1. Set 𝑎1 = 𝑎, 𝑏1 = 𝑏, and 𝑥1 = (𝑎1 + 𝑏1)/2.
2. Compute 𝑓(𝑥1).
3. If 𝑓(𝑥1) = 0, then 𝑝 = 𝑥1.

4. If 𝑓(𝑥1) ≠ 0, then we choose 𝑎2 and 𝑏2 as follows:

1. if 𝑓(𝑥1) ⋅ 𝑓(𝑎1) > 0 (i.e. 𝑓(𝑥1) and 𝑓(𝑎1) have the same sign), then we know 𝑝 ∈ (𝑥1, 𝑏1),
and we set 𝑎2 = 𝑥1 and 𝑏2 = 𝑏1;

2. if 𝑓(𝑥1) ⋅ 𝑓(𝑎1) < 0 (i.e. 𝑓(𝑥1) and 𝑓(𝑎1) have opposite signs), then we know 𝑝 ∈ (𝑎1, 𝑥1),
and we set 𝑎2 = 𝑎1 and 𝑏2 = 𝑥1.

5. We repeat the procedure for the interval [𝑎2, 𝑏2] and so on until we compute 𝑝 with a specified
accuracy.

We now show that this method actually works as expected: namely, that the sequence (𝑥𝑛) converges
to the root 𝑝, and that we can control the error of (𝑥𝑛) approximating 𝑝.

Theorem 3.1. Suppose that 𝑓 ∈ 𝐶[𝑎, 𝑏] has a unique zero 𝑝 and that 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0. Then the
sequence {𝑥𝑛} of the bisection method converges to 𝑝, and

|𝑥𝑛 − 𝑝| ≤ 𝑏 − 𝑎
2𝑛 for all 𝑛 ≥ 1. (3.2)

Proof. For 𝑛 ≥ 1, we have by construction

𝑎𝑛 ≤ 𝑝 ≤ 𝑏𝑛. (3.3)

Subtracting 𝑥𝑛 from this inequality yields

𝑎𝑛 − 𝑥𝑛 ≤ 𝑝 − 𝑥𝑛 ≤ 𝑏𝑛 − 𝑥𝑛. (3.4)

Recalling that 𝑥𝑛 = (𝑎𝑛 + 𝑏𝑛)/2, we can rewrite this as

−𝑏𝑛 − 𝑎𝑛
2 ≤ 𝑝 − 𝑥𝑛 ≤ 𝑏𝑛 − 𝑎𝑛

2 , (3.5)

or equivalently, since 𝑏𝑛 − 𝑎𝑛 = (𝑏 − 𝑎)/2𝑛−1,

|𝑝 − 𝑥𝑛| ≤ 1
2 (𝑏𝑛 − 𝑎𝑛) = 𝑏 − 𝑎

2𝑛 . (3.6)

This implies that 𝑥𝑛 → 𝑝 as 𝑛 → ∞ and also gives us the proposed error estimate. �
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Example 3.1. Let us find an approximation to
√

2 correct to within 10−3. Consider the function
𝑓(𝑥) = 𝑥2 −2. One of its zeros is

√
2. If we take 𝑎 = 1 and 𝑏 = 2, then 𝑓(𝑎) = −1 < 0 and 𝑓(𝑏) = 2 > 0.

In addition, we know that
√

2 is the unique zero of 𝑓 on the interval [𝑎, 𝑏]. Now we can apply the
bisection method and calculate an approximation to

√
2.

First, we calculate the number of steps necessary to compute
√

2 with accuracy 10−3. This requires
to find an integer 𝑁 such that

|𝑥𝑁 − 𝑝| ≤ 𝑏 − 𝑎
2𝑁 = 2−𝑁 < 10−3. (3.7)

Since 210 = 1024, this inequality is satisfied if we take 𝑁 = 10. Table 3.1 shows the results of the
bisection method.

Table 3.1: Ten iterations of the bisection method for approximating
√

2

n a b x f_x
0 1 1.000000 2.000000 1.500000 0.250000
1 2 1.000000 1.500000 1.250000 -0.437500
2 3 1.250000 1.500000 1.375000 -0.109375
3 4 1.375000 1.500000 1.437500 0.066406
4 5 1.375000 1.437500 1.406250 -0.022461
5 6 1.406250 1.437500 1.421875 0.021729
6 7 1.406250 1.421875 1.414062 -0.000427
7 8 1.414062 1.421875 1.417969 0.010635
8 9 1.414062 1.417969 1.416016 0.005100
9 10 1.414062 1.416016 1.415039 0.002336

Thus,
√

2 ≈ 1.4150 with absolute error smaller than 10−3 (Note that
√

2 = 1.414213562373095 …, so
that the actual error is 𝐸 = |𝑥10 −

√
2| = 0.0008255001269048545 …).

This example illustrates that the method converges, although rather slowly—we will come across much
faster methods in due course. Also, it appears that the method is unnecessarily inefficient—note that
𝑥7 was a better approximation to

√
2 than 𝑥10. On the other hand, the advantage is the simple and

clear error estimate.

Finally, let us write the algorithm in a form that is more adapted to a computer implementation.
We do not use a specific programming language here, but pseudocode. The bisection method is
formulated in Algorithm 2.1. This matches our heuristic description above; note however that there
are a number of efficiency improvements: We do not need to store the entire sequences {𝑎𝑛}, {𝑏𝑛},
{𝑥𝑛}, but only their “current” values, which we label 𝑎, 𝑏, 𝑥. Also, by storing intermediate results, one
tries to evaluate 𝑓 as few times as possible, which means that the implementation is efficient even if
evaluating 𝑓 is time consuming.
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Algorithm 2.1: Bisection method
1 ∶ function 𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑓, 𝑎, 𝑏, 𝑁) ♯ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑎, 𝑏], 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 𝑁
2 ∶ 𝐹𝑎 ← 𝑓(𝑎)
3 ∶ for 𝑘 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 do
4 ∶ 𝑥 ← (𝑎 + 𝑏)/2; 𝐹𝑥 ← 𝑓(𝑥) ♯ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑡ℎ𝑒𝑟𝑒
5 ∶ if 𝐹𝑥 = 0 then ♯ 𝑧𝑒𝑟𝑜 ℎ𝑎𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑
6 ∶ break
7 ∶ else if 𝐹𝑥 ⋅ 𝐹𝑎 < 0 then ♯ 𝑧𝑒𝑟𝑜 𝑖𝑠 𝑖𝑛 [𝑎, 𝑥]
8 ∶ 𝑏 ← 𝑥
9 ∶ else ♯ 𝑧𝑒𝑟𝑜 𝑖𝑠 𝑖𝑛 [𝑥, 𝑏]

10 ∶ 𝑎 ← 𝑥; 𝐹𝑎 ← 𝐹𝑥
11 ∶ end if
12 ∶ end for
13 ∶ return 𝑥
14 ∶ end function

Further reading: Sections 1.3, 2.1 of (Burden and Faires 2010).

3.3 Method of false position

The method of false position (or regula falsi method) is a slight variation of the bisection method. The
idea is to choose a more efficient intermediate point 𝑥 than just the midpoint of the interval [𝑎, 𝑏].
Instead, one joins the points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) with a straight line (the secant line) and find the
point where this line intersects the 𝑥 axis. Since the line is given by

𝑦 = 𝑓(𝑎) + 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎 (𝑥 − 𝑎), (3.8)

this intersection point is located at

𝑥 = 𝑎 − 𝑓(𝑎)
𝑓(𝑏) − 𝑓(𝑎)(𝑏 − 𝑎). (3.9)

This method is illustrated in Figure 3.1.

a bx1

x2

f

x

Figure 3.1: Method of false position
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The algorithm for the method of false position is just the same as Algorithm 2.1, except that in line 4,
the statement 𝑥 ← (𝑎 + 𝑏)/2 is replaced by 𝑥 ← 𝑎 − 𝑓(𝑎)

𝑓(𝑏)−𝑓(𝑎)(𝑏 − 𝑎). (Again, one may optimize this
to avoid evaluating 𝑓 too often.)

Example 3.2. Let us return to the problem of finding an approximation to
√

2 correct to within 10−3

by finding a zero of the function 𝑓(𝑥) = 𝑥2 − 2. Again taking 𝑎 = 1 and 𝑏 = 2, we have 𝑓(𝑎) = −1 < 0
and 𝑓(𝑏) = 2 > 0, and so

√
2 is the unique zero of 𝑓 on the interval [𝑎, 𝑏]. Carrying out 10 steps of the

method of false position, we obtain the results in Table 3.3. The desired accuracy is obtained after
the fourth step. Moreover, comparing with Table 3.1, it appears that the method of False Position
converges much faster than the Bisection method in this example.

Table 3.3: Numerical example for method of false position

𝑘 𝑥𝑛 𝑓(𝑥𝑛) |𝑥𝑛 −
√

2|
1 1.333333333 -0.222222223 0.080880229
2 1.400000000 -0.040000000 0.014213562
3 1.411764706 -0.006920415 0.002448856
4 1.413793104 -0.001189059 0.000420458
5 1.414141414 -0.000204061 0.000072148
6 1.414201183 -0.000035014 0.000012379
7 1.414211438 -0.000006009 0.000002124
8 1.414213198 -0.000001031 3.64×10−7

9 1.414213500 −1.76 × 10−7 6.20×10−8

10 1.414213552 −2.90 × 10−8 1.00×10−8

The method of false position converges faster than the bisection method in many cases. Unfortunately,
it is not guaranteed that the method of false position will always converge faster—there are other
examples where it actually turns out to be slower. A precise error estimate for the method of false
position is hard to find, so we cannot predict how fast the method will converge.

Further reading: Sections 2.3 of (Burden and Faires 2010).

3.4 Fixed point iteration

We will now investigate a different problem that is closely related to root finding: the fixed point
problem. Given a function 𝑔 (of one real argument with real values), we look for a number 𝑝 such
that

𝑔(𝑝) = 𝑝. (3.10)

This 𝑝 is called a fixed point of 𝑔.
Any root finding problem 𝑓(𝑥) = 0 can be reformulated as a fixed point problem, and this can be done
in many (in fact, infinitely many) ways. For example, given 𝑓 , we can define 𝑔(𝑥) ∶= 𝑓(𝑥) + 𝑥; then

𝑓(𝑥) = 0 ⇔ 𝑔(𝑥) = 𝑥. (3.11)

Just as well, we could set 𝑔(𝑥) ∶= 𝜆𝑓(𝑥) + 𝑥 with any 𝜆 ∈ ℝ\{0}, and there are many other possibili-
ties.

The heuristic idea for approximating a fixed point of a function 𝑔 is quite simple. We take an initial
approximation 𝑥0 and calculate subsequent approximations using the formula

𝑥𝑛 ∶= 𝑔(𝑥𝑛−1). (3.12)

A graphical representation of this sequence is shown in Figure 3.2.
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Figure 3.2: Fixed point iteration

Why is this sequence expected to approximate a fixed point? Suppose for a moment that the sequence
(𝑥𝑛) converges to some number 𝑝, and that 𝑔 is continuous. Then

𝑝 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑔(𝑥𝑛−1) = 𝑔 ( lim
𝑛→∞

𝑥𝑛−1) = 𝑔(𝑝). (3.13)

Thus, if the sequence converges, then it converges to a fixed point. However, this resolves the problem
only partially. One would like to know:

• Under what conditions does the sequence (𝑥𝑛) converge?

• How fast is the convergence, i.e., can one obtain an estimate for the approximation error?

The following theorem gives us the answers to those questions. We will revisit this theorem—in a
more general case—later.

Theorem 3.2 (Fixed Point Theorem). Suppose that 𝑔 ∶ [𝑎, 𝑏] → [𝑎, 𝑏] is differentiable, and that there
exists 0 < 𝑘 < 1 such that

|𝑔′(𝑥)| ≤ 𝑘 for all 𝑥 ∈ (𝑎, 𝑏). (3.14)

Then, 𝑔 has a unique fixed point 𝑝 ∈ [𝑎, 𝑏]; and for any choice of 𝑥0 ∈ [𝑎, 𝑏], the sequence defined by

𝑥𝑛 ∶= 𝑔(𝑥𝑛−1) for all 𝑛 ≥ 1 (3.15)

converges to 𝑝. The following estimate holds:

|𝑝 − 𝑥𝑛| ≤ 𝑘𝑛|𝑝 − 𝑥0| for all 𝑛 ≥ 1. (3.16)

Proof. We first show that 𝑔 has a fixed point 𝑝 in [𝑎, 𝑏]. If 𝑔(𝑎) = 𝑎 or 𝑔(𝑏) = 𝑏 then 𝑔 has a fixed
point at an endpoint. If not, then it must be true that 𝑔(𝑎) > 𝑎 and 𝑔(𝑏) < 𝑏. This means that the
function ℎ(𝑥) ∶= 𝑔(𝑥) − 𝑥 satisfies

ℎ(𝑎) = 𝑔(𝑎) − 𝑎 > 0, ℎ(𝑏) = 𝑔(𝑏) − 𝑏 < 0 (3.17)

and since ℎ is continuous on [𝑎, 𝑏] the Intermediate Value Theorem guarantees the existence of 𝑝 ∈ (𝑎, 𝑏)
for which ℎ(𝑝) = 0, equivalently 𝑔(𝑝) = 𝑝, so that 𝑝 is a fixed point of 𝑔.
To show that the fixed point is unique, suppose that 𝑞 ≠ 𝑝 is a fixed point of 𝑔 in [𝑎, 𝑏]. The Mean
Value Theorem implies the existence of a number 𝜉 ∈ (min{𝑝, 𝑞},max{𝑝, 𝑞}) ⊆ (𝑎, 𝑏) such that

𝑔(𝑝) − 𝑔(𝑞)
𝑝 − 𝑞 = 𝑔′(𝜉). (3.18)
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Then
|𝑝 − 𝑞| = |𝑔(𝑝) − 𝑔(𝑞)| = |(𝑝 − 𝑞)𝑔′(𝜉)| = |𝑝 − 𝑞||𝑔′(𝜉)|

≤ 𝑘|𝑝 − 𝑞| < |𝑝 − 𝑞|, (3.19)

where the inequalities follow from Eq. 3.14. This is a contradiction, which must have come from the
assumption 𝑝 ≠ 𝑞. Thus 𝑝 = 𝑞 and the fixed point is unique.

Since 𝑔 maps [𝑎, 𝑏] onto itself, the sequence {𝑥𝑛} is well defined. For each 𝑛 ≥ 0 the Mean Value
Theorem gives the existence of a 𝜉 ∈ (min{𝑥𝑛, 𝑝},max{𝑥𝑛, 𝑝}) ⊆ (𝑎, 𝑏) such that

𝑔(𝑥𝑛) − 𝑔(𝑝)
𝑥𝑛 − 𝑝 = 𝑔′(𝜉). (3.20)

Thus for each 𝑛 ≥ 1 by Eq. 3.14, Eq. 3.15

|𝑥𝑛 − 𝑝| = |𝑔(𝑥𝑛−1) − 𝑔(𝑝)| = |(𝑥𝑛−1 − 𝑝)𝑔′(𝜉)|
= |𝑥𝑛−1 − 𝑝||𝑔′(𝜉)| ≤ 𝑘|𝑥𝑛−1 − 𝑝|. (3.21)

Applying this inequality inductively, we obtain the error estimate Eq. 3.16. Moreover since 𝑘 < 1 we
have

lim
𝑛→∞

|𝑥𝑛 − 𝑝| ≤ lim
𝑛→∞

𝑘𝑛|𝑥0 − 𝑝| = 0, (3.22)

which implies that (𝑥𝑛) converges to 𝑝. �

The following example shows why the conditions of the Theorem 3.2 are important.

Example 3.3. The equation
𝑓(𝑥) = 𝑥2 − 2 = 0 (3.23)

has a unique root
√

2 in [1, 2]. There are many ways of writing this equation in the form 𝑥 = 𝑔(𝑥); we
consider two of them:

𝑥 = 𝑔(𝑥) = 𝑥 − (𝑥2 − 2), 𝑥 = ℎ(𝑥) = 𝑥 − 𝑥2 − 2
3 . (3.24)

Which of these fixed point problems generate a rapidly converging sequence?

It is easy to see that the condition of the fixed point theorem is not satisfied by the function 𝑔 on
[1, 2]: Namely, 𝑔(2) = 0, so that 𝑔(2) ∉ [1, 2]. On the other hand ℎ satisfies the conditions because

ℎ(𝑥) ∈ [1, 2] ( max
𝑥∈[1,2]

ℎ(𝑥) = 17
12, min

𝑥∈[1,2]
ℎ(𝑥) = 4

3) and |ℎ′(𝑥)| ≤ 1/3. (3.25)

Thus, the fixed point theorem guarantees that the sequence (𝑥𝑛) produced by the fixed point iteration
procedure 𝑥𝑛 = ℎ(𝑥𝑛−1) converges to 𝑝 =

√
2.

Table 3.4: Fixed point iteration converges quickly for ℎ

𝑛 𝑥𝑘 = 𝑔(𝑥𝑛−1) |𝑥𝑛 −
√

2|
0 1.0 0.414213562
1 2.0 0.585786438
2 0.0 1.414213562
3 2.0 0.585786438
4 0.0 1.414213562
5 2.0 0.585786438
6 0.0 1.414213562
7 2.0 0.585786438
8 0.0 1.414213562
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Table 3.5: Fixed point iteration converges quickly for ℎ

𝑛 𝑥𝑘 = ℎ(𝑥𝑛−1) |𝑥𝑛 −
√

2|
0 1.0 0.414213562
1 1.333333333 0.080880229
2 1.407407407 0.006806155
3 1.413808871 0.000404691
4 1.414190363 0.000023199
5 1.414212235 0.000001327
6 1.414213486 7.6×10−8

7 1.414213558 4.0×10−9

8 1.414213562 0.0

Table 3.5 shows the sequences generated by fixed point iteration on 𝑔 and ℎ with start value 𝑥0 = 1.
It is apparent that the sequence generated by ℎ converges quite fast, whereas the one generated by 𝑔
does not converge at all. The example is explored further in Practical 2.

The example illustrates that one needs to be careful in rewriting root finding problems as fixed point
problems—there are many ways to do so, but not all lead to a good approximation. Note at this point
that Theorem 3.2 gives only sufficient conditions for convergence; in practice, convergence might occur
even if the conditions are violated.

For implementing the fixed point method as a computer algorithm, there’s one more complication to
be taken into account: how many steps of the iteration should be taken, i.e., how large should 𝑛 be
chosen, in order to reach the desired precision? For the bisection method, the error estimate Eq. 3.2
allows an easy answer. The estimate in fixed point iteration, Eq. 3.16, turns out to be more difficult
to use. While we can certainly estimate

|𝑥0 − 𝑝| ≤ max{|𝑥0 − 𝑎|, |𝑥0 − 𝑏|}, (3.26)

the constant 𝑘 (which influences the speed of convergence significantly) is often difficult to obtain in
practice, since it involves estimates on the derivative of 𝑔.
Instead, one uses a different stopping condition for the algorithm. Since the sequence is expected to
converge rapidly, one uses the difference |𝑥𝑛 −𝑥𝑛−1| to measure the precision reached. If this difference
is below a specified limit, say 𝜏 , the iteration is stopped. Since it is possible that the iteration does
not converge—see the example above—one would also stop the iteration (with an error message) if
a certain number of steps is exceeded, in order to avoid infinite loops. Algorithm 2.2 shows all this
combined in pseudocode.

Algorithm 2.2: Fixed point iteration
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1 ∶ function 𝐹𝑖𝑥𝑒𝑑𝑃𝑜𝑖𝑛𝑡(𝑔, 𝑥0, 𝜏 , 𝑁) ♯ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔, 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑥0,
2 ∶ 𝑥 ← 𝑥0; 𝑛 ← 0 ♯ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏, 𝑚𝑎𝑥. 𝑛𝑢𝑚. 𝑜𝑓
3 ∶ loop ♯ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑁
4 ∶ 𝑦 ← 𝑥; 𝑥 ← 𝑔(𝑥)
5 ∶ if |𝑦 − 𝑥| < 𝜏 then ♯ 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
6 ∶ break
7 ∶ end if
8 ∶ 𝑛 ← 𝑛 + 1
9 ∶ if 𝑛 > 𝑁 then ♯ 𝑀𝑎𝑥. 𝑛𝑢𝑚. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

10 ∶ exception("𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒") ♯ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
11 ∶ end if
12 ∶ end loop
13 ∶ return 𝑥
14 ∶ end function

Further reading: Section 2.2 of (Burden and Faires 2010).

3.5 Newton’s method

Newton’s method is one of the most effective numerical methods for solving a root-finding problem
𝑓(𝑥) = 0. To derive this method, we need Taylor’s theorem in its simplest form, for a real-valued
function of one real variable, with the remainder in Lagrange form.

Theorem 3.3 (Taylor’s Theorem in 1d). Suppose that 𝑓 ∈ 𝐶𝑘+1(𝐼) for some 𝐼 ⊂ ℝ. For each 𝑎 ∈ 𝐼
and 𝑥 ∈ 𝐼, there exists 𝜉 between 𝑎 and 𝑥 such that

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓 ′(𝑎) + ⋯ + (𝑥 − 𝑎)𝑘

(𝑘)! 𝑓 (𝑘)(𝑎) + (𝑥 − 𝑎)𝑘+1

(𝑘 + 1)! 𝑓 (𝑘+1)(𝜉). (3.27)

Here 𝑓 (𝑘)(𝑎) denotes the 𝑘th derivative of 𝑓 at 𝑥 = 𝑎.

The idea behind Newton’s method is as follows. We assume that 𝑓 ∈ 𝐶2[𝑎, 𝑏]. Let 𝑝 be the root of
𝑓(𝑥) = 0, and let 𝑥∗ be an (initial) approximation to 𝑝 such that |𝑥∗ − 𝑝| is small. The first-order
Taylor expansion of 𝑓(𝑥) about 𝑥∗ is

𝑓(𝑥) = 𝑓(𝑥∗) + (𝑥 − 𝑥∗)𝑓 ′(𝑥∗) + (𝑥 − 𝑥∗)2

2 𝑓 ′′(𝜉) (3.28)

with some 𝜉 between 𝑥 and 𝑥∗ (so that 𝜉 ∈ [𝑎, 𝑏]). Setting 𝑥 = 𝑝, we have

0 = 𝑓(𝑥∗) + (𝑝 − 𝑥∗)𝑓 ′(𝑥∗) + (𝑝 − 𝑥∗)2

2 𝑓 ′′(𝜉). (3.29)

Since |𝑥∗ − 𝑝| is small, we ignore the last term in this formula and obtain

0 ≈ 𝑓(𝑥∗) + (𝑝 − 𝑥∗)𝑓 ′(𝑥∗) ⇒ 𝑝 ≈ 𝑥∗ − 𝑓(𝑥∗)
𝑓 ′(𝑥∗) . (3.30)

Of course, 𝑝 computed using this formula will not be the exact root, but it is natural to expect it to
be a better approximation than 𝑥∗.

Let us formulate this as an iterative algorithm. Starting with an initial approximation 𝑥0, we define
a sequence of approximation values (𝑥𝑛) by

𝑥𝑛+1 ∶= 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓 ′(𝑥𝑛) . (3.31)
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Note that this is just a fixed point iteration with the function

𝑔(𝑥) ∶= 𝑥 − 𝑓(𝑥)
𝑓 ′(𝑥) . (3.32)

Geometrically, at the 𝑛th iteration, we consider the tangent to 𝑓(𝑥) at 𝑥 = 𝑥𝑛−1, and finding its
intersection with the 𝑥 axis—see Figure 3.3.

x0x2

x3

f

x
x1

Figure 3.3: Newton’s method

So far, this was a heuristical motivation. We would like a mathematical statement that guarantees
convergence of {𝑥𝑛} to a root of the equation; this is the content of the following theorem.

Theorem 3.4. Let 𝑓 ∈ 𝐶2[𝑎, 𝑏]. If 𝑝 ∈ (𝑎, 𝑏) is such that 𝑓(𝑝) = 0 and 𝑓 ′(𝑝) ≠ 0, then there exists
a 𝛿 > 0 such that the sequence (𝑥𝑛) generated by Newton’s method converges to 𝑝 for any initial
approximation 𝑥0 ∈ [𝑝 − 𝛿, 𝑝 + 𝛿].

The idea of the proof is to show that for some 𝛿 the conditions of the fixed point theorem for function
𝑔(𝑥) (given by Eq. 3.32) are satisfied. The proof can be found in the book by (Burden and Faires
2010).

We did not give an explicit error estimate, but it will turn out later that Newton’s method, under
suitable conditions, converges even much faster than a general fixed point method.

Unfortunately, the conditions of the above theorem are such that it is hard to predict in concrete
examples whether Newton’s method will produce a converging sequence for a given initial approxima-
tion. Sometimes, a combination of the bisection method and Newton’s method is used in practice: the
first method is employed to obtain a sufficiently good initial approximation for the second one, which
then produces a fast and precise approximation.

Example 3.4. For 𝑓(𝑥) = 𝑥2 − 2, 𝑥 ∈ (0, ∞), equation Eq. 3.32 yields the function

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)
𝑓 ′(𝑥) = 𝑥 − 𝑥2 − 2

2𝑥 = 𝑥
2 + 1

𝑥. (3.33)

The sequence generated by the formula 𝑥𝑛 = 𝑥𝑛−1
2 + 1

𝑥𝑛−1
(𝑛 ≥ 1) converges to the root

√
2 of

the equation 𝑓(𝑥) = 0 for any choice of 𝑥0 ∈ (0, ∞) (prove it!). Calculations yield the values in
Table 3.6, which shows a very fast convergence. (Compare this with the result of fixed point iteration
in Table 3.5.)
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Table 3.6: Numerical example for Newton’s method

𝑛 𝑥𝑛 = 𝑔(𝑥𝑛−1) |𝑥𝑛 −
√

2|
0 1.0 0.414213562
1 1.500000000 0.085786438
2 1.416666667 0.002453105
3 1.414215686 0.000002124
4 1.414213562 0.0
5 1.414213562 0.0

Let us write down the algorithm as a pseudocode. Since Newton’s method is a special case of fixed
point iteration, this just follows Algorithm 2.2 line by line, with the same stopping conditions. For
the sake of completeness, it is shown in Algorithm 2.3.

Algorithm 2.3: Newton’s method

1 ∶ function 𝑁𝑒𝑤𝑡𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑(𝑓, 𝑓 ′, 𝑥0, 𝜏 , 𝑁) ♯ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓, 𝑖𝑡𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑓 ′,
2 ∶ 𝑥 ← 𝑥0; 𝑛 ← 0 ♯ 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑥0, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏,
3 ∶ loop ♯ 𝑚𝑎𝑥. 𝑛𝑢𝑚. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑁
4 ∶ 𝑣 ← 𝑓(𝑥)/𝑓 ′(𝑥); 𝑦 ← 𝑥 − 𝑣
5 ∶ if |𝑦 − 𝑥| < 𝜏 then ♯ 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
6 ∶ break
7 ∶ end if
8 ∶ 𝑛 ← 𝑛 + 1; 𝑥 ← 𝑦
9 ∶ if 𝑛 > 𝑁 then ♯ 𝑀𝑎𝑥. 𝑛𝑢𝑚. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

10 ∶ exception(‶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒″) ♯ 𝑟𝑒𝑎𝑐ℎ𝑒𝑑
11 ∶ end if
12 ∶ end loop
13 ∶ return 𝑦
14 ∶ end function

As a final remark, let us mention that Newton’s method works just the same for analytic function on
ℂ, rather than real-valued functions on ℝ. The definition of the approximating sequence is identical
to Eq. 3.31, where subtraction and division are now read in terms of complex numbers. We will not
go into detail here, but you will investigate an example in Practical A3.

Further reading: Section 2.3 of (Burden and Faires 2010).

3.6 Secant method

While Newton’s method is often convenient, one problem is that it requires explicit knowledge of
the derivative of 𝑓 . In practice, this may not always be available; e.g., when the function 𝑓 itself is
approximated by a piece of computer code. In this situation, one can use a slightly different method,
called the secant method.
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The idea here is to replace the derivative with a finite difference quotient. By definition of the
derivative, we have

𝑓 ′(𝑥𝑛) = lim
𝑥→𝑥𝑛

𝑓(𝑥) − 𝑓(𝑥𝑛)
𝑥 − 𝑥𝑛

. (3.34)

Replacing 𝑥 by 𝑥𝑛−1, we obtain
𝑓 ′(𝑥𝑛) ≈ 𝑓(𝑥𝑛−1) − 𝑓(𝑥𝑛)

𝑥𝑛−1 − 𝑥𝑛
. (3.35)

Using this approximation, the definition Eq. 3.31 of the approximating sequence is replaced by

𝑥𝑛+1 ∶= 𝑥𝑛 − 𝑓(𝑥𝑛)(𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1) . (3.36)

This defines the secant method. In geometrical terms, we have replaced the tangent used in Newton’s
method (Figure 3.3) by a secant (Figure 3.4).
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Figure 3.4: Secant method

Note that the secant method is not an example of fixed point iteration as discussed in Section 3.4,
since the expression for 𝑥𝑛+1 in equation Eq. 3.36 involves both 𝑥𝑛 and 𝑥𝑛−1. For the same reason,
the method requires two initial approximations, 𝑥0 and 𝑥1.

Example 3.5. Applying the secant method to the same example 𝑓(𝑥) = 𝑥2 − 2 with 𝑥0 = 1 and
𝑥1 = 1.1, we obtain the data in Table 3.7. We see that the convergence of the method is quite fast,
although slower than the convergence of the Newton method applied to the same problem.

Table 3.7: Numerical example for secant method

𝑛 𝑥𝑛 |𝑥𝑛 −
√

2|
0 1.0 0.414213562
1 1.1 0.314213562
2 1.476190476 0.061976914
3 1.406654344 0.007559218
4 1.414051050 0.000162512
5 1.414213998 4.36×10−7

6 1.414213562 0.0
7 1.414213562 0.0

Further reading: Section 2.3 of (Burden and Faires 2010).
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3.7 Order of convergence

3.7.1 Definition

Definition 3.1. Suppose that 𝑥𝑛 → 𝑝 as 𝑛 → ∞ and 𝑥𝑛 ≠ 𝑝 for all 𝑛. The sequence {𝑥𝑛} is said to
have order of convergence 𝛼 ≥ 1 if there exists a constant 𝜆 > 0 such that

lim
𝑛→∞

𝐸𝑛+1
𝐸𝛼𝑛

= 𝜆. (3.37)

Here 𝐸𝑛 denotes the absolute error in the 𝑛th approximation: 𝐸𝑛 = |𝑥𝑛 − 𝑝|.

If 𝛼 = 1, 2, 3, …, the convergence is said to be linear, quadratic, cubic, …, respectively. Note that if
the convergence is linear, then the positive constant 𝜆 that appears in the above definition must be
smaller than 1 (0 < 𝜆 < 1), because otherwise the sequence will not converge.

A sequence with a higher order of convergence converges much more rapidly than a sequence with a
lower order of convergence. To see this, let us consider the following example:

Example 3.6. Let {𝑥𝑛} and {𝑦𝑛} be sequences converging to zero and let, for 𝑛 ≥ 0,

|𝑥𝑛+1| = 𝑘|𝑥𝑛| and |𝑦𝑛+1| = 𝑘|𝑦𝑛|2, (3.38)

where 0 < 𝑘 < 1. According to the definition, {𝑥𝑛} is linearly convergent and {𝑦𝑛} is quadratically
convergent.

Also, we have

|𝑥𝑛| = 𝑘|𝑥𝑛−1| = 𝑘2|𝑥𝑛−2| = ... = 𝑘𝑛|𝑥0|,
|𝑦𝑛| = 𝑘|𝑦𝑛−1|2 = 𝑘|𝑘|𝑦𝑛−2|2|2 = 𝑘3|𝑦𝑛−2|4 = 𝑘7|𝑦𝑛−3|8 = ... = 𝑘2𝑛−1|𝑦0|2𝑛 . (3.39)

This illustrates that the quadratic convergence is much faster that the linear convergence.

3.7.2 Order of convergence for the Fixed Point Iteration

Suppose that 𝑔(𝑥) satisfies the conditions of the Fixed Point Theorem on interval [𝑎, 𝑏], so that the
sequence {𝑥𝑛} generated by the formula 𝑥𝑛+1 = 𝑔(𝑥𝑛) with 𝑥0 ∈ [𝑎, 𝑏] converges to a fixed point 𝑝.
Then, using the Mean Value Theorem, we obtain

𝐸𝑛+1 = |𝑥𝑛+1 − 𝑝| = |𝑔(𝑥𝑛) − 𝑔(𝑝)|
= |𝑔′(𝜉)(𝑥𝑛 − 𝑝)| = 𝐸𝑛|𝑔′(𝜉𝑛)|, (3.40)

where 𝜉𝑛 is a number between 𝑥𝑛 and 𝑝. This implies that if 𝑥𝑛 → 𝑝, then 𝜉𝑛 → 𝑝 as 𝑛 → ∞.
Therefore,

lim
𝑛→∞

𝐸𝑛+1
𝐸𝑛

= |𝑔′(𝑝)|. (3.41)

In general, 𝑔′(𝑝) ≠ 0, so that the fixed point iteration produces a linearly convergent sequence.

Can the fixed-point iteration produce convergent sequences with convergence of order 2, 3, etc. ? It
turns out that, under certain conditions, this is possible.

We will prove the following

Theorem 3.5. Let 𝑚 > 1 be an integer, and let 𝑔 ∈ 𝐶𝑚[𝑎, 𝑏]. Suppose that 𝑝 ∈ [𝑎, 𝑏] is a fixed
point of 𝑔, and a point 𝑥0 ∈ [𝑎, 𝑏] exists such that the sequence generated by the formula 𝑥𝑛+1 = 𝑔(𝑥𝑛)
converges to 𝑝. If 𝑔′(𝑝) = ⋯ = 𝑔(𝑚−1)(𝑝) = 0, then {𝑥𝑛} has the order of convergence 𝑚.
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Proof. Expanding 𝑔(𝑥𝑛) in Taylor’s series at point 𝑝, we obtain:

𝑥𝑛+1 = 𝑔(𝑥𝑛) = 𝑔(𝑝) + (𝑥𝑛 − 𝑝)𝑔′(𝑝) + …

+ (𝑥𝑛 − 𝑝)𝑚−1

(𝑚 − 1)! 𝑔(𝑚−1)(𝑝)

+ (𝑥𝑛 − 𝑝)𝑚

𝑚! 𝑔(𝑚)(𝜉𝑛)

= 𝑝 + (𝑥𝑛 − 𝑝)𝑚

(𝑚)! 𝑔(𝑚)(𝜉𝑛),

(3.42)

where 𝜉𝑛 is between 𝑥𝑛 and 𝑝 and, therefore, in [𝑎, 𝑏] (𝑥𝑛 ∈ [𝑎, 𝑏] at least for sufficiently large 𝑛). Then
we have

𝐸𝑛+1 = |𝑥𝑛+1 − 𝑝| = |𝑔(𝑥𝑛) − 𝑝| = ∣(𝑥𝑛 − 𝑝)𝑚

(𝑚)! 𝑔(𝑚)(𝜉𝑛)∣

= 𝐸𝑚
𝑛

|𝑔(𝑚)(𝜉𝑛)|
𝑚! .

(3.43)

Therefore (using the fact that 𝜉𝑛 → 𝑝),

lim
𝑛→∞

𝐸𝑛+1
𝐸𝑚𝑛

= |𝑔(𝑚)(𝑝)|
𝑚! , (3.44)

which means that {𝑥𝑛} has convergence of order 𝑚.

3.7.3 Order of convergence of Newton’s method

Newton’s method for approximating the root 𝑝 of the equation 𝑓(𝑥) = 0 is equivalent to the fixed-point
iteration 𝑥𝑛+1 = 𝑔(𝑥𝑛) with

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)
𝑓 ′(𝑥) . (3.45)

Suppose that sequence {𝑥𝑛} converges to 𝑝 and 𝑓 ′(𝑝) ≠ 0. We have

𝑔′(𝑥) = 𝑓(𝑥)𝑓″(𝑥)
[𝑓 ′(𝑥)]2 ⇒ 𝑔′(𝑝) = 𝑓(𝑝)𝑓″(𝑝)

[𝑓 ′(𝑝)]2 = 0. (3.46)

It follows from the above theorem that the order of convergence of Newton’s method is 2 (except in
the special case where 𝑔″(𝑝) = 0).

3.7.4 Order of convergence of the secant method

The situation with the secant method is more complicated (since it cannot be reduced to the fixed
point iteration) and requires a separate treatment. The result is that the secant method has order of
convergence 𝛼 = 1+

√
5

2 ≈ 1.618.
Note that 𝛼 is known as the golden ratio. If you are intrigued to see the golden ratio appear in this
context, you can find a proof below. If you are happy to just accept the miracle, you can skip the
proof and go on to the Exercises.

Suppose that a sequence {𝑥𝑛}, generated by the secant method

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)(𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1) , (3.47)

converges to 𝑝. Let
𝑒𝑛 = 𝑥𝑛 − 𝑝, (3.48)
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so that 𝐸𝑛 = |𝑒𝑛|, and we assume that 𝐸𝑛 ≪ 1, which is definitely true for sufficiently large 𝑛 (since
the sequence {𝑥𝑛} is converging to 𝑝). Subtracting 𝑝 from both sides of Eq. 3.47, we obtain

𝑒𝑛+1 = 𝑒𝑛 − 𝑓(𝑝 + 𝑒𝑛)(𝑒𝑛 − 𝑒𝑛−1)
𝑓(𝑝 + 𝑒𝑛) − 𝑓(𝑝 + 𝑒𝑛−1) , (3.49)

Expanding 𝑓(𝑝 + 𝑒𝑛) and 𝑓(𝑝 + 𝑒𝑛−1) in Taylor series about 𝑝 and taking into account that 𝑓(𝑝) = 0,
we find that

𝑓(𝑝 + 𝑒𝑛) = 𝑒𝑛𝑓 ′(𝑝) + 𝑒2
𝑛
2 𝑓 ′′(𝑝) + ⋯

= 𝑒𝑛𝑓 ′(𝑝)(1 + 𝑒𝑛𝑄) + ⋯ ,

𝑓(𝑝 + 𝑒𝑛−1) = 𝑒𝑛−1𝑓 ′(𝑝) + 𝑒2
𝑛−1
2 𝑓 ′′(𝑝) + ⋯

= 𝑒𝑛−1𝑓 ′(𝑝)(1 + 𝑒𝑛−1𝑄) + ⋯ ,

(3.50)

where
𝑄 = 𝑓 ′′(𝑝)

2𝑓 ′(𝑝) . (3.51)

Substitution of Eq. 3.50 into Eq. 3.49 yields

𝑒𝑛+1 = 𝑒𝑛 − 𝑒𝑛(𝑒𝑛 − 𝑒𝑛−1)𝑓 ′(𝑝)(1 + 𝑒𝑛𝑄) + ⋯
𝑓 ′(𝑝) [𝑒𝑛 − 𝑒𝑛−1 + 𝑄(𝑒2𝑛 − 𝑒2

𝑛−1) + ⋯]

= 𝑒𝑛 (1 − 1 + 𝑒𝑛𝑄 + ⋯
1 + 𝑄(𝑒𝑛 + 𝑒𝑛−1) + ⋯) .

(3.52)

Since, for small 𝑥,
1

1 + 𝑥 + ⋯ = 1 − 𝑥 + ⋯ , (3.53)

we obtain
𝑒𝑛+1 = 𝑒𝑛 (1 − (1 + 𝑒𝑛𝑄 + ⋯) (1 − 𝑄(𝑒𝑛 + 𝑒𝑛−1) + ⋯))

= 𝑄𝑒𝑛𝑒𝑛−1 + ⋯ . (3.54)

Thus, for sufficiently large 𝑛, we have
𝑒𝑛+1 ≈ 𝑄𝑒𝑛𝑒𝑛−1. (3.55)

Hence,
𝐸𝑛+1 ≈ |𝑄| 𝐸𝑛𝐸𝑛−1. (3.56)

Now we assume that (for all sufficiently large 𝑛)
𝐸𝑛+1 ≈ 𝜆𝐸𝛼

𝑛 , (3.57)

where 𝜆 and 𝛼 are positive constants. Substituting Eq. 3.57 into Eq. 3.56, we find

𝜆𝐸𝛼
𝑛 ≈ |𝑄|𝐸𝑛𝐸𝑛−1 or 𝜆𝐸𝛼−1

𝑛 ≈ |𝑄|𝐸𝑛−1. (3.58)

Applying Eq. 3.57 one more time (with 𝑛 replaced by 𝑛 − 1), we obtain

𝜆 (𝜆𝐸𝛼
𝑛−1)𝛼−1 ≈ |𝑄|𝐸𝑛−1 (3.59)

or, equivalently,
𝜆𝛼𝐸𝛼(𝛼−1)

𝑛−1 ≈ |𝑄|𝐸𝑛−1. (3.60)
The last equation will be satisfied provided that

𝜆𝛼 = |𝑄|, 𝛼(𝛼 − 1) = 1, (3.61)

which requires that
𝜆 = |𝑄|1/𝛼, 𝛼 = (1 +

√
5)/2 ≈ 1.62. (3.62)

Thus, we have shown that if {𝑥𝑛} is a convergent sequence generated by the secant method, then

lim
𝑛→∞

𝐸𝑛+1
𝐸𝛼𝑛

= |𝑄|1/𝛼. (3.63)

Thus, the secant method has superlinear convergence.

Further reading: Section 2.4 of (Burden and Faires 2010).
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3.8 Exercises

3.8.1 Written exercises

Exercise 3.1. Consider the bisection method for finding the zero of

𝑓(𝑥) = √𝑥 − cos𝑥 (3.64)

on 𝑥 ∈ [0, 1]

a) Using the starting values of 𝑎 = 0.5 and 𝑏 = 1.0, calculate the first 5 steps of the bisection
method.

b) How many steps of the bisection method would be need to ensure that the root is accurate to
10 significant figures?

c) Show that the bisection method gives a sequence 𝑥𝑛 with an error that converges linearly to
zero. Does that imply that the bisection method converges linearly?

Exercise 3.2. Consider the fixed point iteration

𝑥𝑛+1 = 𝑥3
𝑛 + 3𝑎𝑥𝑛
3𝑥2𝑛 + 𝑎 , (3.65)

where 𝑎 > 0 is given.

a) What does this fixed point iteration approximate?

b) Use the scheme to calculate
√

23 correct to 10 significant digits.

Exercise 3.3. Consider the problem of finding a numerical approximation to
√

3 using the fixed point
iteration method with the function

𝑔(𝑥) = 𝑥 + 𝜆𝑃(𝑥)(𝑥2 − 3) (3.66)

where 𝑃(𝑥) is a general polynomial of degree 𝑚.

For the case 𝑃 (𝑥) = 1 and 𝜆 = −1/4, 𝑔(𝑥) satisfies the fixed point theorem on the domain [1, 2], i.e.

𝑔 ∶ [1, 2] → [1, 2] (3.67)

with
|𝑔′(𝑥)| < 𝑘, 0 < 𝑘 < 1, 𝑥 ∈ [1, 2]. (3.68)

a) For 𝑃(𝑥) = 1 and 𝜆 = −1/4, show that the sequence {𝑥𝑛} defined by 𝑥𝑛+1 = 𝑔(𝑥𝑛) converges
linearly to

√
3.

b) Show that 𝑔(𝑥) also satisfies the fixed point theorem on the domain [1, 2] for the case 𝑃 (𝑥) =
𝑥(𝑥2 − 5) and 𝜆 = +1/12, and thus there exists a unique fixed point defined by 𝑥𝑛+1 = 𝑔(𝑥𝑛).

c) Given a starting value of 𝑥0 = 1, calculate the number 𝑛 of iterations required to achieve an
absolute error of 𝐸𝑛 = 10−8 for the cases (i) 𝑃(𝑥) = 1, 𝜆 = −1/4 and (ii) 𝑃(𝑥) = 𝑥(𝑥2 − 5),
𝜆 = +1/12.

Exercise 3.4. Find the small root of

𝑥2 − 104𝑥 + 2 = 0 (3.69)

to at least 17 significant figures, writing out all steps of your calculation.
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3.8.2 Programming exercises

Exercise 3.5. In many physics and engineering applications, the Bessel functions 𝐽𝑛(𝑥) are the radial
solutions to the Laplacian operator in cylindrical coordinates, i.e. ∇2𝑓(𝑟, 𝜃, 𝑧) = 0. Applying boundary
conditions to the problem usually results in the need to compute the roots of 𝐽𝑛(𝑥). Here we will use
the Bisection Method to identify roots of 𝐽𝑛(𝑥) using the following generalized formula

𝐽𝑛(𝑥) = (𝑥
2 )

𝑛 ∞
∑
𝑘=0

(−1)𝑘𝑥2𝑘

𝑘!(𝑛 + 𝑘)!4𝑘 . (3.70)

a) The c++ code bessel_root.c (or FORTRAN code bessel_root.f90) is set up to compute
roots of the Bessel function 𝐽0(𝑥). It takes input from the user for the two points 𝑎 and 𝑏 that
bracket the root and the maximum error 𝜖 to compute the root to. Alter the code and compute
the first three positive roots for 𝐽1(𝑥) to an accuracy of 𝜖 = 1.0 × 10−5.

b) You may have noticed when applying the code that unless you choose the initial points 𝑎 and 𝑏
to bracket at least one root, the method does not converge. Alter the code to use the **Secant
Method*, which does not require the root to be bracketed. Code for the Secant method is
provided by secant.c (secant.f90).

c) For mathematical thought - i.e. there is no “right answer”. Instead of using the secant method,
we could use Newton’s method here. What is a potential downside to using Newtons method in
this application?

Exercise 3.6. Consider the problem of finding the root to the function

𝑓(𝑥) = exp(𝑥) − 10𝑥2 (3.71)

a) The C++ code newton_root.c (or FORTRAN code newton_root.f90) is set up to compute
roots of this function using Newton’s method that we learned in lecture. It takes input from
the user on an initial guess for the root 𝑎 and the maximum error 𝜖 to compute the root to. Find
three roots of the function.

b) Try using a starting value of 𝑎 = 3.5. Why does the method converge to the negative root
instead of the two positive roots which are closer?

c) Alter the code and compute the roots for the function 𝑓(𝑥) = 𝑥3 − 1 to an accuracy of 𝜖 =
1.0 × 10−5. Does the code always converge to the same root?

d) Challenge Alter the code so that it can identify any real or complex root of the function
𝑓(𝑧) = 𝑧3 − 1.

Exercise 3.7. Consider the surface that is described by the cylindrical shape of length 𝐿 and radius
given by the general function 𝑠(𝑧)
The surface area of this cylinder is given by:

𝐴 = 2𝜋 ∫
𝐿

0
𝑠(𝑧)√1 + 𝑠′(𝑧)2𝑑𝑧. (3.72)

We wish to identify the radial function 𝑠(𝑧) that minimizes the surface area of the cylinder.

a) Use the Euler-Lagrange equations to find the ODE for 𝑠(𝑧) that minimizes the area.

b) Verify that
𝑠(𝑧) = 𝛼 cosh(𝑧 − 𝛽

𝛼 ) (3.73)

is a solution to the ODE.
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Figure 3.5: A cylinder of length 𝐿 with surface generated by the radius function 𝑠(𝑧)

c) Apply the boundary conditions 𝑠(0) = 𝑠(𝐿) = 𝑅 to the solution in part (b). Use the two
equations that you get from the boundary conditions to obtain a single equation in terms of
𝑅, 𝐿 and a single unknown 𝛼.

d) Assuming 𝑅 and 𝐿 are known, choose an appropriate root finding technique (bisection,secant,
or Newton) and create a root finding code that solves for the unknown 𝛼. Using 𝑅 = 5.0 and
𝐿 = 6.0, identify the solution (or solutions) 𝛼. Plot the resulting function 𝑠(𝑧) that minimizes
the surface area of the cylinder.
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4 Solving systems of nonlinear equations

So far, we considered the root of one equation in one variable 𝑥. In applications, one often meets
systems of several equations in several variables.

4.1 Defining the problem

Let f ∶ ℝ𝑚 → ℝ𝑚 be given. The root finding problem is that of finding the solution x ∈ ℝ𝑚 such
that

f(x) = 0 or
⎧{{
⎨{{⎩

𝑓1(𝑥1, … , 𝑥𝑚) = 0
𝑓2(𝑥1, … , 𝑥𝑚) = 0
⋮
𝑓𝑚(𝑥1, … , 𝑥𝑚) = 0

(4.1)

This is a system of 𝑚 (linear or nonlinear) equations for 𝑚 unknowns 𝑥1, … , 𝑥𝑚.

Example 4.1. Let 𝑚 = 2 and

f(x) = (𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2)) = (𝑥2

1 + 𝑥2
2 − 1

𝑥2 − 𝑥2
1

) . (4.2)

Then we have the system of two equations

{ 𝑥2
1 + 𝑥2

2 − 1 = 0
𝑥2 − 𝑥2

1 = 0 . (4.3)

This system has a simple geometrical interpretation (see Figure 4.1).

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

Figure 4.1: The two equations 𝑥2
1 + 𝑥2

2 − 1 = 0 and 𝑥2 − 𝑥2
1 = 0. The solutions of this system are the

intersection points of the parabola with the circle.

Points (𝑥1, 𝑥2) satisfying the first equation lie on the unit circle, while the second equation gives us
the parabola. The solution of this system is represented by the two intersection points of the parabola
with the circle in Figure 4.1.
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As in the example above, the solutions of a system with 𝑚 equations and 𝑚 variables are typically
(though not always) discrete points; and there can be more than one solution. In this simple example,
one can find the intersection points of the curves explicitly (try it!), and therefore compute the solu-
tions of the system. In general, however, this will not be possible, and we will need approximation
methods.

4.2 Vector and matrix norms

Definition 4.1 (Norm of a vector). A function ‖ ⋅ ‖ ∶ ℝ𝑚 → ℝ is a vector norm if it has the following
properties:

(i)) ‖x‖ ≥ 0 for all x ∈ ℝ𝑚 and ‖x‖ = 0 ⇔ x = 0 (i.e. x = (0, 0, ..., 0)𝑡),

(ii) ‖𝛼x‖ = |𝛼| ⋅ ‖x‖ for all 𝛼 ∈ ℝ and x ∈ ℝ𝑚,

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ ℝ𝑚 (the triangle inequality).

Example 4.2. The 𝑙2 and 𝑙∞ norms of the vector x = (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑡 are defined by

‖x‖2 = (
𝑚

∑
𝑖=1

𝑥2
𝑖 )

1/2

and ‖x‖∞ = max
1≤𝑖≤𝑚

|𝑥𝑖|. (4.4)

The 𝑙2 norm is called the Euclidean norm of the vector x. It represents the notion of distance from
the origin to the point x (the length of the straight line joining the points 0 and x).

Definition 4.2. The distance between any two points x ∈ ℝ𝑚 and y ∈ ℝ𝑚 is defined as the norm
of the difference of the vectors: ‖x − y‖.

Definition 4.3. A sequence {x(𝑘)} of vectors in ℝ𝑚 converges to x with respect to the norm ‖ ⋅ ‖ if
for any 𝜖 > 0, there exists an integer 𝑁(𝜖) such that

‖x(𝑘) − x‖ < 𝜖 for all 𝑘 > 𝑁(𝜖). (4.5)

In other words, x(𝑘) → x as 𝑘 → ∞ if ‖x(𝑘) − x‖ → 0 as 𝑘 → ∞.

Remark. It can be shown that all norms on ℝ𝑚 are equivalent with respect to convergence. This
means that if ‖ ⋅ ‖ and ‖ ⋅ ‖′ are two norms on ℝ𝑚 and {x(𝑘)} converges to x with respect to the norm
‖ ⋅ ‖, then {x(𝑘)} also converges to x with respect to the norm ‖ ⋅ ‖′. (Proof of this fact for the case of
𝑙2 and 𝑙∞ norms follows from the inequality ‖x‖∞ ≤ ‖x‖2 ≤ √𝑚‖x‖∞ which is valid for all x ∈ ℝ𝑚.)

Let 𝑀(𝑚, 𝑚) be the space of all 𝑚 × 𝑚 real matrices.

Definition 4.4 (Norm of a matrix). A function ‖ ⋅ ‖ ∶ 𝑀(𝑚, 𝑚) → ℝ is a matrix norm if it has the
following properties:

(i) ‖𝐴‖ ≥ 0 and ‖𝐴‖ = 0 ⇔ 𝐴 = 𝑂 (where 𝑂 is the matrix with all zero entries),

(ii) ‖𝛼𝐴‖ = |𝛼| ⋅ ‖𝐴‖,
(iii) ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖ (the triangle inequality),

(iv) ‖𝐴𝐵‖ ≤ ‖𝐴‖ ⋅ ‖𝐵‖.

where 𝐴 and 𝐵 are any 𝑚 × 𝑚 real matrices, and 𝛼 is any real number.

A distance between matrices 𝐴 and 𝐵 (with respect to this matrix norm) is ‖𝐴 − 𝐵‖.
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Definition 4.5 (Natural, or induced, matrix norm). If ‖ ⋅ ‖ is a vector norm on ℝ𝑚, then

‖𝐴‖ = max
‖x‖=1

‖𝐴x‖ (4.6)

is a matrix norm (called natural, or induced, matrix norm associated with the vector norm).

In what follows we shall consider only 𝑙∞ matrix norms:

‖𝐴‖∞ = max
‖x‖∞=1

‖𝐴x‖∞. (4.7)

Theorem 4.1. For any 𝑚 × 𝑚 matrix 𝐴 = (𝑎𝑖𝑗),

‖𝐴‖∞ = max
1≤𝑖≤𝑚

{
𝑚

∑
𝑗=1

|𝑎𝑖𝑗|} . (4.8)

Example 4.3. Let

𝐴 =
⎡
⎢⎢
⎣

1 2 0 −1
1 3 2 0
0 −2 3 2
1 2 2 1

⎤
⎥⎥
⎦

, 𝐵 = ⎡⎢
⎣

2 2 −3
1 3 2

−3 −2 2
⎤⎥
⎦

. (4.9)

Then, according to Eq. 4.8, Evidently, ‖𝐴‖∞ = max{4, 6, 7, 6} = 7 and ‖𝐵‖∞ = max{7, 6, 7} = 7.

Later we will need the following important property of a natural matrix norm.

Theorem 4.2. For any x ≠ 0, any matrix 𝐴, and any natural norm ‖ ⋅ ‖,

‖𝐴x‖ ≤ ‖𝐴‖ ⋅ ‖x‖. (4.10)

Proof. The proof is very easy:

‖𝐴x‖
‖x‖ = ∥𝐴 x

‖x‖∥ ≤ max
‖y‖=1

‖𝐴y‖ = ‖𝐴‖ ⇒ ‖𝐴x‖ ≤ ‖𝐴‖ ⋅ ‖x‖. (4.11)

Here we have used the relevant properties of the vector norm and the definition of the natural matrix
norm.

Remark. For any natural norm, the above theorem implies property (iv) in the definition of the matrix
norm. Indeed, for any x ≠ 0 we have

‖𝐴𝐵x‖ ≤ ‖𝐴‖ ‖𝐵x‖ ≤ ‖𝐴‖ ‖𝐵‖ ‖x‖ (4.12)

and
∥𝐴𝐵 x

‖x‖∥ ≤ ‖𝐴‖ ‖𝐵‖. (4.13)

Since the last inequality is valid for all x ≠ 0, it implies that

‖𝐴𝐵‖ = max
‖y‖=1

‖𝐴𝐵y‖ ≤ ‖𝐴‖ ‖𝐵‖. (4.14)
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4.3 Fixed point iteration for vectors

We already know that, in the case of functions of one variable, the root finding problem 𝑓(𝑥) = 0 can
be reformulated as a fixed point problem 𝑔(𝑥) = 𝑥. The same is true for systems of nonlinear equations:
f(x) = 0 can be rewritten as g(x) = x in infinitely many ways, for example with g(x) = x − 𝜆f(x) for
any nonzero constant 𝜆.
Now we consider the fixed point problem for vectors. Given a function g ∶ ℝ𝑚 → ℝ𝑚, the problem is
to find a point x ∈ ℝ𝑚 such that

g(x) = x or, equivalently,
⎧{{
⎨{{⎩

𝑔1(𝑥1, … , 𝑥𝑚) = 𝑥1
𝑔2(𝑥1, … , 𝑥𝑚) = 𝑥2
⋮
𝑔𝑚(𝑥1, … , 𝑥𝑚) = 𝑥𝑚

(4.15)

We choose an initial approximation, a vector x(0), and compute the sequence of vectors {x(𝑛)} using
the formula

x(𝑛+1) = g(x(𝑛)) (𝑛 = 0, 1, … ). (4.16)

To investigate the convergence of the fixed point iteration, we need to recall some results from Vector
Calculus.

Taylor’s series expansion for functions of several variables. We assume that 𝑓 ∶ 𝐷 → ℝ
(where 𝐷 ⊂ ℝ𝑚 is an open and convex region of ℝ𝑚) is (𝑛 + 1) times continuously differentiable in
𝐷, i.e. 𝑓 ∈ 𝐶𝑛+1(𝐷). The Taylor’s series expansion for 𝑓 can be obtained from the expansion for a
function of one variable.

Let x and x0 be two points in 𝐷 and let v = x − x0, then the function 𝜙 ∶ [0, 1] → ℝ defined by

𝜙(𝑡) = 𝑓(x0 + 𝑡v) (4.17)

is a function of one variable which is (𝑛 + 1) times continuously differentiable on the interval [0, 1].
Note also that 𝑓(x0) = 𝜙(0) and 𝑓(x) = 𝜙(1). Applying Taylor’s theorem for functions of one variable
to 𝜙(𝑡), we obtain

𝜙(𝑡) = 𝜙(0) + 𝑡𝜙′(0) + 𝑡2

2 𝜙″(0) + ⋯ + 𝑡𝑛

𝑛! 𝜙(𝑛)(0) + 𝑅𝑛(𝑡) (4.18)

where the remainder term 𝑅𝑛(𝑡) can be written in various forms, e.g. in the Lagrange form

𝑅𝑛(𝑡) = 𝑡𝑛+1

(𝑛 + 1)! 𝜙(𝑛+1)(𝜉) for some 𝜉 ∈ (0, 1), (4.19)

or in the integral form

𝑅𝑛(𝑡) = 1
𝑛!

𝑡

∫
0

𝜙(𝑛+1)(𝑠)(𝑡 − 𝑠)𝑛 𝑑𝑠. (4.20)

We will see that this integral form of the remainder will be more convenient for us.

The chain rule yields

𝑓(x0 + 𝑡v) = 𝑓(x0) + 𝑡(v ⋅ ∇)𝑓(x0) + 𝑡2

2 (v ⋅ ∇)2𝑓(x0) + …

+ 𝑡𝑛

𝑛! (v ⋅ ∇)𝑛𝑓(x0) + 𝑅𝑛(𝑡) (4.21)

{#eq-taylor-multivariable}
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where v ⋅ ∇ = 𝑣1𝜕𝑥1
+ 𝑣2𝜕𝑥2

+ ⋯ + 𝑣𝑚𝜕𝑥𝑚
. Now we set 𝑡 = 1, so that

𝑓(x) = 𝑓(x0) + (v ⋅ ∇)𝑓(x0) + 1
2 (v ⋅ ∇)2𝑓(x0) + …

+ 1
𝑛! (v ⋅ ∇)𝑛𝑓(x0) + 𝑅𝑛(1) (4.22)

{#eq-taylor-multivariable-final} with the remainder term

𝑅𝑛(1) = 1
𝑛!

1

∫
0

𝜙(𝑛+1)(𝑠)(1 − 𝑠)𝑛 𝑑𝑠. (4.23)

In particular, for 𝑛 = 0 we get

𝑓(x) = 𝑓(x0) +
1

∫
0

𝑚
∑
𝑖=1

(𝑥𝑖 − 𝑥0𝑖)𝜕𝑥𝑖
𝑓(x0 + 𝑠v)𝑑𝑠 (4.24)

and for 𝑛 = 1 we get

𝑓(x) =𝑓(x0) +
𝑚

∑
𝑖=1

(𝑥𝑖 − 𝑥0𝑖)𝜕𝑥𝑖
𝑓(x0)

+
1

∫
0

𝑚
∑
𝑖,𝑗=1

(𝑥𝑖 − 𝑥0𝑖)(𝑥𝑗 − 𝑥0𝑗)𝜕𝑥𝑖
𝜕𝑥𝑗

𝑓(x0 + 𝑠v)(1 − 𝑠)𝑑𝑠.
(4.25)

Now let g ∶ 𝐷 → ℝ𝑚 and g ∈ 𝐶1(𝐷) (i.e. g is continuously differentiable in 𝐷). Applying Eq. 4.24 to
each component of g, we obtain the formula

𝑔𝑖(x) = 𝑔𝑖(y) +
1

∫
0

𝑚
∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)𝜕𝑥𝑘
𝑔𝑖(y + 𝑠(x − y))𝑑𝑠, (4.26)

which is valid for any x, y ∈ 𝐷. If we introduce the Jacobian matrix

J(x) = 𝜕g
𝜕x (4.27)

whose (𝑖, 𝑗) component is 𝜕𝑔𝑖/𝜕𝑥𝑗, the above formula can be written in a nicer form:

g(x) = g(y) +
1

∫
0

J(y + 𝑠(x − y))(x − y)𝑑𝑠. (4.28)

It can be shown (see for example Ortega 1972, chap. 8) that for any continuous function G ∶ [𝑎, 𝑏] →
ℝ𝑚 and any vector norm,

∥
𝑏

∫
𝑎

G(𝑠)𝑑𝑠∥ ≤
𝑏

∫
𝑎

‖G(𝑠)‖ 𝑑𝑠. (4.29)

Now we are ready to (partially) prove the following theorem.

Theorem 4.3. Let g ∶ 𝐷 → 𝐷 be continuously differentiable, where 𝐷 ⊂ ℝ𝑚 is a closed and convex
region. If there exists 0 < 𝑘 < 1 such that

∥𝜕g
𝜕x∥ ≤ 𝑘 for all x ∈ 𝐷, (4.30)

then g has a unique fixed point p in 𝐷 and the sequence {x(𝑛)} generated be the formula

x(𝑛+1) = g(x(𝑛)) (𝑛 = 0, 1, … ) (4.31)

converges to p for any x(0) ∈ 𝐷, and the following estimate holds:

∥x(𝑛) − p∥ ≤ 𝑘𝑛 ∥x(0) − p∥ . (4.32)
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Proof. (partial) We will only partially prove this theorem. Namely, we will prove that g is a contrac-
tion mapping. Then the contraction mapping theorem (see, e.g. Wait 1979, chap. 5) will guarantee
the existence and uniqueness of the fixed point, as well as convergence of the fixed point iteration. We
will also prove the above error estimate.

To show that g is a contraction mapping (i.e there is a number 𝑘 ∈ (0, 1) such that ‖g(x) − g(y)‖ ≤
𝑘 ‖x − y‖ for all x, y ∈ 𝐷), we will use Eq. 4.28. It follows from Eq. 4.28 that

‖g(x) − g(y)‖ = ∥
1

∫
0

J(y + 𝑠(x − y))(x − y)𝑑𝑠∥ . (4.33)

Now, with the help of Eq. 4.28, we obtain

‖g(x) − g(y)‖ ≤
1

∫
0

‖J(y + 𝑠(x − y))(x − y)‖ 𝑑𝑠

≤
1

∫
0

‖J(y + 𝑠(x − y))‖ ‖x − y‖𝑑𝑠

≤ sup
x∈𝐷

‖J(x)‖
1

∫
0

‖x − y‖𝑑𝑠 = sup
x∈𝐷

‖J(x)‖ ‖x − y‖

≤ 𝑘 ‖x − y‖.

(4.34)

Here we have used the property of the natural matrix norm that we have proved earlier: ‖𝐴x‖ ≤ ‖𝐴‖‖x‖.
The above proves the fact that g is a contraction mapping.

The proof of the error estimate is exactly the same as in the case of functions of one variable: if p is
a fixed point, then

‖x(𝑛) − p‖ = ‖g(x(𝑛−1)) − g(p)‖
≤ 𝑘‖x(𝑛−1) − p‖ = 𝑘‖g(x(𝑛−2)) − g(p)‖
≤ 𝑘2‖x(𝑛−2) − p‖ = 𝑘‖g(x(𝑛−3)) − g(p)‖
⋮
≤ 𝑘𝑛‖x(0) − p‖.

(4.35)

Example 4.4. Let us consider the function g defined on 𝐷 = [0, 1] × [0, 1] ⊂ ℝ2 by

g(x) = (𝑔1(𝑥1, 𝑥2)
𝑔2(𝑥1, 𝑥2)) = ( cos𝑥2

3
4 sin𝑥1

) . (4.36)

This is well-defined: For any x ∈ [0, 1]×[0, 1], we know that g(x) ∈ [0, 1]×[0, 1] due to the well-known
bounds on the trigonometric functions. We can compute the Jacobian matrix of g:

𝜕g
𝜕x = ( 0 − sin𝑥2

3
4 cos𝑥1 0 ) (4.37)

Therefore,
∥𝜕g
𝜕x∥ ≤ max{sin(1), 3

4} ≤ 0.85, (4.38)

so that the conditions of Theorem 4.3 are fulfilled with 𝑘 = 0.85. The fixed point iteration will
therefore converge for any choice of x(0) ∈ [0, 1] × [0, 1], although possibly not very fast, since 0.85 is
not very much smaller than 1. See Table 4.2 for two examples of iteration sequences.
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𝑛 𝑥(𝑛)
1 𝑥(𝑛)

2

0 1.0 1.0
1 0.5403023059 0.6311032386
2 0.8073770495 0.3857964440
3 0.9264990269 0.5418571235
4 0.8567523888 0.5996415238
5 0.8255379728 0.5667897802
6 0.8436289716 0.5511845408
7 0.8519047798 0.5602953112
8 0.8470982088 0.5644021231
9 0.8449085622 0.5620215836
10 0.8461795432 0.5609328142

Table 4.2: Numerical example for fixed point iteration

𝑛 𝑥(𝑛)
1 𝑥(𝑛)

2

0 0.8 0.6
1 0.8253356149 0.5380170682
2 0.8587264910 0.5510816060
3 0.8519586819 0.5677582977
4 0.8431085532 0.5644287452
5 0.8448943215 0.5600357720
6 0.8472361089 0.5609257244
7 0.8467630160 0.5620900623
8 0.8461430490 0.5618550885
9 0.8462682563 0.5615469756
10 0.8464323655 0.5616092188

4.4 Newton’s method for systems of equations

A generalisation of Newton’s method to systems of non-linear equations can be done in a straightfor-
ward manner.

Consider a given function f ∶ ℝ𝑚 → ℝ𝑚. We are looking for the solution, x ∈ ℝ𝑚, of the system of
equations:

f(x) = 0 or
⎧{{
⎨{{⎩

𝑓1(𝑥1, … , 𝑥𝑚) = 0
𝑓2(𝑥1, … , 𝑥𝑚) = 0
⋮
𝑓𝑚(𝑥1, … , 𝑥𝑚) = 0

(4.39)

The idea of Newton’s method for systems of equations is the same as for one equation. First we expand
each component of f in Taylor series

𝑓𝑖(x) = 𝑓𝑖(x0) + ∑
𝑗

𝜕𝑓𝑖(x0)
𝜕𝑥𝑗

(𝑥𝑗 − 𝑥0𝑗) + … (𝑖 = 1, … , 𝑚). (4.40)

This can be written as
f(x) = f(x0) + 𝐽(x0)(x − x0) + … (4.41)

where 𝐽(x0) is the Jacobian matrix for function f at point x0.

Let p ∈ ℝ𝑚 be a solution of f(x) = 0 and x∗ be a sufficiently good approximation to p, so that ‖p−x∗‖
is small. Then we have

0 = f(p) ≈ f(x∗) + 𝐽(x∗)(p − x∗). (4.42)
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If the matrix 𝐽(x∗) is invertible, this can be rewritten as

p ≈ x∗ − 𝐽−1(x∗)f(x∗). (4.43)

This formula will not give us the exact solution p because we have ignored higher order terms in the
Taylor expansion. Nevertheless, it is natural to expect that it will give us a better approximation than
x∗.

So, we will consider the following iterative process:

• We choose an initial approximation x(0).

• We compute the sequence of approximations, {x(0)}, using the formula

x(𝑛+1) = x(𝑛) − 𝐽−1(x(𝑛))f(x(𝑛)). (4.44)

This is Newton’s method for systems of equations.

Remark. If the number of equations is large (i.e. 𝑚 is large), it is computationally very expensive to
find 𝐽−1(x(𝑛)). Therefore, in practice, Eq. 4.44 is replaced by the following equivalent procedure: first
we solve the system of linear equations

𝐽(x(𝑛))v(𝑛) = −f(x(𝑛)) (4.45)

for v(𝑛), and then we compute x(𝑛+1):

x(𝑛+1) = x(𝑛) + v(𝑛). (4.46)

Newton’s method for systems of equations produces quadratically converging sequences, as follows
from the following theorem:

Theorem 4.4. Let 𝐷 ⊂ ℝ𝑚 be open and convex, and let f ∈ 𝐶2(𝐷). If p ∈ 𝐷 is such that f(p) = 0
and 𝜕f

𝜕x(p) is invertible, then there exists 𝛿 > 0 such that the sequence {x(𝑛)} defined in Eq. 4.44
converges to p for any initial approximation x(0) with ‖p − x(0)‖ < 𝛿. Moreover, if f ∈ 𝐶3(𝐷), then
there exists 𝐾 > 0 such that

‖x(𝑛) − p‖ ≤ 𝐾‖x(𝑛−1) − p‖2 for all 𝑛 ≥ 1. (4.47)

We will not prove this theorem here. A proof of a more general theorem can be found in Kelley
(1995).

The estimate Eq. 4.47 guarantees that convergence is very fast if x(0) is chosen close enough to the
solution p. In practical applications, as few as 4 or 5 steps of Newton iteration are often sufficient to
reach the desired accuracy.

Example 4.5. Consider the system f(x) = 0 with

f(x) = (𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2)) = (𝑥2

1 + 𝑥2
2 − 1

𝑥2 − 𝑥2
1

) . (4.48)

This system has two solutions corresponding to the two intersection points of the unit circle and the
parabola shown in Figure 4.1. These two solutions can be computed analytically:

p1 = (√(
√

5 − 1) /2
(
√

5 − 1) /2
) ≈ (0.7861513773

0.618033988 ) (4.49)

and

p2 = (−√(
√

5 − 1) /2
(
√

5 − 1) /2
) ≈ (−0.7861513773

0.618033988 ) . (4.50)
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The Jacobian of f is
𝐽(x) = 𝜕f

𝜕x(x) = ( 2𝑥1 2𝑥2
−2𝑥1 1 ) , (4.51)

so f is continuously differentiable. It is also straightforward to check that the second and third order
partial derivatives of f are continuous (do this!). The inverse of the Jacobian is

𝐽−1(x) = ⎛⎜⎜⎜
⎝

1
2𝑥1(2𝑥2 + 1) − 𝑥2

𝑥1(2𝑥2 + 1)
1

2𝑥2 + 1
1

2𝑥2 + 1

⎞⎟⎟⎟
⎠

. (4.52)

This matrix is not well-defined for all x (it has singularities for 𝑥1 = 0 and any 𝑥2 and for 𝑥2 = −1/2
and any 𝑥1), but it is defined at the roots we seek (check this!), so Newton’s method is convergent by
Theorem 4.4, provided that we choose initial values close enough to those roots.

We choose x(0) = (0.5, 0.5)𝑡 and x(0) = (−0.5, 0.5)𝑡 as the initial approximations for the two solutions,
and then compute sequences of approximations using Eq. 4.45 and Eq. 4.46. Table 4.3 demonstrates
the rapid convergence of Newton’s method to the two solutions.

Table 4.3: Numerical example for Newton’s method

𝑛 𝑥(𝑛)
1 𝑥(𝑛)

2 ‖x(𝑛) − p1‖
0 0.5 0.5
1 0.87500000 0.62500000 0.08884862
2 0.79067460 0.61805556 0.00452323
3 0.78616432 0.61803399 0.00001294
4 0.78615138 0.61803399 7.499 ⋅ 10−10

𝑛 𝑥(𝑛)
1 𝑥(𝑛)

2 ‖x(𝑛) − p2‖
0 −0.5 0.5
1 −0.87500000 0.62500000 0.08884862
2 −0.79067460 0.61805556 0.00452323
3 −0.78616432 0.61803399 0.00001294
4 −0.78615138 0.61803399 7.499 ⋅ 10−10

Further reading: Section 10.2 of (Burden and Faires 2010).

37



5 Iterative techniques for solving systems of linear
equations

Consider the system of linear equations
𝐴x = b (5.1)

where

𝐴 =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎞⎟⎟⎟⎟
⎠

, x =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝑛

⎞⎟⎟⎟⎟
⎠

, b =
⎛⎜⎜⎜⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑛

⎞⎟⎟⎟⎟
⎠

(5.2)

for a vector x of unknowns. An iterative method for a linear system starts with an initial approximation
x(0) and generates a sequence of vectors {x(𝑘)} that converges to the solution x. In constructing an
iterative method, we first convert the system 𝐴x = b to the form

x = 𝑇 x + c (5.3)

where 𝑇 is a fixed matrix and c is a fixed vector. Then, we compute a sequence of approximations
using the formula

x(𝑘+1) = 𝑇 x(𝑘) + c    for   𝑘 = 0, 1, 2, ... (5.4)

Note that this can be viewed as the fixed point iteration for function g(x) = 𝑇 x(𝑘) + c.

Let us say a few words about the convergence of sequences of vectors generated by formula Eq. 5.4
(a more detailed analysis for concrete methods will be given later). Subtracting Eq. 5.3 from Eq. 5.4,
we obtain

x(𝑘+1) − x = 𝑇 (x(𝑘) − x) (5.5)

from which it follows that

‖x(𝑘+1) − x‖ = ‖𝑇 (x(𝑘) − x)‖ ≤ ‖𝑇 ‖, ‖x(𝑘) − x‖, (5.6)

where we have used the property of the natural matrix norm, Theorem 4.2. It follows from Eq. 5.6 and
the contraction mapping theorem that the sequence will converge linearly provided that ‖𝑇 ‖ ‖ < 1.

5.1 The Jacobi method

Example 5.1. Consider the system

10𝑥1 + 2𝑥2 − 𝑥3 = 7,
𝑥1 + 8𝑥2 + 3𝑥3 = −4,

−2𝑥1 − 𝑥2 + 10𝑥3 = 9,
(5.7)

Its unique solution is x = (1, −1, 1)𝑡. First, we convert the system to the form x = 𝑇 x + c by solving
the first equation for 𝑥1, the second for 𝑥2 and the third for 𝑥3:

𝑥1 = − 2
10𝑥2 + 1

10𝑥3 + 7
10,

𝑥2 = −1
8𝑥1 − 3

8𝑥3 − 1
2,

𝑥3 = 2
10𝑥1 + 1

10𝑥2 + 9
10,

(5.8)
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Thus, x = 𝑇 x + c with

𝑇 = ⎛⎜
⎝

0 − 2
10

1
10

−1
8 0 −3

82
10

1
10 0

⎞⎟
⎠

, c = ⎛⎜
⎝

7
10

−1
29

10

⎞⎟
⎠

. (5.9)

Let the initial approximation be x(0) = (0, 0, 0)𝑡. Then,

𝑥(1)
1 = − 2

10𝑥(0)
2 + 1

10𝑥(0)
3 + 7

10 = 7
10,

𝑥(1)
2 = −1

8𝑥(0)
1 − 3

8𝑥(0)
3 − 1

2 = −1
2,

𝑥(1)
3 = 2

10𝑥(0)
1 + 1

10𝑥(0)
2 + 9

10 = 9
10.

(5.10)

and
𝑥(2)

1 = − 2
10𝑥(1)

2 + 1
10𝑥(1)

3 + 7
10 = 0.89,

𝑥(2)
2 = −1

8𝑥(1)
1 − 3

8𝑥(1)
3 − 1

2 = −0.925,

𝑥(2)
3 = 2

10𝑥(1)
1 + 1

10𝑥(1)
2 + 9

10 = 0.99.

(5.11)

One can see that just two iterations give a fairly good approximation to the solution x = (1, −1, 1)𝑡.
Further calculations yield:

𝑘 𝑥(𝑘)
1 𝑥(𝑘)

2 𝑥(𝑘)
3

0 0.0 0.0 0.0
1 0.7 -0.5 0.9
2 0.89 -0.925 0.99
3 0.984 -0.9825 0.9855
4 0.99505 -0.9925625 0.99855
5 0.9983675 -0.9988375 0.99975375
6 0.999742875 -0.9997035938 0.9997897500

The method we have used is called the Jacobi iterative method. In general, it consists of solving the
𝑖th equation of the system 𝐴x = b for 𝑥𝑖 to obtain

𝑥𝑖 =
𝑛

∑
𝑗=1,𝑗≠𝑖

(−𝑎𝑖𝑗𝑥𝑗
𝑎𝑖𝑖

) + 𝑏𝑖
𝑎𝑖𝑖

for 𝑖 = 1, 2, ..., 𝑛 (5.12)

and calculating x(𝑘+1) from x(𝑘) for 𝑘 ≥ 0 by

𝑥(𝑘+1)
𝑖 = 1

𝑎𝑖𝑖
(

𝑛
∑

𝑗=1,𝑗≠𝑖
(−𝑎𝑖𝑗𝑥(𝑘)

𝑗 ) + 𝑏𝑖)     for   𝑖 = 1, 2, ..., 𝑛. (5.13)

Let us write the Jacobi method in matrix form x(𝑘+1) = 𝑇 x(𝑘)+c. To do this, we decompose the matrix
𝐴 in the form 𝐴 = 𝐷 + 𝐿 + 𝑈 , where 𝐷 is the diagonal part of 𝐴, 𝐿 is the strictly lower-triangular
part of 𝐴, and 𝑈 is the strictly upper-triangular part of 𝐴:

𝐴 =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎11 0 … 0
0 𝑎22 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝑎𝑛𝑛

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

0 … … 0
𝑎12 ⋱ ⋮

⋮ ⋱ ⋱ ⋮
𝑎𝑛2 … 𝑎𝑛,𝑛−1 0

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

0 𝑎12 … 𝑎1𝑛
⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝑎𝑛−1,𝑛
0 … … 0

⎞⎟⎟⎟⎟
⎠

.

(5.14)
Now we have

(𝐷 + 𝐿 + 𝑈)x = b   ⇔   𝐷x = −(𝐿 + 𝑈)x + b   ⇔   x = −𝐷−1(𝐿 + 𝑈)x + 𝐷−1b. (5.15)
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Thus, we have converted the initial system 𝐴x = b to the form x = 𝑇𝐽x+c𝐽 with 𝑇𝐽 = −𝐷−1(𝐿+𝑈)
and c𝐽 = 𝐷−1b, so that the Jacobi iterative method has the form

x(𝑘+1) = 𝑇 x
𝐽 (𝑘) + c𝐽 . (5.16)

The Jacobi method requires that 𝑎𝑖𝑖 ≠ 0 for each 𝑖 = 1, 2, ..., 𝑛. Therefore, if one of the elements 𝑎𝑖𝑖
is zero, we need to reorder the equation so that 𝑎𝑖𝑖 ≠ 0 for each 𝑖 = 1, 2, ..., 𝑛.

5.2 The Gauss-Seidel method

How to improve the Jacobi method? In the Example 5.1, we used the iteration procedure

𝑥(𝑘+1)
1 = − 2

10𝑥(𝑘)
2 + 1

10𝑥(𝑘)
3 + 7
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When we calculate 𝑥(𝑘+1)
2 , we use 𝑥(𝑘)

1 and 𝑥(𝑘)
3 , which have been calculated at the previous step.

We may notice however that this stage we already know 𝑥(𝑘+1)
1 which is assumed to be a better

approximation to 𝑥1. It is natural therefore to replace 𝑥(𝑘)
1 in the second equation by 𝑥(𝑘+1)

1 . Similarly,
we may replace 𝑥(𝑘)

1 and 𝑥(𝑘)
2 in the third equation by 𝑥(𝑘+1)

1 and 𝑥(𝑘+1)
2 . This yields the formula

𝑥(𝑘+1)
1 = − 2

10𝑥(𝑘)
2 + 1

10𝑥(𝑘)
3 + 7

10,

𝑥(𝑘+1)
2 = −1

8𝑥(𝑘+1)
1 − 3

8𝑥(𝑘)
3 − 1

2,

𝑥(𝑘+1)
3 = 2

10𝑥(𝑘+1)
1 + 1

10𝑥(𝑘+1)
2 + 9

10.

(5.18)

Eq. 5.18 with the initial approximation x(0) = (0, 0, 0)𝑡 generate the sequence

𝑘 𝑥(𝑘)
1 𝑥(𝑘)

2 𝑥(𝑘)
3

0 0.0 0.0 0.0
1 0.7 -0.5875 0.9812500000
2 0.915625 -0.9824218750 0.9848828125
3 0.9949726562 -0.9937026368 0.9996242675
4 0.9987029542 -0.9996969695 0.9997708938
5 0.9999164833 -0.9999036455 0.9999929322
6 0.9999800223 -0.9999948524 0.9999965193

This modification of the Jacobi technique is called the Gauss-Seidel iterative method. Comparing x(6)

obtained using the Jacobi and Gauss-Seidel methods, we see that the Gauss-Seidel method produces
a better approximation to the exact solution x = (1, −1, 1)𝑡.

The general formula for the Gauss-Seidel method is (cf. Eq. 5.13)

𝑥(𝑘+1)
𝑖 = 1

𝑎𝑖𝑖
(−

𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥(𝑘+1)
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥(𝑘)

𝑗 + 𝑏𝑖) (5.19)

for 𝑖 = 1, … , 𝑛. Let us rewrite the Gauss-Seidel method in matrix form. To do this, we multiply both
sides of Eq. 5.19 by 𝑎𝑖𝑖 and collect all terms of the 𝑘th iteration. This yields

𝑎𝑖1𝑥(𝑘+1)
1 + 𝑎𝑖2𝑥(𝑘+1)

2 + ... + 𝑎𝑖𝑖𝑥(𝑘+1)
𝑖 = −𝑎𝑖,𝑖+1𝑥(𝑘)

𝑖+1 − ... − 𝑎𝑖𝑛𝑥(𝑘)
𝑛 + 𝑏𝑖 (5.20)
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for 𝑖 = 1, … , 𝑛, or, equivalently,

𝑎11𝑥(𝑘+1)
1 = −𝑎12𝑥(𝑘)

2 − 𝑎13𝑥(𝑘)
3 − ... − 𝑎1𝑛𝑥(𝑘)

𝑛 + 𝑏1

𝑎21𝑥(𝑘+1)
1 + 𝑎22𝑥(𝑘+1)

2 = −𝑎23𝑥(𝑘)
3 − ... − 𝑎2𝑛𝑥(𝑘)

𝑛 + 𝑏2
⋮

𝑎𝑛1𝑥(𝑘+1)
1 + 𝑎𝑛2𝑥(𝑘+1)

2 + ... + 𝑎𝑛,𝑛𝑥(𝑘+1)
𝑛 = 𝑏𝑛.

(5.21)

Therefore,

(𝐷 + 𝐿)x(𝑘+1) = −𝑈x(𝑘) + b    ⇔    x(𝑘+1) = −(𝐷 + 𝐿)−1𝑈x(𝑘) + (𝐷 + 𝐿)−1b    (5.22)

for 𝑘 = 1, 2, … . Introducing the notation 𝑇𝐺 = −(𝐷 + 𝐿)−1𝑈 and c𝐺 = (𝐷 + 𝐿)−1b, we rewrite the
Gauss-Seidel method in the form

x(𝑘+1) = 𝑇𝐺x(𝑘) + c𝐺. (5.23)

Note that a lower-triangular matrix is nonsingular iff its diagonal elements are nonzero. In particular,
𝐷 + 𝐿 is nonsingular (i.e. its inverse exists) iff 𝑎𝑖𝑖 ≠ 0 for each 𝑖 = 1, 2, ..., 𝑛.

5.3 The convergence of iterative techniques.

We will use the following notation
𝐸(𝑘)

𝑖 = |𝑥(𝑘)
𝑖 − 𝑥𝑖| (5.24)

and
𝐸(𝑘) = ‖x(𝑘) − x‖∞ = max{𝐸(𝑘)

1 , … , 𝐸(𝑘)
𝑛 }. (5.25)

Then x(𝑘) → x is equivalent to 𝐸(𝑘) → 0 as 𝑘 → ∞. We assume that 𝑎𝑖𝑖 ≠ 0 for all 𝑖 (otherwise both
methods will not work).

For the Jacobi method we have

𝑥𝑖 = 1
𝑎𝑖𝑖

(
𝑛

∑
𝑗=1,𝑗≠𝑖

(−𝑎𝑖𝑗𝑥𝑗) + 𝑏𝑖) (5.26)

and

𝑥(𝑘+1)
𝑖 = 1

𝑎𝑖𝑖
(

𝑛
∑

𝑗=1,𝑗≠𝑖
(−𝑎𝑖𝑗𝑥(𝑘)

𝑗 ) + 𝑏𝑖) for 𝑖 = 1, 2, ..., 𝑛 (5.27)

Subtracting Eq. 5.26 from Eq. 5.27 and using the triangle inequality, we obtain
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∣
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𝐸(𝑘) ≤ 𝜇𝐸(𝑘),
(5.28)

where
𝜇 = max

𝑖

𝑛
∑

𝑗=1,𝑗≠𝑖

∣𝑎𝑖𝑗∣
|𝑎𝑖𝑖|

. (5.29)

Therefore,
𝐸(𝑘+1) ≤ 𝜇, 𝐸(𝑘), (5.30)

and if 𝜇 < 1, then x(𝑘) converges to x strongly linearly, with rate of convergence 𝜇.
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Note that 𝜇 depends only on the coefficient matrix 𝐴. Note also that the terms in Eq. 8.34 are the
absolute values of the entries of 𝑇𝐽 , summed in each row, so that 𝜇 = ‖𝑇𝐽‖∞. In the example, we
considered in the previous chapter,

𝐴 = ⎛⎜
⎝

10 2 −1
1 8 3

−2 −1 10
⎞⎟
⎠

, b = ⎛⎜
⎝

7
−4
9

⎞⎟
⎠

, 𝑇𝐽 = ⎛⎜
⎝

0 − 2
10

1
10

−1
8 0 −3

82
10

1
10 0

⎞⎟
⎠

. (5.31)

So, it follows from Eq. 8.34 that in our example 𝜇 = 1/2. In general, the condition 𝜇 < 1 is equivalent
to 𝑛

∑
𝑗=1,𝑗≠𝑖

|𝑎𝑖𝑗| < |𝑎𝑖𝑖| for all 𝑖. (5.32)

Matrices 𝐴 with this property are said to be strictly diagonally dominant. It follows that every strictly
diagonally dominant square matrix is invertible. In fact it is not difficult to prove this directly, using
elementary linear algebra.

For the Gauss-Seidel scheme the situation is slightly more complicated. Here we have
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for 𝑖 = 1, 2, … , 𝑛. Subtracting Eq. 5.26 from Eq. 5.33, we obtain

𝐸(𝑘+1)
𝑖 = 1

|𝑎𝑖𝑖|
∣
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗 (𝑥(𝑘+1)
𝑗 − 𝑥𝑗) +

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗 (𝑥(𝑘)

𝑗 − 𝑥𝑗)∣

≤ 1
|𝑎𝑖𝑖|

(
𝑖−1
∑
𝑗=1

∣𝑎𝑖𝑗∣ ∣𝑥(𝑘+1)
𝑗 − 𝑥𝑗∣ +

𝑛
∑

𝑗=𝑖+1
∣𝑎𝑖𝑗∣ ∣𝑥(𝑘)

𝑗 − 𝑥𝑗∣)

=
𝑖−1
∑
𝑗=1

∣𝑎𝑖𝑗∣
|𝑎𝑖𝑖|

𝐸(𝑘+1)
𝑗 +

𝑛
∑

𝑗=𝑖+1

∣𝑎𝑖𝑗∣
|𝑎𝑖𝑖|

𝐸(𝑘)
𝑗 ≤ 𝛼𝑖𝐸(𝑘+1) + 𝛽𝑖𝐸(𝑘),

(5.34)

where
𝛼𝑖 = ∑ 𝑗 = 1𝑖−1 ∣𝑎𝑖𝑗∣

|𝑎𝑖𝑖|
,

𝛽𝑖 = ∑ 𝑗 = 𝑖 + 1𝑛 ∣𝑎𝑖𝑗∣
|𝑎𝑖𝑖|

,

𝛼1 = 𝛽𝑛 = 0.

(5.35)

Evidently, 𝜇 = max𝑖(𝛼𝑖 + 𝛽𝑖). From our analysis of the Jacobi method it is appropriate to assume
𝜇 < 1, so that 𝛼𝑖 + 𝛽𝑖 < 1 for all 𝑖 and also 1 − 𝛼𝑖 > 0 for all 𝑖 . Suppose now that 𝐸(𝑘+1) = 𝐸(𝑘+1)

𝑚
for some 𝑚 (recalling that 𝐸(𝑘+1) is the maximum of the 𝐸(𝑘+1)

𝑖 ). Then we have

𝐸(𝑘+1) = 𝐸(𝑘+1)
𝑚 ≤ 𝛼𝑚𝐸(𝑘+1) + 𝛽𝑚𝐸(𝑘). (5.36)

Hence,
𝐸(𝑘+1) ≤ 𝛽𝑚

1 − 𝛼𝑚
𝐸(𝑘) ≤ 𝜂 𝐸(𝑘), (5.37)

where
𝜂 = max

𝑖
𝛽𝑖

1 − 𝛼𝑖
. (5.38)

Finally, we note that for each 𝑖 we have

𝛼𝑖 + 𝛽𝑖 − 𝛽𝑖
1 − 𝛼𝑖

= 𝛼𝑖[1 − (𝛼𝑖 + 𝛽𝑖)]
1 − 𝛼𝑖

≥ 𝛼𝑖[1 − 𝜇]
1 − 𝛼𝑖

≥ 0. (5.39)

This implies that 𝜇 ≥ 𝜂. Indeed,

𝛼𝑖 + 𝛽𝑖 ≥ 𝛽𝑖
1 − 𝛼𝑖

⇒ 𝜇 = max 𝑖(𝛼𝑖 + 𝛽𝑖) ≥ 𝛽𝑖
1 − 𝛼𝑖

⇒ 𝜇 ≥ max
𝑖

𝛽𝑖
1 − 𝛼𝑖

= 𝜂. (5.40)
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So, the Gauss-Seidel imethod converges strongly linearly with rate 𝜂, which is at least as fast as that
of the Jacobi method. Although straightforward, computation of 𝜂 is more complicated than 𝜇. In
our example we have

𝑖 𝛼𝑖 𝛽𝑖 1 − 𝛼𝑖 𝛽𝑖/(1 − 𝛼𝑖)
1 0 3/10 1 3/10
2 1/8 3/8 7/8 3/7
3 3/10 0 7/10 0

Therefore 𝜂 = 3/7 ≈ 0.43 (compared with 𝜇 = 0.5).
Thus, we have proved the following:

Theorem 5.1. If 𝐴 is strictly diagonally dominant, then for any x(0) ∈ ℝ𝑛, both the Jacobi and
Gauss-Seidel methods generate sequences {x(𝑘)} that converge to the unique solution of 𝐴x = b.

Note that matrix 𝐴 in our example is strictly diagonally dominant, so it is not unexpected that both
Jacobi and Gauss-Seidel iterations converge to the solution of the system.

Remark. The above theorem gives us a sufficient condition for convergence of sequences generated by
both methods. However, this condition is not necessary. If it is not satisfied, the Jacobi and/or Gauss-
Seidel methods may still produce converging sequences. So, if 𝐴 is not strictly diagonally dominant,
we cannot predict whether the Jacobi method or Gauss-Seidel method will converge.
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6 Approximation and interpolation

In many situations, it is useful to approximate a function 𝑓 with a “simpler” function with desirable
properties. For example, if the antiderivative of a function 𝑓 is not known, then computing an
integral ∫𝑏

𝑎 𝑓(𝑥) 𝑑𝑥 might be difficult. However, if we approximate 𝑓 with a function 𝑃 with known
antiderivative, then ∫𝑏

𝑎 𝑓(𝑥) 𝑑𝑥 ≈ ∫𝑏
𝑎 𝑃(𝑥) 𝑑𝑥 can be computed easily. This is useful in numerical

integration, which we will consider in the next chapter.

In this chapter we consider the case where the values of a function 𝑓 are given only at at certain
discrete points 𝑥 = 𝑥𝑖, that is, 𝑓 is given in the form of a table. For example, 𝑓(𝑥𝑖) might be the
result of an experimental measurement or of numerical approximations. In this case, we would like to
connect the points (𝑥𝑖, 𝑓(𝑥𝑖)) with a simple, reasonably smooth curve; this is called interpolation.

6.1 Polynomial interpolation

The “simple” functions that we will consider here are polynomials, that is, functions of the form

𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1𝑥 + 𝑎0, (6.1)

where 𝑎0, … , 𝑎𝑛 are real numbers, with 𝑎𝑛 ≠ 0 is the leading order coefficient and where 𝑛 is a
nonnegative integer, called the degree of 𝑃 and denoted deg𝑃 .

The problem that we want to consider can be stated as follows:

Given distinct points 𝑥0, 𝑥1, … , 𝑥𝑛 (not necessarily in increasing magnitude) in the domain of a function
𝑓 , find a polynomial 𝑃 with deg𝑃 ≤ 𝑛 such that

𝑃(𝑥0) = 𝑓(𝑥0), 𝑃 (𝑥1) = 𝑓(𝑥1), … 𝑃(𝑥𝑛) = 𝑓(𝑥𝑛). (6.2)

Any such polynomial 𝑃 is called an interpolating polynomial for 𝑓 .
Polynomials are suitable for approximation and interpolation because of the following important re-
sult.

Theorem 6.1 (Weierstrass Approximation Theorem). If 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏], then
for any 𝜖 > 0, there is a polynomial 𝑃(𝑥) such that

|𝑓(𝑥) − 𝑃(𝑥)| < 𝜖 for all 𝑥 ∈ [𝑎, 𝑏]. (6.3)

In other words, any function, continuous on the closed interval, can be uniformly approximated by a
polynomial.

6.1.1 The Lagrange interpolating polynomial

We will now discuss a method of finding an interpolating polynomial. Let us first consider the simplest
case, 𝑛 = 1. Suppose we know the value of a function 𝑓 at two points 𝑥0, 𝑥1. To interpolate the values
of 𝑓 by a first-degree polynomial means to determine a polynomial 𝑃 of degree 1 (i.e., a straight line)
that passes through two points (𝑥0, 𝑓(𝑥0)) and (𝑥1, 𝑓(𝑥1)). This polynomial has the form

𝑃(𝑥) = 𝑎0 + 𝑎1𝑥. (6.4)
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The conditions 𝑃 (𝑥0) = 𝑓(𝑥0) and 𝑃(𝑥1) = 𝑓(𝑥1) give us the following system of linear equations
for 𝑎0 and 𝑎1:

𝑎0 + 𝑎1𝑥0 = 𝑓(𝑥0), 𝑎0 + 𝑎1𝑥1 = 𝑓(𝑥1). (6.5)
This system is solved easily for 𝑎0 and 𝑎1, and we obtain

𝑎1 = 𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

, 𝑎0 = 𝑥0𝑓(𝑥1) − 𝑥1𝑓(𝑥0)
𝑥1 − 𝑥0

. (6.6)

Thus, we have
𝑃(𝑥) = 𝑥0𝑓(𝑥1) − 𝑥1𝑓(𝑥0)

𝑥1 − 𝑥0
+ 𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
𝑥. (6.7)

Let us now rewrite this polynomial in a slightly different form:

𝑃(𝑥) = 𝑓(𝑥0) 𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑓(𝑥1) 𝑥 − 𝑥0
𝑥1 − 𝑥0

(6.8)

If we introduce functions
𝐿0(𝑥) = 𝑥 − 𝑥1

𝑥0 − 𝑥1
, 𝐿1(𝑥) = 𝑥 − 𝑥0

𝑥1 − 𝑥0
, (6.9)

then we can write Eq. 6.7 as the polynomial 𝑃 can be written as

𝑃(𝑥) = 𝑓(𝑥0)𝐿0(𝑥) + 𝑓(𝑥1)𝐿1(𝑥). (6.10)

Note that functions 𝐿0(𝑥) and 𝐿1(𝑥) have the property that

𝐿0(𝑥0) = 1 = 𝐿1(𝑥1), 𝐿0(𝑥1) = 0 = 𝐿1(𝑥0). (6.11)

This property ensures that 𝑃(𝑥), given by Eq. 6.7, satisfies the required conditions 𝑃(𝑥0) = 𝑓(𝑥0) and
𝑃(𝑥1) = 𝑓(𝑥1). Indeed,

𝑃(𝑥0) = 𝑓(𝑥0)𝐿0(𝑥0) + 𝑓(𝑥1)𝐿1(𝑥0) = 𝑓(𝑥0) ⋅ 1 + 𝑓(𝑥1) ⋅ 0 = 𝑓(𝑥0),
𝑃 (𝑥1) = 𝑓(𝑥0)𝐿0(𝑥1) + 𝑓(𝑥1)𝐿1(𝑥1) = 𝑓(𝑥0) ⋅ 0 + 𝑓(𝑥1) ⋅ 1 = 𝑓(𝑥1). (6.12)

Let us now consider the general case. We construct a polynomial of degree at most 𝑛 that passes
through the (𝑛 + 1) points (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), …, (𝑥𝑛, 𝑓(𝑥𝑛)). As a first step, we need a general-
ization of the functions 𝐿0 and 𝐿1 above; namely, we are looking for polynomials 𝐿0, … , 𝐿𝑛 of degree
𝑛 such that

𝐿𝑘(𝑥𝑖) = 𝛿𝑖𝑘 = { 0 if 𝑖 ≠ 𝑘,
1 if 𝑖 = 𝑘. (6.13)

(The definition of these 𝐿𝑘 also depends on 𝑥0, … , 𝑥𝑛, and in particular on 𝑛. For ease of reading, we
do not indicate this dependence explicitly.)

A short computation shows that polynomials with this property are given by

𝐿𝑘(𝑥) =
𝑛

∏
𝑖=0,𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

. (6.14)

We then set
𝑃(𝑥) =

𝑛
∑
𝑗=0

𝑓(𝑥𝑗)𝐿𝑗(𝑥). (6.15)

This is indeed a suitable interpolating polynomial. In fact it is the only possible interpolating polyno-
mial, as the following theorem shows.

Theorem 6.2 (Lagrange interpolating polynomial). Suppose that 𝑥0, 𝑥1, … , 𝑥𝑛 ∈ ℝ are distinct num-
bers in the domain of a function 𝑓. There exists a unique polynomial 𝑃 with deg𝑃 ≤ 𝑛 such that

𝑓(𝑥𝑘) = 𝑃(𝑥𝑘) for all 𝑘 = 0, 1, … , 𝑛. (6.16)

This polynomial, called the 𝑛th Lagrange interpolating polynomial, is given by Eq. 6.15, where the
functions* 𝐿𝑘(𝑥) are given by Eq. 6.14.
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Proof. It is evident from Eq. 6.14–Eq. 6.15 that deg𝑃 ≤ 𝑛. Moreover, by Eq. 6.13, we have for
𝑘 = 0, … , 𝑛

𝑃(𝑥𝑘) =
𝑛

∑
𝑗=0

𝑓(𝑥𝑗)𝐿𝑗(𝑥𝑘) =
𝑛

∑
𝑗=0

𝑓(𝑥𝑗)𝛿𝑗𝑘 = 𝑓(𝑥𝑘). (6.17)

The only remaining point is uniqueness. Suppose that 𝑃 and ̂𝑃 are two interpolating polynomials
with degree at most 𝑛. Then

𝑄(𝑥) ∶= 𝑃(𝑥) − ̂𝑃 (𝑥) (6.18)
is another polynomial, and deg𝑄 ≤ 𝑛. However, since

𝑃(𝑥𝑘) = 𝑓(𝑥𝑘) = ̂𝑃 (𝑥𝑘) for all 𝑘 = 0, … , 𝑛, (6.19)

we know that 𝑄 has 𝑛 + 1 zeros, namely 𝑥0, … , 𝑥𝑛. This contravenes the Fundamental Theorem of
Algebra, and so the only possibility is 𝑄 = 0, whence 𝑃 = ̂𝑃 . �

Example 6.1. The values of a function 𝑓 are given in the table:

𝑘 𝑥𝑘 𝑓(𝑥𝑘)
0 -1 -1
1 1 3
2 2 8

Let us construct the Lagrange interpolating polynomial of degree 2 for this data. From Eq. 6.14 we
have

𝐿0(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)
(𝑥0 − 𝑥1)(𝑥0 − 𝑥2) = (𝑥 − 1)(𝑥 − 2)

(−1 − 1)(−1 − 2) = 1
6(𝑥2 − 3𝑥 + 2),

𝐿1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥2)
(𝑥1 − 𝑥0)(𝑥1 − 𝑥2) = (𝑥 + 1)(𝑥 − 2)

(1 + 1)(1 − 2) = −1
2(𝑥2 − 𝑥 − 2),

𝐿2(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)
(𝑥2 − 𝑥0)(𝑥2 − 𝑥1) = (𝑥 + 1)(𝑥 − 1)

(2 + 1)(2 − 1) = 1
3(𝑥2 − 1).

(6.20)

Hence

𝑃(𝑥) =
2

∑
𝑗=0

𝑓(𝑥𝑗)𝐿𝑗(𝑥)

= −1 ⋅ 1
6(𝑥2 − 3𝑥 + 2) − 3 ⋅ 1

2(𝑥2 − 𝑥 − 2) + 8 ⋅ 1
3(𝑥2 − 1)

= 𝑥2 + 2𝑥.

(6.21)

Above we have constructed the polynomial 𝑃 to interpolate the values of a function 𝑓 at the points
𝑥0, … , 𝑥𝑛. But is 𝑃 also a good approximation to 𝑓 between these points? The theorem below gives
an answer.

Theorem 6.3 (Error term for interpolating polynomials). Suppose that 𝑥0, … , 𝑥𝑛 are distinct numbers
in the interval [𝑎, 𝑏] and that 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏]. Then, for each 𝑥 ∈ [𝑎, 𝑏], there exists a number 𝜉 ∈ (𝑎, 𝑏)
such that

𝑓(𝑥) = 𝑃(𝑥) + 𝑓 (𝑛+1)(𝜉)
(𝑛 + 1)!

𝑛
∏
𝑘=0

(𝑥 − 𝑥𝑘), (6.22)

where 𝑃 is the 𝑛th interpolating polynomial.

Proof. We use Rolle’s theorem in this proof. Rolle’s theorem states that, if ℎ ∈ 𝐶1[𝑐, 𝑑] with ℎ(𝑐) =
ℎ(𝑑) = 0, then there exists 𝑥 ∈ (𝑐, 𝑑) such that ℎ′(𝑥) = 0.
If 𝑥 = 𝑥𝑘 for some 𝑘, then 𝑓(𝑥𝑘) = 𝑃(𝑥𝑘) and Eq. 6.22 holds for any choice of 𝜉. Therefore for the
rest of this proof we assume that

𝑥 ≠ 𝑥𝑘 for all 𝑘 = 0, … , 𝑛. (6.23)
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Define the function

𝑔(𝑡) ∶= 𝑓(𝑡) − 𝑃(𝑡) − [𝑓(𝑥) − 𝑃(𝑥)]
𝑛

∏
𝑖=0

𝑡 − 𝑥𝑖
𝑥 − 𝑥𝑖

for 𝑡 ∈ [𝑎, 𝑏].

{eq-error-function-zeros} Since 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏], 𝑃 ∈ 𝐶∞[𝑎, 𝑏] and in view of Eq. 6.23, it follows that
𝑔 ∈ 𝐶𝑛+1[𝑎, 𝑏]. Applying 𝑔 at 𝑡 = 𝑥 and at 𝑡 = 𝑥𝑘 for 𝑘 = 0, … , 𝑛, we obtain

𝑔(𝑥) = 𝑓(𝑥) − 𝑃(𝑥) − [𝑓(𝑥) − 𝑃(𝑥)]
𝑛

∏
𝑖=0

𝑥 − 𝑥𝑖
𝑥 − 𝑥𝑖

= 0,

𝑔(𝑥𝑘) = 𝑓(𝑥𝑘) − 𝑃(𝑥𝑘) − [𝑓(𝑥) − 𝑃(𝑥)]
𝑛

∏
𝑖=0

𝑥𝑘 − 𝑥𝑖
𝑥 − 𝑥𝑖

= 0.
(6.24)

Thus 𝑔 ∈ 𝐶𝑛+1[𝑎, 𝑏] and 𝑔 has 𝑛 + 2 distinct zeros at 𝑥, 𝑥0, 𝑥1, … , 𝑥𝑛. Applying Rolle’s theorem to
each of the 𝑛 + 1 subintervals between these zeros, it follows that the derivative 𝑔′ ∈ 𝐶𝑛[𝑎, 𝑏] has at
least 𝑛 + 1 zeros in [𝑎, 𝑏]. Again applying Rolle’s theorem, the second derivative 𝑔″ ∈ 𝐶𝑛−1[𝑎, 𝑏] has
at least 𝑛 zeros in [𝑎, 𝑏]. Applying the same argument to successive derivatives of 𝑔, it follows finally
that the (𝑛 + 1)th derivative 𝑔(𝑛+1) has at least one zero, which we call 𝜉. This means that

0 = 𝑔(𝑛+1)(𝜉) = 𝑓 (𝑛+1)(𝜉) − 𝑃 (𝑛+1)(𝜉) − (𝑓(𝑥) − 𝑃(𝑥)) 𝑑𝑛+1

𝑑𝑡𝑛+1

𝑛
∏
𝑖=0

𝑡 − 𝑥𝑖
𝑥 − 𝑥𝑖

∣
𝑡=𝜉

. (6.25)

Considering each of the elements of this equation in turn, we have 𝑃 (𝑛+1)(𝜉) = 0 as deg𝑃 ≤ 𝑛. Also,
we have

𝑑𝑛+1

𝑑𝑡𝑛+1

𝑛
∏
𝑖=0

𝑡 − 𝑥𝑖
𝑥 − 𝑥𝑖

= 𝑑𝑛+1

𝑑𝑡𝑛+1
𝑡𝑛+1

∏𝑛
𝑖=0(𝑥 − 𝑥𝑖)

= (𝑛 + 1)!
∏𝑛

𝑖=0(𝑥 − 𝑥𝑖)
. (6.26)

Substituting this into Eq. 6.25, we obtain the equation

0 = 𝑓 (𝑛+1)(𝜉) − (𝑓(𝑥) − 𝑃(𝑥)) (𝑛 + 1)!
∏𝑛

𝑖=0(𝑥 − 𝑥𝑖)
, (6.27)

which is equivalent to Eq. 6.25. �

Example 6.2. Let
𝑓(𝑥) = 1

𝑥. (6.28)

The interpolating polynomial determined by the values of 𝑓 at the points 𝑥0 = 2.0, 𝑥1 = 2.5 and
𝑥2 = 4 is given by

𝑃(𝑥) = 1
20𝑥2 − 17

40𝑥 + 23
20 . (6.29)

Let us obtain the theoretical bound for the error of approximation of 𝑓(3) by 𝑃(3). We have

|𝑓 ′′′(𝜉)| = ∣− 6
𝜉4 ∣ ≤ 3

8 for all 𝜉 ∈ [2, 4]. (6.30)

Therefore,

|𝑓(3) − 𝑃(3)| ≤ max
𝜉∈[2,4]

∣𝑓
′′′(𝜉)
3! (3 − 2)(3 − 2.5)(3 − 4)∣ ≤ 1

32 = 0.03125. (6.31)

The actual error of this approximation is

𝐸 = |𝑓(3) − 𝑃(3)| = 1
3 − 0.325 = 0.008333 … , (6.32)

which is smaller than our theoretical bound (as one would expect).
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Now let us evaluate the error involved in approximating 𝑓 by 𝑃 on the whole interval [2, 4]. Again
using Eq. 6.30, we have

|𝑓(𝑥) − 𝑃(𝑥)| ≤ max
𝜉∈[2,4]

∣𝑓
′′′(𝜉)
3! (𝑥 − 2)(𝑥 − 2.5)(𝑥 − 4)∣

≤ 1
16 |𝜙(𝑥)| ≤ 1

16 max
𝑥∈[2,4]

|𝜙(𝑥)|,
(6.33)

where
𝜙(𝑥) ∶= (𝑥 − 2)(𝑥 − 2.5)(𝑥 − 4) for 𝑥 ∈ [2, 4]. (6.34)

The function 𝜙 has a maximum at 𝑥′ ∶= 17
6 −

√
13
6 ≈ 2.232, with 𝜙(𝑥′) ≈ 0.110, and a minimum at

𝑥″ ∶= 17
6 +

√
13
6 ≈ 3.434, where 𝜙(𝑥″) ≈ −0.758. By Eq. 6.33 we obtain

|𝑓(𝑥) − 𝑃(𝑥)| ≤ |𝜙(𝑥″)|
16 ≈ 0.048. (6.35)

Finally, let us add one more point to our data, say, 𝑥3 = 3.5. Then the polynomial interpolating the
values of 𝑓 at the four points 𝑥0 = 2, 𝑥1 = 2.5, 𝑥2 = 4 and 𝑥3 = 3.5 is given by

𝑃(𝑥) = − 1
70𝑥3 + 6

35𝑥2 − 211
280𝑥 + 201

140 . (6.36)

In this case, 𝑃(3) = 93
280 and the actual error is

|𝑓(3) − 𝑃(3)| = ∣1
3 − 93

280 ∣ = 1
840 ≈ 0.0012. (6.37)

This is almost 8 times smaller than the error of the interpolating polynomial based on the original
three points.

Further reading: Section 3.1 of (Burden and Faires 2010).

6.1.2 Divided differences

As we saw in Theorem 6.2, the interpolating polynomial (of minimal degree) for a function at distinct
points 𝑥0, 𝑥1, … , 𝑥𝑛 is unique. However, it can be rewritten in many different ways. The Lagrange
form Eq. 6.15 may not always be the optimal one for numerical purposes, since computing its value
requires a large number of multiplications. Here we present an alternative form of the same polynomial,
known as the Newton form.

Let us illustrate the idea again in the case of a linear polynomial, interpolating a function 𝑓 between
two points 𝑥0 and 𝑥1. It seems natural to write this straight line in the form

𝑓(𝑥0) + 𝑚(𝑥 − 𝑥0) (6.38)

with slope 𝑚 = 𝑓(𝑥1)−𝑓(𝑥0)
𝑥1−𝑥0

. We thus arrive at

𝑃(𝑥) = 𝑓(𝑥0) + 𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

(𝑥 − 𝑥0). (6.39)

Indeed, one checks that 𝑃(𝑥0) = 𝑓(𝑥0), 𝑃(𝑥1) = 𝑓(𝑥1), and so this is the unique interpolating
polynomial between these points. The slope 𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
, which looks a bit like the derivative of 𝑓 , is

called the 1st divided difference and we write

𝑓[𝑥0, 𝑥1] ∶= 𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

. (6.40)
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How does this generalize to higher-order polynomials? It turns out that the second-order interpolating
polynomial through the points 𝑥0, 𝑥1, 𝑥2 is given by

𝑃 (𝑥) = 𝑓(𝑥0) + 𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

(𝑥 − 𝑥0)+

+
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
− 𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
𝑥2 − 𝑥0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝑓[𝑥0,𝑥1,𝑥2]

(𝑥 − 𝑥0)(𝑥 − 𝑥1).
(6.41)

(It is clear that 𝑃(𝑥0) = 𝑓(𝑥0), 𝑃(𝑥1) = 𝑓(𝑥1), and some computation yields 𝑃(𝑥2) = 𝑓(𝑥2).) The
term 𝑓[𝑥0, 𝑥1, 𝑥2] is called the 2nd divided difference and reminds one of the second derivative.

Let us define these concepts more generally. We introduce the 0th divided difference as

𝑓[𝑥𝑖] ∶= 𝑓(𝑥𝑖), (6.42)

and then define the 𝑘th divided difference recursively as

𝑓[𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑖+𝑘] ∶= 𝑓[𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑘] − 𝑓[𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑖+𝑘−1]
𝑥𝑖+𝑘 − 𝑥𝑖

. (6.43)

This agrees with the examples above.

We now claim that all interpolating polynomials can be written in terms of divided differences, in
generalization of equations Eq. 6.39 and Eq. 6.41.

Theorem 6.4. Let 𝑃 be the 𝑛th order interpolating polynomial for a function 𝑓 at the points 𝑥0, … , 𝑥𝑛.
It holds that

𝑃(𝑥) =
𝑛

∑
𝑘=0

𝑓[𝑥0, 𝑥1, … , 𝑥𝑘] ∏
0≤𝑗<𝑘

(𝑥 − 𝑥𝑗). (6.44)

This relation is known as Newton’s divided-difference formula. Note that an empty product is defined
to be equal to 1, so in the 𝑘 = 0 term in Eq. 6.44 the factor ∏0≤𝑗<0(𝑥 − 𝑥0) = 1 , so the first term in
the sum is 𝑓[𝑥0].

Proof. We use induction on 𝑛. For 𝑛 = 0, we have 𝑃(𝑥) = 𝑓(𝑥0) = 𝑓[𝑥0] and Eq. 6.44 holds. Now
suppose that Eq. 6.44 is already known for 𝑛 − 1 in place of 𝑛. Denote by ̂𝑃 the interpolating
polynomial through 𝑥0, … , 𝑥𝑛−1, and with ̌𝑃 the interpolating polynomial through 𝑥1, … , 𝑥𝑛. By the
induction hypothesis,

̂𝑃 (𝑥) =
𝑛−1
∑
𝑘=0

𝑓[𝑥0, 𝑥1, … , 𝑥𝑘] ∏
0≤𝑗<𝑘

(𝑥 − 𝑥𝑗),

̌𝑃 (𝑥) =
𝑛

∑
𝑘=1

𝑓[𝑥1, 𝑥2, … , 𝑥𝑘] ∏
1≤𝑗<𝑘

(𝑥 − 𝑥𝑗).
(6.45)

Let 𝑃 be the interpolating polynomial for 𝑓 at 𝑥0, … , 𝑥𝑛. We first prove that

𝑃(𝑥) = (𝑥 − 𝑥0) ̌𝑃 (𝑥) − (𝑥 − 𝑥𝑛) ̂𝑃 (𝑥)
𝑥𝑛 − 𝑥0

. (6.46)

Indeed, one verifies the equality at 𝑥 = 𝑥0, and 𝑥 = 𝑥1, … , 𝑥𝑛−1, and at 𝑥 = 𝑥𝑛 by a short computation
in each case. Then Eq. 6.46 holds in generality due to the uniqueness of the interpolating polynomial
(established in Theorem 6.2).

Now we compute the leading order coefficient 𝑐𝑛 of 𝑃 , i.e., the constant 𝑐𝑛 such that 𝑃(𝑥) = 𝑐𝑛𝑥𝑛 +
lower order terms. From Eq. 6.45, Eq. 6.46 one can directly read off that

𝑐𝑛 = 𝑓[𝑥1, … , 𝑥𝑛] − 𝑓[𝑥0, … , 𝑥𝑛−1]
𝑥𝑛 − 𝑥0

= 𝑓[𝑥0, … , 𝑥𝑛]. (6.47)
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Finally, let us define
𝑄(𝑥) ∶= 𝑃(𝑥) − 𝑓[𝑥0, … , 𝑥𝑛](𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛−1). (6.48)

This 𝑄 is a polynomial of at most order 𝑛 − 1, since the leading coefficients of the two summands
cancel. Also, 𝑄(𝑥𝑖) = 𝑃 (𝑥𝑖) = 𝑓𝑖 for all 0 ≤ 𝑖 < 𝑛. Uniqueness of the interpolating polynomial
Theorem 6.2 implies 𝑄(𝑥) = ̂𝑃 (𝑥). This yields

𝑃(𝑥) = ̂𝑃 (𝑥) + 𝑓[𝑥0, … , 𝑥𝑛](𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛−1)

=
𝑛

∑
𝑘=0

𝑓[𝑥0, 𝑥1, … , 𝑥𝑘] ∏
0≤𝑗<𝑘

(𝑥 − 𝑥𝑗)
(6.49)

by Eq. 6.45, which completes the proof. �

Remark. Note that nowhere in the proof we had to use that the interpolation points 𝑥𝑖 had to be
arranged in increasing order.

Writing the interpolating polynomial in terms of divided differences has several advantages:

• The polynomial requires fewer algebraic operations to evaluate. In fact, one might rewrite it as

𝑃 (𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)(𝑓[𝑥0, 𝑥1] + (𝑥 − 𝑥1)(𝑓[𝑥0, 𝑥1, 𝑥2] + … (6.50)

• If extra precision is required, it is easy to add an extra interpolation point 𝑥𝑛+1 without recom-
puting the lower-order divided differences.

• We can see from Eq. 6.44 that, if the 𝑘th divided difference is constant, this means that the
degree of the interpolating polynomial is 𝑘 (because higher divided differences are all zero), so
that we do not need to use all the data in the table (𝑘 + 1 points will be enough).

• The divided differences can be computed easily (by hand or with a computer) in a simple scheme,
as shown in the next example.

Example 6.3. Suppose that the values of a function 𝑓 at 7 points are as in Table 6.2. The remaining
columns of that table illustrates how the divided differences are calulated.

Table 6.2: Numerical example for divided difference method

𝑥 𝑓[𝑥] 𝑓[, ] 𝑓[, , ] 𝑓[, , , ] 𝑓[, , , , ]
-1 -2

3
0 1 0

3 1
1 4 3 0

9 1
2 13 6 0

21 1
3 34 9 0

39 1
4 73 12

63
5 136

The third divided difference is constant, so the interpolating polynomial is cubic. We obtain
𝑃(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3](𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)
= −2 + 3(𝑥 + 1) + 0(𝑥 + 1)𝑥 + (𝑥 + 1)𝑥(𝑥 − 1) = 𝑥3 + 2𝑥 + 1.

(6.51)

Further reading: Section 3.3 of (Burden and Faires 2010).
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6.2 Cubic spline interpolation

In the previous sections we considered the approximation of arbitrary functions on closed intervals
using a single polynomial. However, this does not always lead to satisfactory approximations be-
cause high-degree polynomials can oscillate erratically, and the error bounds can become large if the
derivatives of the approximated functions are not bounded. An alternative approach is to divide the
approximation interval into a collection of subintervals and construct a (generally) different approxi-
mating polynomial on each subinterval. This is called piecewise-polynomial approximation.

In this section we consider a function 𝑓 defined at the points 𝑥0, … , 𝑥𝑛. In contrast to the previous
sections, we assume here that

𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛. (6.52)

The simplest such piecewise-polynomial approximation is linear interpolation, which consists of joining
the data points (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), … , (𝑥𝑛, 𝑓(𝑥𝑛)) by a series of straight lines, i.e. the interpolating
function 𝑆 satisfies

𝑆(𝑥) =

⎧{{
⎨{{⎩

𝑓(𝑥0) + 𝑓(𝑥1)−𝑓(𝑥0)
𝑥1−𝑥0

(𝑥 − 𝑥0) for 𝑥 ∈ [𝑥0, 𝑥1],
𝑓(𝑥1) + 𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
(𝑥 − 𝑥1) for 𝑥 ∈ [𝑥1, 𝑥2],

⋮
𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)−𝑓(𝑥𝑛−1)

𝑥𝑛−𝑥𝑛−1
(𝑥 − 𝑥𝑛−1) for 𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛].

(6.53)

Linear interpolation is simple, but it has the disadvantage that the interpolating function 𝑆 is generally
not differentiable at the interpolation points 𝑥1, … , 𝑥𝑛−1.

The most common piecewise-polynomial approximation uses cubic polynomials between each succes-
sive pair of nodes and is called cubic spline interpolation. We will discuss this here only in the context
of approximating functions, but splines more generally can approximate curves in the plane or in higher
dimensions. This is useful for example for applications in digital art. For a very good introduction to
splines in this context, see this YouTube video.

Definition 6.1 (Cubic spline interpolant). A cubic spline interpolant 𝑆 for a function 𝑓 with known
values at points 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 is a twice continuously differentiable function on [𝑥0, 𝑥𝑛] (i.e. 𝑆 ∈
𝐶2[𝑥0, 𝑥𝑛]) such that it is equal to a cubic polynomial, denoted 𝑆𝑘, on the interval [𝑥𝑘−1, 𝑥𝑘] for each
𝑘 = 1, … , 𝑛 and 𝑆(𝑥𝑘) = 𝑓(𝑥𝑘) for 𝑘 = 0, … , 𝑛.

This definition implies that

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3 (6.54)

for 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] (𝑖 = 1, 2, … , 𝑛) and that 𝑆𝑖 satisfy the following requirements:

𝑆(𝑥𝑖) = 𝑓𝑖 for 𝑖 = 0, 1, … , 𝑛; (6.55)

𝑆𝑖(𝑥𝑖) = 𝑆𝑖+1(𝑥𝑖) for 𝑖 = 1, 2, … , 𝑛 − 1; (6.56)

𝑆′
𝑖(𝑥𝑖) = 𝑆′

𝑖+1(𝑥𝑖) for 𝑖 = 1, 2, … , 𝑛 − 1; (6.57)

𝑆′′
𝑖 (𝑥𝑖) = 𝑆′′

𝑖+1(𝑥𝑖) for 𝑖 = 1, 2, … , 𝑛 − 1. (6.58)

It is not obvious a priori that such an interpolant exists, or, if so, that it is unique. We have 4𝑛 unknown
coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 (𝑖 = 1, 2, … , 𝑛). Condition 6.55 gives 𝑛 + 1 equations. Conditions 6.56, 6.57,
6.58 give 3(𝑛 − 1) equations. Thus, we have 𝑛 + 1 + 3(𝑛 − 1) = 4𝑛 − 2 equations for 4𝑛 unknowns. So,
we need to specify two more conditions to define 𝑆(𝑥) uniquely. Common choices are:
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• 𝑆′′(𝑥0) = 𝑆′′(𝑥𝑛) = 0 (natural cubic spline);

• 𝑆′(𝑥0) = 𝑓 ′(𝑥0), 𝑆′(𝑥𝑛) = 𝑓 ′(𝑥𝑛) (clamped cubic spline).

Natural cubic spline. Let ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1. Condition 6.55 gives

𝑎𝑖 = 𝑓𝑖 for 𝑖 = 1, 2, … , 𝑛 (6.59)

and
𝑎1 − 𝑏1ℎ1 + 𝑐1ℎ2

1 − 𝑑1ℎ3
1 = 𝑓0. (6.60)

Condition 6.56 gives

𝑎𝑖 = 𝑎𝑖+1 − 𝑏𝑖+1ℎ𝑖+1 + 𝑐𝑖+1ℎ2
𝑖+1 − 𝑑𝑖+1ℎ3

𝑖+1 for 𝑖 = 1, 2, … , 𝑛 − 1. (6.61)

Condition 6.57 gives

𝑏𝑖 = 𝑏𝑖+1 − 2𝑐𝑖+1ℎ𝑖+1 + 3𝑑𝑖+1ℎ2
𝑖+1 for 𝑖 = 1, 2, … , 𝑛 − 1. (6.62)

Condition 6.58 gives
2𝑐𝑖 = 2𝑐−6𝑑𝑖+1ℎ𝑖+1 for 𝑖 = 1, 2, … , 𝑛 − 1. (6.63)

It follows from Eq. 6.63 that
𝑑𝑖 = 𝑐𝑖 − 𝑐𝑖−1

3ℎ𝑖
for 𝑖 = 2, … , 𝑛. (6.64)

From the (endpoint) conditions 𝑆′′(𝑥0) = 𝑆′′(𝑥𝑛) = 0 (corresponding to the natural cubic spline), it
follows that

𝑑1 = 𝑐1
3ℎ1

and 𝑐𝑛 = 0. (6.65)

It follows from Eq. 6.61 that

𝑏𝑖+1 = 𝑎𝑖+1 − 𝑎𝑖 + 𝑐𝑖+1ℎ2
𝑖+1 − 𝑑𝑖+1ℎ3

𝑖+1
ℎ𝑖+1

for 𝑖 = 1, 2, … , 𝑛 − 1.

and
𝑏𝑖 = 𝑎𝑖 − 𝑎𝑖−1 + 𝑐𝑖ℎ2

𝑖 − 𝑑𝑖ℎ3
𝑖

ℎ𝑖
for 𝑖 = 2, 3, … , 𝑛, (6.66)

so that
𝑏𝑖+1 − 𝑏𝑖 = 𝑎𝑖+1 − 𝑎𝑖

ℎ𝑖+1
− 𝑎𝑖 − 𝑎𝑖−1

ℎ𝑖
+ 𝑐𝑖+1ℎ𝑖+1 − 𝑐𝑖ℎ𝑖 − 𝑑𝑖+1ℎ2

𝑖+1 + 𝑑𝑖ℎ2
𝑖

for 𝑖 = 2, … , 𝑛 − 1. Substituting this into Eq. 6.62 and using Eq. 6.59 and Eq. 6.64 we find that

ℎ𝑖𝑐𝑖−1 + 2(ℎ𝑖 + ℎ𝑖+1)𝑐𝑖 + ℎ𝑖+1𝑐𝑖+1 = 3 (𝑓𝑖+1 − 𝑓𝑖
ℎ𝑖+1

− 𝑓𝑖 − 𝑓𝑖−1
ℎ𝑖

)

= 3(𝑓[𝑥𝑖, 𝑥𝑖+1] − 𝑓[𝑥𝑖−1, 𝑥𝑖])
= 3(ℎ𝑖 + ℎ𝑖+1)𝑓[𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1]

(6.67)

for 𝑖 = 2, … , 𝑛 − 1. Thus, we have obtained 𝑛 − 2 linear equations for 𝑛 − 1 unknowns 𝑐1, … , 𝑐𝑛−1
(we already know that 𝑐𝑛 = 0). One more equation is obtained as follows. First, the condition
𝑆(𝑥0) = 𝑆1(𝑥0) = 𝑓0 and Eq. 6.65 yield

𝑏1 = 𝑓1 − 𝑓0
ℎ1

+ 2
3ℎ1𝑐1. (6.68)

On substituting this into Eq. 6.62 for 𝑖 = 1 and using Eq. 6.66 for 𝑖 = 2, we obtain

2(ℎ1 + ℎ2)𝑐1 + ℎ2𝑐2 = 3 (𝑓2 − 𝑓1
ℎ2

− 𝑓1 − 𝑓0
ℎ1

) = 3(ℎ1 + ℎ2)𝑓(𝑥0, 𝑥1, 𝑥2). (6.69)
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Eq. 6.67, Eq. 6.69 can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴1 ℎ2 0 … … 0
ℎ2 𝐴2 ℎ3 ⋮
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ℎ𝑛−2 𝐴𝑛−2 ℎ𝑛−1
0 … … 0 ℎ𝑛−1 𝐴𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐1
𝑐2
⋮
⋮
⋮

𝑐𝑛−2
𝑐𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐹1
𝐹2
⋮
⋮
⋮

𝐹𝑛−2
𝐹𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6.70)

where
𝐴𝑖 = 2(ℎ𝑖 + ℎ𝑖+1) and 𝐹𝑖 = (ℎ𝑖 + ℎ𝑖+1)𝑓(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) (6.71)

for 𝑖 = 1, … , 𝑛 − 1 The matrix of this system is symmetric and tridiagonal. Moreover, it is strictly
diagonally dominant. So, it can be solved numerically using both Gaussian elimination and iterative
techniques.

When 𝑐1, … , 𝑐𝑛 are known, coefficients 𝑑1 … , 𝑑𝑛 and 𝑏1 … , 𝑏𝑛 can be determined using Eq. 6.64,
Eq. 6.65, Eq. 6.66, Eq. 6.68, Eq. 6.69.

Example 6.4. Let us compute the natural spline for the function 𝑓 given in Table 6.3.

Table 6.3: Numerical example for spline interpolation

𝑘 𝑥𝑘 𝑓(𝑥𝑘)
0 0.0
1 0.5
2 1.0 -1
3 1.5
4 2.0

From Eq. 6.59, we obtain
𝑎1 = 0, 𝑎2 = −1, 𝑎3 = 0, 𝑎4 = 1. (6.72)

Also, we have
𝐹1 = 0, 𝐹2 = 12, 𝐹3 = 0. (6.73)

We then need to solve the system

⎛⎜
⎝

2 1
2 0

1
2 2 1

2
0 1

2 2
⎞⎟
⎠

⎛⎜
⎝

𝑐1
𝑐2
𝑐3

⎞⎟
⎠

= ⎛⎜
⎝

0
12
0

⎞⎟
⎠

, (6.74)

which gives
𝑐1 = −12

7 , 𝑐2 = 48
7 , 𝑐3 = −12

7 . (6.75)

We also have 𝑐4 = 0.
Substituting these into Eq. 6.64–Eq. 6.66, we find

𝑏1 = −18
7 , 𝑏2 = 0, 𝑏3 = 18

7 , 𝑏4 = 12
7 ,

𝑑1 = −8
7, 𝑑2 = 40

7 , 𝑑3 = −40
7 , 𝑑4 = 8

7.
(6.76)

which allows us to write the spline interpolant as

𝑆(𝑥) =

⎧{{
⎨{{⎩

−(8/7)𝑥3 − (12/7)𝑥 + 1 if 𝑥 ∈ [0, 0.5),
(40/7)𝑥3 − (72/7)𝑥2 + (24/7)𝑥 + 1/7 if 𝑥 ∈ [0.5, 1),
−(40/7)𝑥3 + 24𝑥2 − (216/7)𝑥 + 81/7 if 𝑥 ∈ [1, 1.5),
(8/7)𝑥3 − (48/7)𝑥2 + (108/7)𝑥 − 81/7 if 𝑥 ∈ [1.5, 2].

(6.77)

Further reading: Section 3.5 of (Burden and Faires 2010).
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7 Numerical integration

We now discuss approximation algorithms for evaluating definite integrals. For many functions of
practical relevance, their antiderivative is not explicitly known, so that integrating them is not possible
in explicit terms. For example, an integral like

∫
2

0
exp(−𝑥2)𝑑𝑥 (7.1)

can be evaluated only by numerical approximation.

The basic method for approximating an integral of a function 𝑓(𝑥) is called numerical quadrature and
uses a formula of the form

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

𝑛
∑
𝑖=0

𝑐𝑖𝑓(𝑥𝑖), (7.2)

where 𝑥0, … , 𝑥𝑛 are nodes and 𝑐0, … , 𝑐𝑛 are weights. The nodes are chosen in the interval [𝑎, 𝑏] and
the weights are chosen so that the formula is exact for polynomials of degree 𝑛. The integral of a
general function 𝑓 is then approximated by the integral of the interpolating polynomial 𝑃𝑛 of degree
𝑛 through the nodes 𝑥0, … , 𝑥𝑛 of 𝑓 . In other words, the integral is replaced with a discrete sum of
function values of 𝑓 with certain numerical coefficients.

For a simple example, consider ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 for a nonnegative function 𝑓 ; illustrated in Figure 7.1. The

integral ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 corresponds to the area under the graph of 𝑓 in the interval [𝑎, 𝑏]. This region can

be approximated by a trapezium through the points (𝑎, 0), (𝑎, 𝑓(𝑎)), (𝑏, 𝑓(𝑏)), (𝑏, 0). Computing the
area of the trapezium, we obtain

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎)(𝑓(𝑎) + 𝑓(𝑏))

2 . (7.3)

This is the so-called Trapezium rule.

We motivated the Trapezium rule geometrically, but two question remain open at this point:

(a) How large is the approximation error?

(b) How can the approximation be improved for additional precision?

We will answer these questions by generalizing the Trapezium rule as follows. First, we select a
collection of distinct points 𝑥0, 𝑥1, … , 𝑥𝑛 from the interval [𝑎, 𝑏]. Then, in generalization of the straight
line that interpolated the function 𝑓 in the Trapezium method, we construct the Lagrange interpolating
polynomial (see Theorem 6.3) through 𝑥0, … , 𝑥𝑛 to obtain

𝑓(𝑥) =
𝑛

∑
𝑖=0

𝑓(𝑥𝑖)𝐿𝑖(𝑥) + 𝑅(𝑥), (7.4)

where
𝑅(𝑥) = 𝑓 (𝑛+1)(𝜉(𝑥))

(𝑛 + 1)!
𝑛

∏
𝑖=0

(𝑥 − 𝑥𝑖) (7.5)

and 𝜉(𝑥) ∈ [𝑎, 𝑏] for each 𝑥. Integrating this formula over [𝑎, 𝑏], we obtain

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 =

𝑛
∑
𝑖=0

𝑐𝑖𝑓(𝑥𝑖) + 𝐸(𝑓) (7.6)
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Figure 7.1: Trapezium rule

where

𝑐𝑖 = ∫
𝑏

𝑎
𝐿𝑖(𝑥)𝑑𝑥, 𝐸(𝑓) = ∫

𝑏

𝑎
𝑅(𝑥) 𝑑𝑥. (7.7)

The idea is that it is desirable for the error term 𝐸(𝑓) to be small—more on that below.

It is usual to choose the nodes 𝑥0, … , 𝑥𝑛 equally spaced in the interval [𝑎, 𝑏], in other words, with
ℎ = 1

𝑛(𝑏 − 𝑎), one sets
𝑥𝑖 ∶= 𝑎 + 𝑖ℎ for 𝑖 = 0, … , 𝑛. (7.8)

The construction above then yields the so called closed Newton-Cotes formulae for integration.
Let us consider the cases of 𝑛 = 1 (which corresponds to the Trapezium rule as above) and 𝑛 = 2 in
more detail.

7.1 Trapezium rule

Let us now put 𝑛 = 1, that is, we use interpolation by a straight line. Following the recipe from above,
we have ℎ ∶= 𝑏 − 𝑎, the nodes are 𝑥0 = 𝑎 and 𝑥1 = 𝑏, and we have the Lagrange polynomials

𝐿0(𝑥) = 𝑥 − 𝑥1
𝑥0 − 𝑥1

= − 1
ℎ(𝑥 − 𝑏),

𝐿1(𝑥) = 𝑥 − 𝑥0
𝑥1 − 𝑥0

= 1
ℎ(𝑥 − 𝑎).

(7.9)
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The constants 𝑐0, 𝑐1 are then

𝑐0 = ∫
𝑏

𝑎
𝐿0(𝑥)𝑑𝑥 = − 1

ℎ ∫
𝑏

𝑎
(𝑥 − 𝑏)𝑑𝑥

= − 1
2ℎ [(𝑥 − 𝑏)2]𝑏

𝑥=𝑎 = ℎ
2 ,

𝑐1 = ∫
𝑏

𝑎
𝐿1(𝑥)𝑑𝑥 = 1

ℎ ∫
𝑏

𝑎
(𝑥 − 𝑎)𝑑𝑥

= 1
2ℎ [(𝑥 − 𝑎)2]𝑏

𝑥=𝑎 = ℎ
2 .

(7.10)

The approximation formula Eq. 7.6 then gives

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ ℎ

2 (𝑓(𝑎) + 𝑓(𝑏)), (7.11)

which is exactly the Trapezium rule.

Remark. It can be shown by direct calculation that the Trapezium rule produces an exact result for
𝑓(𝑥) = 1, 𝑓(𝑥) = 𝑥 and, hence for any polynomial of degree 0 and 1. (Prove it!)

Let us now consider the error term 𝐸(𝑓). We assume that 𝑓 ∈ 𝐶2[𝑎, 𝑏] and employ the formula for
the error of the interpolation polynomial

𝑓(𝑥) = 𝑃(𝑥) + 𝑓 ′′(𝜉(𝑥))
2! (𝑥 − 𝑥0)(𝑥 − 𝑥1). (7.12)

Since 𝑓 ∈ 𝐶2[𝑎, 𝑏], we have
𝑚 ≤ 𝑓 ′′(𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏], (7.13)

where
𝑚 = min

𝑥∈[𝑎,𝑏]
𝑓 ′′(𝑥), 𝑀 = max

𝑥∈[𝑎,𝑏]
𝑓 ′′(𝑥). (7.14)

Let
𝐵(𝑥) = −(𝑥 − 𝑥0)(𝑥 − 𝑥1)

2 . (7.15)

Evidently, 𝐵(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏]. Therefore, it follows from Eq. 7.12 that

𝑚 𝐵(𝑥) ≤ 𝑃(𝑥) − 𝑓(𝑥) ≤ 𝑀 𝐵(𝑥). (7.16)

Integration of these inequalities yields

𝑚 ∫
𝑥1

𝑥0

𝐵(𝑥)𝑑𝑥 ≤ ∫
𝑥1

𝑥0

(𝑃 (𝑥) − 𝑓(𝑥)) 𝑑𝑥 ≤ 𝑀 ∫
𝑥1

𝑥0

𝐵(𝑥)𝑑𝑥. (7.17)

Since
∫

𝑥1

𝑥0

𝐵(𝑥)𝑑𝑥 = 1
2 ∫

𝑥1

𝑥0

(𝑥 − 𝑥0)(𝑥1 − 𝑥)𝑑𝑥

= 1
2 ∫

1

0
ℎ 𝑡 ℎ(1 − 𝑡) ℎ 𝑑𝑡

= ℎ3

2 (𝑡2

2 − 𝑡3

3 ) ∣
𝑡=1

𝑡=0
= ℎ3

12 .

(7.18)

(here we have introduced new variable of integration 𝑡 by the formula 𝑥 = 𝑥0 + 𝑡ℎ) Eq. 7.17 can we
rewritten as

𝑚 ≤ 12
ℎ3 ∫

𝑥1

𝑥0

(𝑃 (𝑥) − 𝑓(𝑥)) 𝑑𝑥 ≤ 𝑀. (7.19)
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Since 𝑓 ′′(𝑥) is continuous in [𝑎, 𝑏], the intermediate value theorem says that there exists 𝜉 ∈ [𝑎, 𝑏] such
that

𝑓 ′′(𝜉) = 12
ℎ3 ∫

𝑥1

𝑥0

(𝑃 (𝑥) − 𝑓(𝑥)) 𝑑𝑥. (7.20)

This and the expression for the integral of 𝑃(𝑥) give us the Trapezium rule with error term:

∫
𝑥1

𝑥0

𝑓(𝑥)𝑑𝑥 = ℎ
2 (𝑓(𝑥0) + 𝑓(𝑥1)) − ℎ3

12𝑓 ′′(𝜉). (7.21)

We see that the error term can be controlled by an estimate of the second derivative of 𝑓 . Also, it will
be small if ℎ is small. Evidently, for a fixed interval [𝑎, 𝑏] we cannot vary ℎ to reduce the error; we
will return to this problem later.

7.2 Simpson’s rule

Now let us consider the case 𝑛 = 2, which should yield a better approximation. We have ℎ = 1
2(𝑏 − 𝑎),

and our nodes are 𝑥0 = 𝑎, 𝑥1 = 𝑎 + ℎ, 𝑥2 = 𝑎 + 2ℎ = 𝑏. We first recall the polynomials 𝐿𝑗:

𝐿0(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)
(𝑥0 − 𝑥1)(𝑥0 − 𝑥2) = 1

2ℎ2 (𝑥 − (𝑎 + ℎ))(𝑥 − 𝑏),

𝐿1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥2)
(𝑥1 − 𝑥0)(𝑥1 − 𝑥2) = − 1

ℎ2 (𝑥 − 𝑎)(𝑥 − 𝑏),

𝐿2(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)
(𝑥2 − 𝑥0)(𝑥2 − 𝑥1) = 1

2ℎ2 (𝑥 − 𝑎)(𝑥 − (𝑎 + ℎ)).

(7.22)

Their integrals are, with the same substitution 𝑥 = 𝑎 + ℎ𝑡 as before (but now 0 ≤ 𝑡 ≤ 2),

𝑐0 = ∫
𝑏

𝑎
𝐿0(𝑥) 𝑑𝑥 = ℎ

2 ∫
2

0
(𝑡 − 1)(𝑡 − 2)𝑑𝑡 = ℎ

2
2
3 = ℎ

3 ,

𝑐1 = ∫
𝑏

𝑎
𝐿1(𝑥) 𝑑𝑥 = −ℎ ∫

2

0
𝑡(𝑡 − 2)𝑑𝑡 = −ℎ (−4

3) = 4ℎ
3 ,

𝑐2 = ∫
𝑏

𝑎
𝐿2(𝑥) 𝑑𝑥 = ℎ

2 ∫
2

0
𝑡(𝑡 − 1)𝑑𝑡 = ℎ

2
2
3 = ℎ

3 .

(7.23)

This means that our approximation formula is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ ℎ

3 (𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 𝑓(𝑏)) . (7.24)

This is known as Simpson’s rule, which is graphically represented in Figure 7.2.

Error term for Simpson’s rule. Let us recall the Trapezium rule with error term:

∫
𝑥1

𝑥0

𝑓(𝑥)𝑑𝑥 = ℎ
2 [𝑓(𝑥0) + 𝑓(𝑥1)] − ℎ3

12𝑓 ′′(𝜉). (7.25)

It has been obtained by integrating the linear interpolating polynomial with nodes 𝑥0 and 𝑥1 = 𝑥0 +ℎ.
Therefore, it must produce an exact result for any polynomial of degree 0 and 1. Indeed, the error
term in Eq. 11.59 vanishes for polynomials of degree 0 and 1.

Simpson’s rule has been obtained by integrating the quadratic interpolating polynomial with nodes
𝑥0, 𝑥1 = 𝑥0 + ℎ and 𝑥2 = 𝑥0 + 2ℎ. So, it must produce an exact result for polynomials of degree 0, 1
and 2. Will it generate a nonzero error for cubic polynomials? To examine this, it suffices to consider
𝑓(𝑥) = 𝑥3. By analogy with the Trapezium rule we assume that Simpson’s rule with error term has
the form

∫
𝑥2

𝑥0

𝑓(𝑥)𝑑𝑥 = ℎ
3 [𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] + 𝐶𝑓‴(𝜉) (7.26)
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Figure 7.2: Simpson’s rule

for some constant 𝐶 and some 𝜉 ∈ [𝑥0, 𝑥2]. Substituting 𝑓(𝑥) = 𝑥3 in Eq. 7.26, we obtain

∫
𝑥2

𝑥0

𝑥3𝑑𝑥 = ℎ
3 [𝑥3

0 + 4𝑥3
1 + 𝑥3

2] + 6𝐶. (7.27)

The integral on the left hand side of Eq. 11.69 can be written as

( l.h.s. ) = 𝑥4
2

4 − 𝑥4
0

4 = (𝑥0 + 2ℎ)4

4 − 𝑥4
0

4
= 2ℎ𝑥3

0 + 6ℎ2𝑥2
0 + 8ℎ3𝑥0 + 4ℎ4.

(7.28)

For the right hand side of Eq. 11.69, we have

( r.h.s. ) = ℎ
3 [𝑥3

0 + 4(𝑥0 + ℎ)3 + (𝑥0 + 2ℎ)3] + 6𝐶

= ℎ
3 [𝑥3

0 + 4 (𝑥3
0 + 3𝑥2

0ℎ + 3𝑥0ℎ2 + ℎ3)

+ 𝑥3
0 + 6𝑥2

0ℎ + 12𝑥0ℎ2 + 8ℎ3] + 6𝐶

= ℎ
3 [6𝑥3

0 + 18𝑥2
0ℎ + 24𝑥0ℎ2 + 12ℎ3] + 6𝐶

= 2ℎ𝑥3
0 + 6ℎ2𝑥2

0 + 8ℎ3𝑥0 + 4ℎ4 + 6𝐶.

(7.29)

If follows from Eq. 7.28 and Eq. 7.29 that Eq. 11.69 simplifies to 0 = 6𝐶, so that 𝐶 = 0. This means
that Simpson’s rule is exact for polynomials of degree 3 (an unexpected result!).

This also means that our assumption about the error term for Simpson’s rule is wrong. So, we make
another assumption, namely:

∫
𝑥2

𝑥0

𝑓(𝑥)𝑑𝑥 = ℎ
3 [𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] + 𝐶𝑓 (4)(𝜉). (7.30)
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To find 𝐶, we substitute 𝑓(𝑥) = 𝑥4 in Eq. 7.30. This yields the equation

∫
𝑥2

𝑥0

𝑥4𝑑𝑥 = ℎ
3 [𝑥4

0 + 4𝑥4
1 + 𝑥4

2] + 24𝐶. (7.31)

The left hand side of Eq. 7.31 can be written as

( l.h.s. ) = 𝑥5
2

5 − 𝑥5
0

5 = (𝑥0 + 2ℎ)5

5 − 𝑥4
0

4
= 2ℎ𝑥4

0 + 8ℎ2𝑥3
0 + 16ℎ3𝑥2

0 + 16ℎ4𝑥0 + 32
5 ℎ5.

(7.32)

For the right hand side of Eq. 7.31, we have

( r.h.s. ) = ℎ
3 [𝑥4

0 + 4(𝑥0 + ℎ)4 + (𝑥0 + 2ℎ)4] + 24𝐶

= ℎ
3 [𝑥3

0 + 4 (𝑥4
0 + 4𝑥3

0ℎ + 6𝑥2
0ℎ2 + 4𝑥0ℎ3 + ℎ4)

+ 𝑥4
0 + 8𝑥3

0ℎ + 24𝑥2
0ℎ2 + 32𝑥0ℎ3 + 16ℎ4] + 24𝐶

= ℎ
3 [6𝑥4

0 + 24𝑥3
0ℎ + 48𝑥2

0ℎ2 + 48𝑥0ℎ3 + 20ℎ4] + 24𝐶

= 2ℎ𝑥4
0 + 8ℎ2𝑥3

0 + 16ℎ3𝑥2
0 + 16ℎ4𝑥0 + 20

3 ℎ5 + 24𝐶.

(7.33)

Eq. 7.31–Eq. 7.33 imply that
32
5 ℎ5 = 20

3 ℎ5 + 24𝐶. (7.34)

so that
𝐶 = −ℎ5

90 . (7.35)

Thus, Simpson’s rule with error term is given by

∫
𝑥2

𝑥0

𝑓(𝑥)𝑑𝑥 = ℎ
3 [𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] − ℎ5

90𝑓 (4)(𝜉) (7.36)

for some 𝜉 ∈ [𝑥0, 𝑥2]. Note that the above argument is not a proof of the existence of such 𝜉. Alternative
derivations of formula Eq. 7.36 can be found in textbooks on Numerical Analysis (e.g. (Burden and
Faires 2010)).

7.3 Higher-order Newton-Cotes formulae

We have now seen that the Trapezium and Simpson’s rules are examples of Newton-Cotes formulae,
which are obtained by integrating of an interpolating polynomial for interpolation points 𝑥0, … , 𝑥𝑛.
The Trapezium rule and Simpson’s rule correspond to 𝑛 = 1 and 𝑛 = 2 respectively. For 𝑛 = 3, we
have Simpson’s three-eighth rule

∫
𝑥3

𝑥0

𝑓(𝑥)𝑑𝑥 = 3ℎ
8 [𝑓(𝑥0) + 3𝑓(𝑥1) + 3𝑓(𝑥2) + 𝑓(𝑥3)] − 3ℎ5

80 𝑓 (4)(𝜉), (7.37)

where ℎ = (𝑥3 − 𝑥0)/3 and 𝜉 ∈ [𝑥0, 𝑥3]. The error of Simpson’s three-eighth rule is proportional to ℎ5

with a coefficient that is larger than that in the error term of Simpson’s rule, so this method seems
less efficient than Simpson’s rule.

For 𝑛 = 4 we have the formula

∫
𝑥4

𝑥0

𝑓(𝑥)𝑑𝑥 =2ℎ
45 [7𝑓(𝑥0) + 32𝑓(𝑥1) + 12𝑓(𝑥2) + 32𝑓(𝑥3) + 7𝑓(𝑥4)]

− 8ℎ7

945𝑓 (6)(𝜉).
(7.38)

where ℎ = (𝑥4 − 𝑥0)/4 and 𝜉 ∈ [𝑥0, 𝑥4].
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7.4 Composite numerical integration

The Newton-Cotes formulas are generally unsuitable for large integration intervals. This would require
high-degree formulas. An alternative to this is a piecewise approach to numerical integration that uses
the low-order Newton-Cotes formulas such as the Trapezium and Simpson’s rules.

Let us apply Simpson’s formula to approximate the integral ∫4
0 𝑥4𝑑𝑥. We have

𝐼 = ∫
4

0
𝑥4𝑑𝑥 ≈ 2

3 [0 + 4 ⋅ 24 + 44] = 2
3(64 + 256) = 213.333,

𝐸 = |𝐼 − 213.333| = |204.8 − 213.333| = 8.533.
(7.39)

To apply a piecewise technique to this problem, we divide [0, 4] into two subintervals [0, 2] and [2, 4]
and use Simpson’s rule twice with ℎ = 1:

𝐼 = ∫
4

0
𝑥4𝑑𝑥 ≈ 1

3 [0 + 4 ⋅ 14 + 24]

+ 1
3 [24 + 4 ⋅ 34 + 44] = 205.333,

𝐸 =|204.8 − 205.333| = 0.533.

(7.40)

To reduce the error, we can proceed further by subdividing the intervals [0, 2] and [2, 4] and use
Simpson’s rule with ℎ = 1/2.
To generalize this procedure, we choose an even integer 𝑛 and divide the interval [𝑎, 𝑏] into 𝑛 subin-
tervals. Then we apply Simpson’s rule to each consecutive pair of subintervals. With ℎ = (𝑏 − 𝑎)/𝑛
and 𝑥𝑗 = 𝑎 + 𝑗ℎ for 𝑗 = 0, 1, ..., 𝑛, we have

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 =

𝑛/2
∑
𝑗=1

∫
𝑥2𝑗

𝑥2𝑗−2

𝑓(𝑥)𝑑𝑥

=
𝑛/2
∑
𝑗=1

{ℎ
3 [𝑓(𝑥2𝑗−2) + 4𝑓(𝑥2𝑗−1) + 𝑓(𝑥2𝑗)] − ℎ5

90𝑓 (4)(𝜉𝑗)}
(7.41)

for some 𝜉𝑗 between 𝑥2𝑗−2 and 𝑥2𝑗, provided that 𝑓 ∈ 𝐶4[𝑎, 𝑏].
One can see that for each 𝑗 = 1, 2, ..., (𝑛/2) − 1, the number 𝑓(𝑥2𝑗) appears in the term corresponding
to the interval [𝑥2𝑗−2, 𝑥2𝑗] and also in the term corresponding to the interval [𝑥2𝑗, 𝑥2𝑗+2]. Taking this
into account, we obtain

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 =

𝑛/2
∑
𝑗=1

∫
𝑥2𝑗

𝑥2𝑗−2

𝑓(𝑥)𝑑𝑥

= ℎ
3

⎧{
⎨{⎩

𝑓(𝑥0) + 2
(𝑛/2)−1

∑
𝑗=1

𝑓(𝑥2𝑗) + 4
𝑛/2
∑
𝑗=1

𝑓(𝑥2𝑗−1) + 𝑓(𝑥𝑛)
⎫}
⎬}⎭

+ 𝐸.
(7.42)

The error of this approximation is

𝐸 = −ℎ5

90
𝑛/2
∑
𝑗=1

𝑓 (4)(𝜉𝑗) (7.43)

where 𝑥2𝑗−2 < 𝜉𝑗 < 𝑥2𝑗 for each 𝑗 = 1, 2, ..., 𝑛/2. If 𝑓 ∈ 𝐶4[𝑎, 𝑏], then (according to the Extreme Value
Theorem) 𝑓 (4)(𝑥) attains its maximum and minimum values in [𝑎, 𝑏]. Let

𝑚 = min
𝑥∈[𝑎,𝑏]

𝑓 (4)(𝑥), 𝑀 = max
𝑥∈[𝑎,𝑏]

𝑓 (4)(𝑥). (7.44)

Then we have
𝑚 ≤ 𝑓 (4)(𝜉𝑗) ≤ 𝑀 for each 𝑗 = 1, 2, ..., 𝑛/2. (7.45)
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Therefore,
𝑛
2 𝑚 ≤

𝑛/2
∑
𝑗=1

𝑓 (4)(𝜉𝑗) ≤ 𝑛
2 𝑀, (7.46)

and

𝑚 ≤ 2
𝑛

𝑛/2
∑
𝑗=1

𝑓 (4)(𝜉𝑗) ≤ 𝑀. (7.47)

By the Intermediate Value Theorem, there is a 𝜇 ∈ (𝑎, 𝑏) such that

𝑓 (4)(𝜇) = 2
𝑛

𝑛/2
∑
𝑗=1

𝑓 (4)(𝜉𝑗). (7.48)

Hence,

𝐸 = − ℎ5

180𝑛𝑓 (4)(𝜇) = −𝑏 − 𝑎
180 ℎ4𝑓 (4)(𝜇). (7.49)

Thus, we have proved the following theorem.

Theorem 7.1 (Composite Simpson’s rule). Let 𝑓 ∈ 𝐶4[𝑎, 𝑏], 𝑛 be even, ℎ = (𝑏−𝑎)/𝑛, and 𝑥𝑗 = 𝑎+𝑗ℎ
for 𝑗 = 0, 1, ..., 𝑛. There exist a number 𝜇 ∈ (𝑎, 𝑏) such that

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 =ℎ

3
⎧{
⎨{⎩

𝑓(𝑥0) + 2
(𝑛/2)−1

∑
𝑗=1

𝑓(𝑥2𝑗) + 4
𝑛/2
∑
𝑗=1

𝑓(𝑥2𝑗−1) + 𝑓(𝑥𝑛)
⎫}
⎬}⎭

− 𝑏 − 𝑎
180 ℎ4𝑓 (4)(𝜇).

(7.50)

Similarly, one can prove analogous theorems for Composite Trapezium rule.

Theorem 7.2 (Composite Trapezium rule). Let 𝑓 ∈ 𝐶2[𝑎, 𝑏], ℎ = (𝑏 − 𝑎)/𝑛, and 𝑥𝑗 = 𝑎 + 𝑗ℎ for
𝑗 = 0, 1, ..., 𝑛. There exist a number 𝜇 ∈ (𝑎, 𝑏) such that

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = ℎ

2 {𝑓(𝑥0) + 2
𝑛−1
∑
𝑗=1

𝑓(𝑥𝑗) + 𝑓(𝑥𝑛)} − 𝑏 − 𝑎
12 ℎ2𝑓 ′′(𝜇). (7.51)

Example 7.1. Apply the composite Simpson rule to compute

𝐼 =
2

∫
0

𝑒𝑥𝑑𝑥 (7.52)

with absolute error less than 10−2.

Solution. First we need to determine the number of subintervals* 𝑛 in the composite Simpson rule
that would ensure that absolute error less than 10−2. It follows from Eq. 7.50 that

𝐸 = 𝑏 − 𝑎
180 ℎ4|𝑓 (4)(𝜇)| ≤ 𝑏 − 𝑎

180 ℎ4𝑀, (7.53)

where 𝑀 is the upper bound for |𝑓 (4)(𝑥)| in [0, 2]. Evidently, 𝑀 = 𝑒2. Therefore, we require that

𝑏 − 𝑎
180 ℎ4𝑒2 < 10−2 ⇔ (𝑏 − 𝑎)5

180𝑛4 𝑒2 < 10−2 ⇔ 𝑛4 > 100(𝑏 − 𝑎)5

180 𝑒2. (7.54)

Substituting 𝑎 = 0 and 𝑏 = 2, we find that

𝑛4 > 5 ⋅ 32𝑒2

9 = 131.3609973, so that 𝑛 ≥ 4 (𝑛4 = 256). (7.55)
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Applying the composite Simpson rule with 𝑛 = 4, we obtain the approximation

̃𝐼 = 6.391210187. (7.56)

The actual error is
|𝐼 − ̃𝐼| = 0.002154088. (7.57)

So it is indeed less that 10−2.

All the Composite Newton-Cotes techniques are stable with respect to roundoff error. Consider, for
example, the Composite Simpson rule with 𝑛 subintervals applied to a function 𝑓(𝑥) on [𝑎, 𝑏]. We
assume that 𝑓(𝑥𝑖) is approximated by ̃𝑓(𝑥𝑖) with the roundoff error 𝑒𝑖. Then, the accumulated error
in the Composite Simpson rule is

𝐸(ℎ) = ∣ℎ3
⎛⎜
⎝

𝑒0 + 2
(𝑛/2)−1

∑
𝑗=1

𝑒2𝑗 + 4
𝑛/2
∑
𝑗=1

𝑒2𝑗−1 + 𝑒𝑛⎞⎟
⎠

∣

≤ ℎ
3

⎛⎜
⎝

|𝑒0| + 2
(𝑛/2)−1

∑
𝑗=1

|𝑒2𝑗| + 4
𝑛/2
∑
𝑗=1

|𝑒2𝑗−1| + |𝑒𝑛|⎞⎟
⎠

(7.58)

If the roundoff errors are uniformly bounded by 𝜀, then

𝐸(ℎ) ≤ ℎ
3 (𝜀 + 2 (𝑛

2 − 1) 𝜀 + 4𝑛
2 𝜀 + 𝜀) = 𝑛ℎ𝜀 = (𝑏 − 𝑎)𝜀. (7.59)

Thus, the bound for the accumulated error is independent of ℎ, so that ℎ can be taken as small as we
wish.
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8 Numerical differentiation

Often we need to calculate the derivative of a function whose values are given only for a finite set of
points. So, we need a formula which would approximate the derivatives of our function at these points
and which would use only the values of the function at these points.

Recall that, by definition, the derivative of the function 𝑓(𝑥) at 𝑥0 is

𝑓 ′(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ . (8.1)

It is natural to expect that if ℎ is sufficiently small, then

𝑓 ′(𝑥0) ≈ 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ . (8.2)

This formula approximates the derivative using values of 𝑓 at two points 𝑥0 and 𝑥0 + ℎ.
What is a general method of constructing approximate formulas for the derivative? There are many
ways of doing that. For example, given a set of distinct points 𝑥0, … , 𝑥𝑛 and values of 𝑓 at these points,
we can construct the interpolating polynomial and then compute the derivatives of this polynomial
at each 𝑥0, … , 𝑥𝑛. This method, although possible, is less transparent and instructive than a method
based of Taylor’s polynomials (series) which we will discuss below.

Let 𝑓 ∈ 𝐶(𝑛+1)(𝐼) where 𝐼 is an open interval. Then we have the Taylor formula (of order 𝑛):

𝑓(𝑥) =𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓 ′(𝑥0) + (𝑥 − 𝑥0)2

2! 𝑓 ′′(𝑥0) + …

+ (𝑥 − 𝑥0)𝑛

𝑛! 𝑓 (𝑛)(𝑥0) + (𝑥 − 𝑥0)𝑛+1

(𝑛 + 1)! 𝑓 (𝑛+1)(𝜉)
(8.3)

for any 𝑥, 𝑥0 ∈ 𝐼 and for some 𝜉 between 𝑥 and 𝑥0 (𝜉 depends on 𝑥 and 𝑥0). If we use the notation
ℎ = 𝑥 − 𝑥0, then Eq. 8.3 takes the form

𝑓(𝑥0 + ℎ) =𝑓(𝑥0) + ℎ𝑓 ′(𝑥0) + ℎ2

2! 𝑓 ′′(𝑥0) + …

+ ℎ𝑛

𝑛! 𝑓 (𝑛)(𝑥0) + ℎ𝑛+1

(𝑛 + 1)!𝑓
(𝑛+1)(𝜉)

(8.4)

with 𝜉 between 𝑥0 and 𝑥0 + ℎ (𝜉 can also be written as 𝜉 = 𝑥0 + 𝜃ℎ where 0 < 𝜃 < 1).

Definition 8.1. If function 𝑔(ℎ) has the property that

|𝑔(ℎ)| ≤ 𝐾|ℎ𝑝|, 𝐾, 𝑝 > 0, (8.5)

for all ℎ in some open interval containing 0, we write

𝑔(ℎ) = 𝑂(ℎ𝑝) (8.6)

as ℎ → 0. This is pronounced “𝑔 is big-oh of ℎ𝑝”. We sometimes say that 𝑔(ℎ) converges to 0 as fast
as ℎ𝑝.
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For example, function 𝑓(𝑥) = sin(𝑥)/𝑥 − 1 converges to 0 as fast as 𝑥2 converges to zero (as 𝑥 → 0).
To show this, it suffices to consider the third Taylor polynomial for sin(𝑥):

sin(𝑥) = 𝑥 − 𝑥3

3! cos(𝜉) (8.7)

where 𝜉 is some number between 0 and 𝑥. We have

∣sin𝑥
𝑥 − 1∣ = |𝑥|2

3! | cos(𝜉)| ≤ 𝑥2

3! = 𝑥2

6 ⇒ sin𝑥
𝑥 − 1 = 𝑂(𝑥2). (8.8)

Here we used the fact that | cos𝑥| ≤ 1 for all 𝑥 ∈ ℝ.
Properties of 𝑂(ℎ𝑛):

1. 𝑂(ℎ𝑛) + 𝑂(ℎ𝑚) = 𝑂(ℎ𝑙) for 𝑛, 𝑚 > 0 and 𝑙 = min{𝑛, 𝑚}.
2. 𝑂(ℎ𝑛)𝑂(ℎ𝑚) = 𝑂(ℎ𝑛+𝑚) for 𝑛, 𝑚 > 0.
3. ℎ𝑚𝑂(ℎ𝑛) = 𝑂(ℎ𝑛+𝑚) for 𝑛 > 0 and 𝑛 + 𝑚 > 0.

It follows from Eq. 8.4 that

|𝑓(𝑥0 + ℎ) − 𝑇𝑛(ℎ)| = ∣ ℎ𝑛+1

(𝑛 + 1)!𝑓
(𝑛+1)(𝜉)∣ (8.9)

where 𝑇𝑛 is the 𝑛th Taylor polynomial:

𝑇𝑛(ℎ) = 𝑓(𝑥0) + ℎ𝑓 ′(𝑥0) + ℎ2

2! 𝑓 ′′(𝑥0) + ⋯ + ℎ𝑛

𝑛! 𝑓 (𝑛)(𝑥0). (8.10)

From our assumption that 𝑓 ∈ 𝐶(𝑛+1)(𝐼) and 𝑥, 𝑥0 ∈ 𝐼 , it follows that there exists a closed interval
[𝑎, 𝑏] such that [𝑎, 𝑏] ⊂ 𝐼 and 𝑥, 𝑥0 ∈ [𝑎, 𝑏]. Therefore, 𝑓 (𝑛+1)(𝑥) attains its maximum and minimum
values in [𝑎, 𝑏], so that |𝑓 (𝑛+1)(𝑥)| ≤ 𝑀 for some 𝑀 . Thus, we have

|𝑓(𝑥0 + ℎ) − 𝑇𝑛(ℎ)| ≤ ∣ ℎ𝑛+1

(𝑛 + 1)!𝑀∣ = 𝑀
(𝑛 + 1)! |ℎ

𝑛+1|, (8.11)

which means that
𝑓(𝑥0 + ℎ) − 𝑇𝑛(ℎ) = 𝑂 (ℎ𝑛+1) (8.12)

or, equivalently,
𝑓(𝑥0 + ℎ) = 𝑇𝑛(ℎ) + 𝑂 (ℎ𝑛+1) . (8.13)

8.1 Two-point forward and backward formulas for 𝑓 ′

Let us derive the formula for the derivative based on points 𝑥0 and 𝑥0 + ℎ (ℎ > 0). If we put 𝑛 = 1
in Eq. 8.4, we obtain

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + ℎ𝑓 ′(𝑥0) + ℎ2

2! 𝑓 ′′(𝜉1) (8.14)

where 𝑥0 < 𝜉1 < 𝑥0 + ℎ. Solving this for 𝑓 ′(𝑥0), we find that

𝑓 ′(𝑥0) = 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ − ℎ

2!𝑓
′′(𝜉1). (8.15)

This is called the forward-difference formula for 𝑓 ′(𝑥0). Similarly, one can obtain the backward-
difference formula for 𝑓 ′(𝑥0)1:

𝑓 ′(𝑥0) = 𝑓(𝑥0) − 𝑓(𝑥0 − ℎ)
ℎ + ℎ

2!𝑓
′′(𝜉2) (8.16)

where 𝑥0 − ℎ < 𝜉2 < 𝑥0 (ℎ > 0).
1In fact, it can be obtained from Eq. 8.15 simply by changing ℎ to −ℎ.
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8.2 Three-point formulas for 𝑓 ′

Now let us derive an approximation formula for 𝑓 ′(𝑥0) based on points 𝑥0 − ℎ, 𝑥0 and 𝑥0 + ℎ (ℎ > 0).
The Taylor formula Eq. 8.4 with 𝑛 = 2 implies that

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + ℎ𝑓 ′(𝑥0) + ℎ2

2! 𝑓 ′′(𝑥0) + ℎ3

3! 𝑓 ′′′(𝜉+), 𝑥0 < 𝜉+ < 𝑥0 + ℎ,

𝑓(𝑥0 − ℎ) = 𝑓(𝑥0) − ℎ𝑓 ′(𝑥0) + ℎ2

2! 𝑓 ′′(𝑥0) − ℎ3

3! 𝑓 ′′′(𝜉−), 𝑥0 − ℎ < 𝜉− < 𝑥0.
(8.17)

Subtracting the second equation from the first one, we obtain

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 − ℎ) = 2ℎ𝑓 ′(𝑥0) + ℎ3

3! (𝑓 ′′′(𝜉+) + 𝑓 ′′′(𝜉−)) . (8.18)

Solving this for 𝑓 ′(𝑥0) yields

𝑓 ′(𝑥0) = 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 − ℎ)
2ℎ − ℎ2

3!
1
2 (𝑓 ′′′(𝜉+) + 𝑓 ′′′(𝜉−)) . (8.19)

Since 𝑓 ′′′ is continuous, by the Intermediate Value Theorem there exists 𝜉 between 𝜉− and 𝜉+ such
that

𝑓 ′′′(𝜉) = 1
2 (𝑓 ′′′(𝜉+) + 𝑓 ′′′(𝜉−)) . (8.20)

Therefore,

𝑓 ′(𝑥0) = 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 − ℎ)
2ℎ − ℎ2

6 𝑓 ′′′(𝜉) (8.21)

where 𝑥0 − ℎ < 𝜉 < 𝑥0 + ℎ. This is the central difference formula for 𝑓 ′(𝑥0). Note that the error of
the central difference approximation is 𝑂(ℎ2) as ℎ → 0. Thus, we have a second order approximation
for 𝑓 ′(𝑥0).
There are two more three-point formulas for 𝑓 ′(𝑥0):

𝑓 ′(𝑥0) = 1
2ℎ [−3𝑓(𝑥0) + 4𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)] + 𝑂(ℎ2)

𝑓 ′(𝑥0) = 1
2ℎ [𝑓(𝑥0 − 2ℎ) − 4𝑓(𝑥0 − ℎ) + 3𝑓(𝑥0)] + 𝑂(ℎ2)

(8.22)

The first formula uses points 𝑥0, 𝑥0 + ℎ and 𝑥0 + 2ℎ and is called the three-point forward difference
formula for 𝑓 ′(𝑥0). The second formula is called the three-point backward difference formula and uses
points 𝑥0 − 2ℎ, 𝑥0 − ℎ and 𝑥0. Note that the second equation can be obtained from the first by simply
replacing ℎ with −ℎ, so, in fact, these two represent only one formula.

Example 8.1. Prove Eq. 8.22 assuming that 𝑓 ∈ 𝐶3(𝐼) where 𝐼 is some open interval containing 𝑥0.

Solution. First we choose a sufficiently small* ℎ, so that [𝑥0, 𝑥0 + 2ℎ] ⊂ 𝐼 . Then 𝑓 ′′′(𝑥) is bounded
for all 𝑥 ∈ [𝑥0, 𝑥0 + 2ℎ] and we can write

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + ℎ 𝑓 ′(𝑥0) + ℎ2

2 𝑓 ′′(𝑥0) + 𝑂(ℎ3),

𝑓(𝑥0 + 2ℎ) = 𝑓(𝑥0) + 2ℎ 𝑓 ′(𝑥0) + (2ℎ)2

2 𝑓 ′′(𝑥0) + 𝑂(ℎ3)
= 𝑓(𝑥0) + 2ℎ 𝑓 ′(𝑥0) + 2ℎ2 𝑓 ′′(𝑥0) + 𝑂(ℎ3).

(8.23)

These and Eq. 8.22 yield

𝐸 = 𝑓 ′(𝑥0) − 1
2ℎ [−3𝑓(𝑥0) + 4𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)]

= 𝑓 ′(𝑥0) − 1
2ℎ[−3𝑓(𝑥0) + 4 (𝑓(𝑥0) + ℎ 𝑓 ′(𝑥0) + ℎ2

2 𝑓 ′′(𝑥0))

− 𝑓(𝑥0) − 2ℎ𝑓 ′(𝑥0) − 2ℎ2𝑓 ′′(𝑥0) + 𝑂(ℎ3)]
= 𝑂(ℎ2).

(8.24)
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8.3 Higher derivatives

Taylor series can also be used to derive formulas for approximating higher derivatives of a function
given at a finite set of points.

Let us consider an example. First, we expand 𝑓 in a third Taylor polynomial about 𝑥0 and evaluate
𝑓 at 𝑥 = 𝑥0 − ℎ and 𝑥 = 𝑥0 + ℎ. Then

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)ℎ + 1
2𝑓 ′′(𝑥0)ℎ2 + 1

6𝑓 ′′′(𝑥0)ℎ3 + 1
24𝑓 (4)(𝜉+)ℎ4,

𝑓(𝑥0 − ℎ) = 𝑓(𝑥0) − 𝑓 ′(𝑥0)ℎ + 1
2𝑓 ′′(𝑥0)ℎ2 − 1

6𝑓 ′′′(𝑥0)ℎ3 + 1
24𝑓 (4)(𝜉−)ℎ4,

(8.25)

where 𝑥0 − ℎ < 𝜉− < 𝑥0 < 𝜉+ < 𝑥0 + ℎ. Adding these equations, we obtain

𝑓 ′′(𝑥0) = 1
ℎ2 [𝑓(𝑥0 − ℎ) − 2𝑓(𝑥0) + 𝑓(𝑥0 + ℎ)] − ℎ2

24 [𝑓 (4)(𝜉+) + 𝑓 (4)(𝜉−)]. (8.26)

Assuming that 𝑓 (4) is continuous on [𝑥0 − ℎ, 𝑥0 + ℎ], we can rewrite this equation in a simpler form.
Since [𝑓 (4)(𝜉+) + 𝑓 (4)(𝜉−)]/2 is between 𝑓 (4)(𝜉+) and 𝑓 (4)(𝜉−), the Intermediate Value theorem implies
that there exists a number 𝜉 between 𝜉+ and 𝜉− such that

𝑓 (4)(𝜉) = 1
2[𝑓 (4)(𝜉+) + 𝑓 (4)(𝜉−)]. (8.27)

Therefore,

𝑓 ′′(𝑥0) = 1
ℎ2 [𝑓(𝑥0 − ℎ) − 2𝑓(𝑥0) + 𝑓(𝑥0 + ℎ)] − ℎ2

12𝑓 (4)(𝜉). (8.28)

where 𝑥0 − ℎ < 𝜉 < 𝑥0 + ℎ. This is called the central difference formula for 𝑓 ′′(𝑥0) and it uses values
of 𝑓 at three points. Its truncation error is 𝑂(ℎ2). This is one of the most popular finite difference
formulas in Numerical Analysis.

Finite difference formulas for higher derivatives can be derived in a similar manner.

8.4 The effect of Roundoff Errors

Consider the central difference formula:

𝑓 ′(𝑥0) = 1
2ℎ [𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 − ℎ)] − ℎ2

6 𝑓 (3)(𝜉). (8.29)

Suppose that the values of 𝑓(𝑥0 − ℎ) and 𝑓(𝑥0 + ℎ) are computed with roundoff errors 𝑒− and 𝑒+,
respectively, i.e.

𝑓(𝑥0 − ℎ) = 𝑓− + 𝑒− and 𝑓(𝑥0 + ℎ) = 𝑓+ + 𝑒+. (8.30)

Here ̃𝑓± are the computed valued. Substitution of these in the central difference formula yields

𝑓 ′(𝑥0) = 1
2ℎ [𝑓+ + 𝑒+ − 𝑓− − 𝑒−] − ℎ2

6 𝑓 (3)(𝜉). (8.31)

The total error in the approximation is

𝑓 ′(𝑥0) − 𝑓+ − 𝑓−

2ℎ = 𝑒+ − 𝑒−

2ℎ − ℎ2

6 𝑓 (3)(𝜉). (8.32)

The total error has a part due to roundoff error and a part due to truncation error. Suppose that the
roundoff errors are bounded by some number 𝜀 > 0 (this is always true in practice), i.e.

|𝑒±| ≤ 𝜀, (8.33)
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and that the third derivative of 𝑓 is bounded by 𝑀 > 0 for all 𝑥 ∈ [𝑥0 − ℎ, 𝑥0 + ℎ]. Then we have

∣𝑓 ′(𝑥0) − 𝑓+ − 𝑓−

2ℎ ∣ ≤ 𝜀
ℎ + ℎ2

6 𝑀. (8.34)

One can see that, to reduce the truncation error we must reduce ℎ. But as ℎ is reduced, the roundoff
error 𝜀/ℎ grows.

To determine the optimal value of ℎ (for which the total error is the smallest one), we consider the
function

𝐸(ℎ) = 𝜀
ℎ + ℎ2

6 𝑀. (8.35)

which is the upper bound for the total error as a function of ℎ. Since 𝐸′(ℎ) = −𝜀/ℎ2 + ℎ𝑀/3 = 0 at
ℎ = ℎ∗ = (3𝜀/𝑀)1/3, the function 𝐸(ℎ) attains its minimum value at

ℎ = ( 3𝜀
𝑀 )

1/3
, (8.36)

and this is the optimal value of ℎ. The corresponding minimum error is

𝐸𝑚𝑖𝑛 = 𝐸(ℎ∗) = 1
2 (9𝑀𝜀2)1/3 . (8.37)

Unfortunately, in practice, we cannot compute an optimal ℎ to use in approximating the derivative,
because usually we do not know the third derivative of the function. But we must be aware that
reducing the step size will not always improve the approximation.

Similar analysis can be done for other finite difference formulas for the derivative, and in all cases it
leads to similar conclusions.
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9 A direct method for solving tridiagonal linear
systems

Consider the following system of linear equations

𝐴x = F, (9.1)

where F ∈ ℝ𝑛 is a given vector, x ∈ ℝ𝑛 is the vector of unknowns and 𝐴 is a given 𝑛 × 𝑛 tridiagonal
matrix, i.e.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐷1 𝑈1 0 ⋯ ⋯ ⋯ 0
𝐿2 𝐷2 𝑈2 ⋱ ⋮
0 𝐿3 𝐷3 𝑈3 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 𝐷𝑛−1 𝑈𝑛−1
0 ⋯ ⋯ ⋯ 0 𝐿𝑛 𝐷𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9.2)

A system like this has appeared when we discussed spline interpolation (see Eq. 6.70). Similar linear
systems also arise in finite-difference methods for solving differential equations. Of course, the solution
of this system can be approximated using iterative techniques such as Jacobi or Gauss-Seidel methods.
However, there are much more efficient direct methods for solving such systems. All direct methods
are equivalent to Gaussian elimination applied to the above trigiagonal system. One of these, called
the double-sweep method, is described below.

The above system of linear equations can be written as

𝐷1𝑥𝑖 + 𝑈1𝑥2 = 𝐹1,
𝐿𝑖𝑥𝑖−1 + 𝐷𝑖𝑥𝑖 + 𝑈𝑖𝑥𝑖+1 = 𝐹𝑖 for 𝑖 = 2, … , 𝑛 − 1,

𝐿𝑛𝑥𝑛−1 + 𝐷𝑛𝑥𝑛 = 𝐹𝑛.
(9.3)

It is convenient to introduce
𝑥0 = 0 and 𝑥𝑛+1 = 0. (9.4)

Then Eq. 9.3 can be rewritten as

𝐿𝑖𝑥𝑖−1 + 𝐷𝑖𝑥𝑖 + 𝑈𝑖𝑥𝑖+1 = 𝐹𝑖 for 𝑖 = 1, … , 𝑛. (9.5)

To solve Eq. 9.5, we will seek 𝛼𝑖 and 𝛽𝑖 such that

𝑥𝑖−1 = 𝛼𝑖𝑥𝑖 + 𝛽𝑖 for 𝑖 = 1, 2, … , 𝑛 + 1. (9.6)

Substitution of Eq. 9.6 into Eq. 9.5 yields

(𝛼𝑖𝐿𝑖 + 𝐷𝑖)𝑥𝑖 + 𝑈𝑖𝑥𝑖+1 + 𝛽𝑖𝐿𝑖 − 𝐹𝑖 = 0 for 𝑖 = 1, … , 𝑛. (9.7)

From Eq. 9.6, we also have

𝑥𝑖 = 𝛼𝑖+1𝑥𝑖+1 + 𝛽𝑖+1 for 𝑖 = 0, 1, … , 𝑛. (9.8)

Substituting this into Eq. 9.7, we find that

[(𝛼𝑖𝐿𝑖 + 𝐷𝑖)𝛼𝑖+1 + 𝑈𝑖]𝑥𝑖+1 + [(𝛼𝑖𝐿𝑖 + 𝐷𝑖)𝛽𝑖+1 + 𝛽𝑖𝐿𝑖 − 𝐹𝑖] = 0 for 𝑖 = 1, … , 𝑛. (9.9)
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The last equation is satisfied if the two expressions in the square brackets are both zero. This leads
to the following recursive formulae:

𝛼𝑖+1 = − 𝑈𝑖
𝐷𝑖 + 𝛼𝑖𝐿𝑖

, 𝛽𝑖+1 = − 𝛽𝑖𝐿𝑖 − 𝐹𝑖
𝐷𝑖 + 𝛼𝑖𝐿𝑖

, for 𝑖 = 1, … , 𝑛. (9.10)

Now if 𝛼1 and 𝛽1 are known, then 𝛼𝑖 and 𝛽𝑖 for 𝑖 = 2, 3, … , 𝑛 + 1 can be computed from Eq. 9.10. 𝛼1
and 𝛽1 can be determined from Eq. 9.6 and the fact that 𝑥0 = 0. Indeed,

𝑥0 = 𝛼1𝑥1 + 𝛽1 and 𝑥0 = 0 ⇒ 𝛼1𝑥1 + 𝛽1 = 0. (9.11)

To satisfy the last equation, we choose 𝛼1 = 0 and 𝛽1 = 0. Once we know all 𝛼𝑖 and 𝛽𝑖, we compute
𝑥𝑛, 𝑥𝑛−1, … , 𝑥1 using formula Eq. 9.6.

Formulae Eq. 9.6 and Eq. 9.10 will work provided that the coefficients 𝐿𝑖, 𝑈𝑖 and 𝐷𝑖 are such that
𝐷𝑖 + 𝛼𝑖𝐿𝑖 ≠ 0 for 𝑖 = 1, … , 𝑛. For tridiagonal systems that arise in finite-difference methods for
differential equations, the coefficients 𝐿𝑖, 𝑈𝑖 and 𝐷𝑖 usually satisfy the inequalities

𝐿𝑖, 𝑈𝑖 > 0, 𝐷𝑖 < 0, −𝐷𝑖 ≥ 𝐿𝑖 + 𝑈𝑖. (9.12)

It can be shown that these restrictions on 𝐿𝑖, 𝑈𝑖 and 𝐷𝑖 are sufficient for the double-sweep method
to work.

The following function implements this method in Python:

Let us look at a simple example of a tri-diagonal system:

Solution: [-1. -1. -1. -1. -1.]

Let’s check that 𝑥 does indeed satisfy Eq. 9.1. First we need to construct the full matrix 𝐴.

array([[-2., 1., 0., 0., 0.],
[ 1., -2., 1., 0., 0.],
[ 0., 1., -2., 1., 0.],
[ 0., 0., 1., -2., 1.],
[ 0., 0., 0., 1., -2.]])

Now we can use Python’s matrix multiplication opeator @ to calculate 𝐴x:

array([ 1.00000000e+00, -2.22044605e-16, 0.00000000e+00, 0.00000000e+00,
1.00000000e+00])

This indeed agrees with F up to rounding errors.
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10 Initial Value Problems

10.1 Introduction

The topic of this and the next chapter is to find approximate solutions to ordinary differential equa-
tions.

Let us briefly recall what an ordinary differential equation (ODE) is. A rather arbitrarily chosen
example for an ODE (here, of second order) is

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0. (10.1)

Equations like this are normally satisfied by many functions 𝑦(𝑥): the problem has many solutions.
In order to specify a uniquely solvable problem, one needs to fix initial values, i.e., the value of 𝑦 and
its first derivative at some point, say, at 𝑥 = 0:

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0, 𝑦(0) = 1, 𝑦′(0) = −2. (10.2)

This is a so-called initial-value problem (IVP). Another variant is to specify the value of 𝑦(𝑥), but not
of its derivative, at two different points:

𝑦″(𝑥) + 4𝑦′(𝑥) + 3√𝑦(𝑥) + cos(𝑥) = 0, 𝑦(0) = 2, 𝑦(1) = 1. (10.3)

This is called a boundary value problem (BVP).

Both IVPs and BVPs have a unique solution (under certain mathematical conditions). However,
while one can show on abstract grounds that these solutions exist, it is often not practicable to find
an explicit expression for them. The best one can hope for is to approximate the solution numerically.
This is exactly our topic: to find approximation algorithms for the solutions of IVPs (this chapter)
and BVPs (in Chapter 11).

10.2 Euler’s Method

For studying initial value problems (IVPs) for ordinary differential equations, let us start with the
simplest known approximation scheme: Euler’s method. We will focus on direct computations here,
and defer more in-depth discussions of the mathematical foundations to later.

We consider an IVP for a first-order equation, of the form

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼. (10.4)

Here 𝑎, 𝑏 and 𝛼 are some real numbers, and 𝑓 is a function ℝ2 → ℝ. (For a concrete example, see
Example 10.1 below.) Under certain conditions on 𝑓 — to be discussed in Section 10.3 — one knows
that the problem has a unique solution; that is, that there is exactly one function 𝑦(𝑥) defined on
[𝑎, 𝑏] which satisfies Eq. 10.4. We often call 𝑦(𝑥) the exact solution of the IVP. However, it is often
difficult or even impossible to find an explicit expression for 𝑦(𝑥). Our aim here is to approximate the
solution numerically.
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Figure 10.1: Euler’s method

10.2.1 The method

The idea behind Euler’s method is as follows (see Figure 10.1 for a visualization): We pick 𝑁 ∈ ℕ,
and divide the interval [𝑎, 𝑏] into 𝑁 subintervals of equal length, ℎ = (𝑏 − 𝑎)/𝑁 . The end points of
these intervals are

𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0, … , 𝑁. (10.5)

Terminology: 𝑁 is called the number of steps and ℎ is called the step size. The points 𝑥0, … , 𝑥𝑁 ∈
[𝑎, 𝑏] are referred to as mesh points.

We will approximate the exact solution 𝑦 only at the mesh points 𝑥𝑖; that is, we are looking for
numbers 𝑤0, … , 𝑤𝑁 such that 𝑦(𝑥𝑖) ≈ 𝑤𝑖.

The first approximation 𝑤0 is easy to choose: We know that 𝑦 satisfies the initial condition, 𝑦(𝑥0) =
𝑦(𝑎) = 𝛼. Thus we set 𝑤0 ∶= 𝛼; this is even exact.

For finding 𝑤1 ≈ 𝑦(𝑥1), we use linear approximation:

𝑦(𝑥1) = 𝑦(𝑥0 + ℎ) ≈ 𝑦(𝑥0) + ℎ𝑦′(𝑥0)
(∗)= 𝑦(𝑥0) + ℎ𝑓(𝑥0, 𝑦(𝑥0)) = 𝑤0 + ℎ𝑓(𝑥0, 𝑤0).

(10.6)

For the equality (∗), we have used that 𝑦 satisfies the ODE Eq. 10.4.

In the same way, we can find an approximation for 𝑦(𝑥2):

𝑦(𝑥2) = 𝑦(𝑥1 + ℎ) ≈ 𝑦(𝑥1) + ℎ𝑦′(𝑥1)
(∗)= 𝑦(𝑥1) + ℎ𝑓(𝑥1, 𝑦(𝑥1))

(∘)
≈ 𝑤1 + ℎ𝑓(𝑥1, 𝑤1).

(10.7)

Our approximation value is 𝑤2 ∶= 𝑤1 + ℎ𝑓(𝑥1, 𝑤1). Note that we have used another approximation
step (∘), using that 𝑦(𝑥1) ≈ 𝑤1 and that 𝑓 is sufficiently smooth; we will come back to this point in
Section 10.2.2. We can continue the scheme for 𝑤3, 𝑤4, etc.:

𝑤0 ∶= 𝛼, (10.8)
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𝑤1 ∶= 𝑤0 + ℎ𝑓(𝑥0, 𝑤0), (10.9)

𝑤2 ∶= 𝑤1 + ℎ𝑓(𝑥1, 𝑤1), (10.10)

⋮
𝑤𝑖+1 ∶= 𝑤𝑖 + ℎ𝑓(𝑥𝑖, 𝑤𝑖). (10.11)

So the 𝑤𝑖 are defined recursively. Eq. 10.11 is called the difference equation of Euler’s method.

Example 10.1. Let us consider the IVP

𝑦′(𝑥) = 𝑦(𝑥) − 𝑥2 + 1, 0 ≤ 𝑥 ≤ 1, 𝑦(0) = 1
2. (10.12)

In this case, the exact solution can be found using an integrating factor. It is

𝑦(𝑥) = (𝑥 + 1)2 − 1
2𝑒𝑥. (10.13)

This will allow us to compare the approximation with the exact solution. It is generally a good idea
to test one’s numerical method on an example where one already knows the exact solution.

We choose 𝑁 = 10 steps, i.e., ℎ = 1/10. Here we shall only compute the first two steps. By Eq. 10.8,
we certainly have

𝑥0 = 0, 𝑤0 = 1
2. (10.14)

This allows us to compute the approximation 𝑤1 at the mesh point 𝑥1 = 1/10, namely, by Eq. 10.9,

𝑤1 = 𝑤0 + ℎ𝑓(𝑥0, 𝑤0) = 𝑤0 + ℎ(𝑤0 − 𝑥2
0 + 1)

= 1
2 + 1

10 (1
2 − 0 + 1) = 1

2 + 3
20

= 13
20.

(10.15)

Continuing the iteration to 𝑥2 = 2/10, we have by Eq. 10.10 that

𝑤2 = 𝑤1 + ℎ𝑓(𝑥1, 𝑤1) = 𝑤1 + ℎ(𝑤1 − 𝑥2
1 + 1)

= 13
20 + 1

10 (13
20 − ( 1

10)
2

+ 1) = 13
20 + 1

10 ⋅ 174
100

= 407
500.

(10.16)

Continuing further, we would obtain the values shown in Table 10.1. The values of the exact solution
Eq. 10.13, evaluated to 9 decimals, are added for comparison. The last column, the error bound, will
be discussed shortly.

Table 10.1: Approximation values and errors for Euler’s Method

𝑖 𝑥𝑖 𝑤𝑖 𝑦(𝑥𝑖) |𝑦(𝑥𝑖) − 𝑤𝑖| error bound
0 0 0.5 0.5 0 0
1 0.1 0.65 0.657414541 0.007414541 0.0078878189
2 0.2 0.814 0.829298621 0.015298621 0.0166052069
3 0.3 0.9914 1.015070596 0.023670596 0.0262394106
4 0.4 1.18154 1.214087651 0.032547651 0.0368868524
5 0.5 1.383694 1.425639364 0.041945364 0.0486540953
6 0.6 1.5970634 1.648940600 0.051877200 0.0616589100
7 0.7 1.82076974 1.883123646 0.062353906 0.0760314530
8 0.8 2.053846714 2.127229536 0.073382822 0.0919155696
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𝑖 𝑥𝑖 𝑤𝑖 𝑦(𝑥𝑖) |𝑦(𝑥𝑖) − 𝑤𝑖| error bound
9 0.9 2.295231385 2.380198444 0.084967059 0.1094702333
10 1.0 2.543754524 2.640859086 0.097104562 0.1288711371

10.2.2 Error bounds

Denote the error at step 𝑖 of Euler’s method by

𝜀𝑖 = 𝑦(𝑥𝑖) − 𝑤𝑖. (10.17)

Clearly 𝜀0 = 0. We can represent 𝜀1 as follows: assuming the second derivative 𝑦″ exists on (𝑎, 𝑏), we
can use Taylor’s Theorem to give

𝑦(𝑥1) = 𝑦(𝑥0 + ℎ) = 𝑦(𝑥0) + ℎ𝑦′(𝑥0) + ℎ2𝑦″(𝜉1)
2 (10.18)

for some 𝜉1 ∈ (𝑥0, 𝑥1). Now, 𝑦 is a solution to the IVP so 𝑦(𝑥0) = 𝑦(𝑎) = 𝛼 = 𝑤0 and 𝑦′(𝑥0) =
𝑓(𝑥0, 𝑦(𝑥0)) = 𝑓(𝑥0, 𝛼) = 𝑓(𝑥0, 𝑤0) and, by definition of 𝑤1,

𝑦(𝑥0) + ℎ𝑦′(𝑥0) = 𝑤0 + ℎ𝑓(𝑥0, 𝑤0) = 𝑤1. (10.19)

Substituting this gives

𝑦(𝑥1) = 𝑤1 + ℎ2𝑦″(𝜉1)
2 . (10.20)

So the error after one step can be written as

𝜀1 = 𝑦(𝑥1) − 𝑤1 = ℎ2𝑦″(𝜉1)
2 . (10.21)

Although we do not know what 𝑦″(𝜉1) is, this does show how the error depends on the step length: it
behaves like a multiple of ℎ2.

We can now make an optimistic guess: if every step contributes a multiple of ℎ2, then the total error at
the end, after 𝑁 steps, will be some multiple of 𝑁ℎ2 = (𝑁ℎ)ℎ = (𝑏−𝑎)ℎ. As ℎ → 0, this tends to zero
(whatever the unknown constants are) so the approximate solution converges to the exact solution. It
turns out that this is basically correct, although much more careful reasoning is needed, as we shall
see when we look at the error after the second step.

We can try to analyse the second step in the same way as the first step: use Taylor’s Theorem to
write

𝑦(𝑥2) = 𝑦(𝑥1 + ℎ) = 𝑦(𝑥1) + ℎ𝑦′(𝑥1) + ℎ2𝑦″(𝜉2)
2 (10.22)

and use the fact that 𝑦 is a solution of the DE to substitute 𝑦′(𝑥1) = 𝑓(𝑥1, 𝑦(𝑥1)):

𝑦(𝑥2) = 𝑦(𝑥1) + ℎ𝑓(𝑥1, 𝑦(𝑥1)) + ℎ2𝑦″(𝜉2)
2 . (10.23)

At this point, things look different: in the first step, we had 𝑦(𝑥0) = 𝑦(𝑎) = 𝛼, but here we do
not have 𝑦(𝑥1) = 𝑤1: the first step starts at (𝑥0, 𝑤0) = (𝑎, 𝛼), which lies exactly on the solution
curve, but the second step starts at (𝑥1, 𝑤1), which does not lie on the solution curve. However,
𝑤1 is an approximation to 𝑦(𝑥1), and we have an expression for the error, namely 𝜀1. Substituting
𝑦(𝑥1) = 𝑤1 + 𝜀1 gives

𝑦(𝑥2) = 𝑤1 + 𝜀1 + ℎ𝑓(𝑥1, 𝑤1 + 𝜀1) + ℎ2𝑦″(𝜉2)
2 . (10.24)

Now, 𝑤1 + ℎ𝑓(𝑥1, 𝑤1 + 𝜀1) is very similar to the formula for 𝑤2: the only difference is that it has
𝑤1 + 𝜀1, instead of 𝑤1. As we did for for 𝑦(𝑥1), we can think of this as being an approximation plus
an error:

𝑓(𝑥1, 𝑤1 + 𝜀1)⏟⏟⏟⏟⏟⏟⏟
exact

= 𝑓(𝑥1, 𝑤1)⏟
approx

+ [𝑓(𝑥1, 𝑤1 + 𝜀1) − 𝑓(𝑥1, 𝑤1)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
error

(10.25)
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leading to

𝑦(𝑥2) = 𝜀1 + 𝑤1 + ℎ𝑓(𝑥1, 𝑤1)⏟⏟⏟⏟⏟⏟⏟
=𝑤2

+ℎ[𝑓(𝑥1, 𝑤1 + 𝜀1) − 𝑓(𝑥1, 𝑤1)]ℎ
2𝑦″(𝜉2)

2 , (10.26)

which, as intended, forces 𝑤2 to appear:

𝑦(𝑥2) = 𝜀1 + 𝑤2 + ℎ[𝑓(𝑥1, 𝑤1 + 𝜀1) − 𝑓(𝑥1, 𝑤1)] + ℎ2𝑦″(𝜉2)
2 . (10.27)

Subtracting 𝑤2 from both sides gives

𝜀2 = 𝜀1 + ℎ[𝑓(𝑥1, 𝑤1 + 𝜀1) − 𝑓(𝑥1, 𝑤1)] + ℎ2𝑦″(𝜉2)
2 . (10.28)

This describes the error at step 2 as the sum of three terms which can be thought of as:

• 𝜀1, the error carried forward from step 1;

• ℎ[𝑓(𝑥1, 𝑤1 +𝜀1)−𝑓(𝑥1, 𝑤1)], the error caused by starting at (𝑥1, 𝑤1), which is not on the solution
curve;

• ℎ2𝑦″(𝜉2)/2, the error built into Euler’s method by the approximation 𝑦(𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ𝑦′(𝑥).

This analysis works for every step: we have

𝜀𝑖+1 = 𝜀𝑖 + ℎ[𝑓(𝑥𝑖, 𝑤𝑖 + 𝜀𝑖) − 𝑓(𝑥𝑖, 𝑤𝑖)] + ℎ2𝑦″(𝜉𝑖+1)
2 , (10.29)

where 𝜉𝑖+1 ∈ (𝑥𝑖, 𝑥𝑖+1). This is a recurrence relation for 𝜀𝑖, and 𝜀0 = 0. Now, we need to ask how
large the different contributions can be. For the truncation error inherent in Euler’s method, we
simply assume that there is a constant 𝑀 such that |𝑦″(𝑥)| ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏]. For the error
associated with starting away from the solution curve, we use Taylor’s Theorem yet again: assuming
𝑓 is differentiable in the second variable, we can write

𝑓(𝑥𝑖, 𝑤𝑖 + 𝜀𝑖) − 𝑓(𝑥𝑖, 𝑤𝑖) = 𝜀𝑖
𝜕
𝜕𝑧𝑓(𝑥𝑖, 𝑧)∣

𝑧=𝜂𝑖

(10.30)

for some 𝜂𝑖 ∈ (𝑤𝑖, 𝑤𝑖 + 𝜀𝑖). We now make the assumption that there is a constant 𝐿 such that

∣ 𝜕
𝜕𝑧𝑓(𝑥, 𝑧)∣ ≤ 𝐿 (10.31)

for all 𝑥 ∈ [𝑎, 𝑏] and all 𝑧. This leads to
|ℎ[𝑓(𝑥𝑖, 𝑤𝑖 + 𝜀𝑖) − 𝑓(𝑥𝑖, 𝑤𝑖)]| = ℎ|𝑓(𝑥𝑖, 𝑤𝑖 + 𝜀𝑖) − 𝑓(𝑥𝑖, 𝑤𝑖)| ≤ ℎ𝐿|𝜀𝑖|. (10.32)

Using the triangle inequality on the formula for 𝜀𝑖+1, we have

|𝜀𝑖+1| ≤ |𝜀𝑖| + 𝐿ℎ|𝜀𝑖| + 𝑀ℎ2

2 = (1 + 𝐿ℎ)|𝜀𝑖| + 𝑀ℎ2

2
= (1 + 𝐿ℎ)|𝜀𝑖| + ℎ𝜏(ℎ),

(10.33)

where 𝜏(ℎ) = 𝑀ℎ/2 (this is just a convenient abbreviation, which makes the final answer look tidy).
We can apply this estimate repeatedly, starting off with 𝜀0 = 0, to find an estimate for the error after
any number of steps.

|𝜀0| = 0
|𝜀1| ≤ ℎ𝜏(ℎ)
|𝜀2| ≤ (1 + 𝐿ℎ)|𝜀1| + ℎ𝜏(ℎ)

≤ [(1 + 𝐿ℎ) + 1]ℎ𝜏(ℎ)
|𝜀3| ≤ (1 + 𝐿ℎ)|𝜀2| + ℎ𝜏(ℎ)

≤ [(1 + 𝐿ℎ)2 + (1 + 𝐿ℎ) + 1]ℎ𝜏(ℎ)
⋮

|𝜀𝑛| ≤ [(1 + 𝐿ℎ)𝑛−1 + (1 + 𝐿ℎ)𝑛−2 + ⋯ + 1]ℎ𝜏(ℎ).

(10.34)
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This final formula can be proved by induction. This is a geometric sum, so we can use the standard
formula to give for 1 ≤ 𝑛 ≤ 𝑁

|𝜀𝑛| ≤ ℎ𝜏(ℎ)
𝑛−1
∑
𝑖=0

(1 + 𝐿ℎ)𝑖 = ℎ𝜏(ℎ)(1 + 𝐿ℎ)𝑛 − 1
𝐿ℎ (10.35)

and the ℎ terms in the numerator and denominator cancel (this is why the abbreviated the Taylor’s
Theorem estimate as ℎ𝜏(ℎ)). The dependency on 𝑛 is awkward here, so we use the fact that 1+𝑥 ≤ 𝑒𝑥

for all 𝑥 to replace 1 + 𝐿ℎ by 𝑒𝐿ℎ:
|𝜀𝑛| ≤ 𝜏(ℎ)

𝐿 (𝑒𝐿ℎ𝑛 − 1)″ (10.36)

Now, ℎ𝑛 is the distance from 𝑥0 = 𝑎 to 𝑥𝑛, so

|𝜀𝑛| ≤ 𝜏(ℎ)
𝐿 (𝑒𝐿(𝑥𝑛−𝑎) − 1). (10.37)

The RHS increases exponentially as 𝑥𝑛 increases, with the maximum value at 𝑥𝑛 = 𝑏, so we can finally
conclude that

|𝜀𝑁 | ≤ 𝜏(ℎ)
𝐿 (𝑒𝐿(𝑥𝑛−𝑎) − 1) ≤ 𝜏(ℎ)

𝐿 (𝑒𝐿(𝑏−𝑎) − 1). (10.38)

In all cases, we see that the error is bounded above by a multiple of 𝜏(ℎ), which is itself a multiple of
ℎ (because 𝜏(ℎ) = 𝑀ℎ/2). The multiplier depends on the width of the interval on which we solve the
equation but, crucially, if we fix the interval then the multiplier does not change as we decrease the
step size. The error therefore tends to zero as ℎ → 0 (equivalently, as 𝑁 → ∞), so the approximate
solution converges to the exact solution.

Example 10.2 (Example for error bounds). Let us reconsider Example 10.1, with 𝑓(𝑥, 𝑦) = 𝑦−𝑥2 +1,
and compute the error bounds. We have 𝜕𝑓/𝜕𝑦 = 1, so we have 𝐿 = 1 – see Eq. 10.31. For the
constant 𝑀 , we use the fact that we know the exact solution: 𝑦(𝑥) = (𝑥 + 1)2 − 𝑒𝑥/2. This gives
us 𝑦″(𝑥) = 2 − 𝑒𝑥/2, which, on the interval [0, 1], is bounded by 3/2 (its value at 0). So 𝑀 = 3/2.
Inserting, this gives us

|𝑦(𝑥𝑖) − 𝑤𝑖| ≤ 3
40(𝑒(𝑥𝑖−𝑎) − 1). (10.39)

These bounds are included in Table 10.1. You can see that the actual errors are indeed below the
bounds, but not very much, particularly for small 𝑥.

Of course, using the exact solution in the error bounds can be considered “cheating” to some extent,
since the exact solution of the ODE is in general unknown. There are methods for obtaining estimates
for the constant 𝑀 even if 𝑦(𝑥) is not explicitly known, but we will not discuss them at this point.

With the Euler method, we have an approximation algorithm for the generic initial value problem
Eq. 10.4, which works for any sufficiently smooth 𝑓 . We have found an explicit estimate Eq. 10.38
for the approximation error, which in particular shows that the approximation values converge to the
exact solution, 𝑤𝑖 → 𝑦(𝑥𝑖) as ℎ → 0.
However, the Euler method as presented here has two main shortcomings:

First, the convergence is rather slow - only of order 𝑂(ℎ). One would need to choose the step size ℎ
very small in order to arrive at a useful approximation. Decreasing ℎ means, first of all, an increase
in computation time. But also, small values of ℎ make the difference equation Eq. 10.11 prone to
roundoff errors; limits in floating point precision limit the usable range for ℎ. (For more details on
the influence of roundoff errors on the approximation result, see for example (Burden and Faires 2010
Theorem 5.10).)

Second, we have formulated the method for a first-order ODE. Most applications, however, use higher-
order ODEs (usually second-order), systems of first-order ODEs, or indeed a combination of both. Our
approximation methods needs to be generalized to these cases in order to be useful in practice.
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Next we will introduce the generalizations needed for handling higher-order ODEs and systems of
ODEs. In most textbooks, you will find this generalization only in later chapters, for example in
Sec. 5.9 of (Burden and Faires 2010), or not at all. However, here I take the viewpoint that, while
treating systems of ODEs is not really difficult, it is so important that it should be introduced right
in the beginning! As we shall see, this can be boiled down to almost no more than a little change in
notation.

10.2.3 Systems of ODEs

A generic initial value problem for a system of 𝑚 first-order ODEs would look as follows:

𝑦1
′(𝑥) = 𝑓1(𝑥, 𝑦1(𝑥), … , 𝑦𝑚(𝑥)),

⋮
𝑦𝑚

′(𝑥) = 𝑓𝑚(𝑥, 𝑦1(𝑥), … , 𝑦𝑚(𝑥)),
(10.40)

for 𝑥 in some interval [𝑎, 𝑏], with initial values

𝑦1(𝑎) = 𝛼1, … , 𝑦𝑚(𝑎) = 𝛼𝑚. (10.41)

Here 𝑎, 𝑏, 𝛼1, … , 𝛼𝑚 are given constants, and 𝑓1, … , 𝑓𝑚 are functions from ℝ × ℝ𝑚 to ℝ. The exact
solution of the system would consist of functions 𝑦1, … , 𝑦𝑚 ∶ [𝑎, 𝑏] → ℝ.
The idea of handling these ODE systems mainly involves rewriting them in a convenient way. To that
end, let us introduce the vectors

𝛼 = (𝛼1, … , 𝛼𝑚) ,
y = (𝑦1, … , 𝑦𝑚) , (10.42)

and the vector-valued function f ∶ ℝ × ℝ𝑚 → ℝ𝑚 given by

f(𝑥, y) = (𝑓1(𝑥, 𝑦1, … , 𝑦𝑚), … , 𝑓𝑚(𝑥, 𝑦1, … , 𝑦𝑚)) . (10.43)

With these, the IVP Eq. 10.40 for the ODE system reads

y′(𝑥) = f(𝑥, y(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, y(𝑎) = 𝛼. (10.44)

Note the formal similarity with the analogue Eq. 10.4 for a single ODE! Our exact solution y is now
a function from [𝑎, 𝑏] to ℝ𝑚.

The idea in generalizing our approximation methods to systems of ODEs is based on this formal
similarity as well. For example, the difference equation for the “Euler method for ODE systems”
reads

w0 ∶= 𝛼,
w𝑖+1 ∶= w𝑖 + ℎ f(𝑥𝑖, w𝑖) (𝑖 = 0, … , 𝑁 − 1). (10.45)

The approximation values w𝑖 are now vectors in ℝ𝑚. The error estimates obtained in Section 10.2.2
carry over very directly to the case of ODE systems; more on this will follow in later sections.

10.2.4 Second-order ODEs

In applications, one often meets second-order ODEs. Initial value problems for them can be defined
as follows:

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦′(𝑎) = 𝛼′. (10.46)

Note that we need to specify an additional initial value 𝛼′ ∈ ℝ for the first derivative.

Fortunately, these can be rewritten into an equivalent system of first-order ODEs, so that they are —
for our purposes — not really different from what was discussed above. Namely, we substitute 𝑦 and
𝑦′ with the components of a 2-vector u: We set 𝑢1 = 𝑦, 𝑢2 = 𝑦′.
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More formally, this works as follows. Given a solution 𝑦(𝑥) of Eq. 10.46, we set

g(𝑥, u) ∶= (𝑢2, 𝑓(𝑥, 𝑢1, 𝑢2)). (10.47)

It is then easy to check that u(𝑥) is a solution of the IVP

u′ = g(𝑥, u), 𝑎 ≤ 𝑥 ≤ 𝑏, u(𝑎) = 𝛽. (10.48)

On the other hand, given a solution u(𝑥) of Eq. 10.48, we set 𝑦(𝑥) ∶= 𝑢1(𝑥), 𝛼 ∶= 𝛽1, 𝛼′ ∶= 𝛽2 and
obtain a solution of Eq. 10.46. In this sense, Eq. 10.46 and Eq. 10.48 are equivalent; and for the purpose
of developing numerical methods, it is sufficient if we consider the first-order system Eq. 10.48.

Example 10.3 (Example of a second-order ODE). Let us illustrate the substitution process in an
example. Consider the IVP for a second-order ODE,

𝑦″(𝑥) = 𝑦′(𝑥) cos(𝑥) + 2𝑦(𝑥), 0 ≤ 𝑥 ≤ 1,
𝑦(0) = 2, 𝑦′(0) = −3. (10.49)

So, 𝑓(𝑥, 𝑦, 𝑦′) = 𝑦′ cos(𝑥)+2𝑦 in the present case. Using the rules in Eq. 10.47, we obtain an equivalent
IVP for a system of two first-order equations:

u′(𝑥) = ( 𝑢2(𝑥)
𝑢2(𝑥) cos(𝑥) + 2𝑢1(𝑥)) , 0 ≤ 𝑥 ≤ 1, u(0) = ( 2

−3) . (10.50)

Once we have found an (approximate) solution for this system, we would set 𝑦(𝑥) ∶= 𝑢1(𝑥) and obtain
an (approximate) solution of Eq. 10.49.

With similar methods, one can rewrite third-order, fourth-order, etc. ODEs as systems of first-order
ODEs. Equally, systems of higher-order ODEs can be transformed into systems of first-order ODEs by
appropriate substitutions. For example, systems of second-order ODEs are very common in Newtonian
Mechanics: 𝑁 particles moving in three-dimensional space are modelled using a system of 3𝑁 coupled
second-order ODEs, which can be transformed into a system of 6𝑁 coupled first-order ODEs.

Thus, the most general case of IVP that we need to consider is given by Eq. 10.44. In the following,
we will formulate all our approximation methods for this case.

10.3 Fundamentals

We will now take a step back, and revisit the theory of initial value problems for ODEs and their
numerical treatment from a more general perspective. In doing so, we will always consider initial
value problems for systems of (first-order) ODEs, in the form Eq. 10.44. This means that we will
make extensive use of techniques from Vector Calculus.

10.3.1 Vectors and matrices

In order to describe numerical approximations of vectors, we will need a notion of distance between
two vectors. Throughout this part of the course, we do not use the Euclidean norm for this purpose,
but the maximum norm or ℓ∞ norm, which is given by

‖v‖∞ ∶= max
1≤𝑖≤𝑚

|𝑣𝑖|. (10.51)

From now on, we will just write ‖v‖ instead of ‖v‖∞.

We also need a corresponding norm for matrices A ∈ ℳ(𝑚, 𝑚).
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10.3.2 Calculus in several variables

We will also need to work with functions that depend on vectors, and with vector-valued functions.
For a review of the techniques of Calculus in several variables, see for example (Weir, Thomas, and
Hass 2010 Ch. 14) or (Stewart 1991 Ch. 15). We give a very brief review here, in our notation.

Let 𝑓 be a function from ℝ𝑚 to ℝ (a function of 𝑚 variables). Instead of derivatives of functions of a
single variable, one can consider partial derivatives of 𝑓 , denoted as

𝜕𝑓
𝜕𝑥𝑗

(x) = 𝑑
𝑑𝑡𝑓(𝑥1, … , 𝑥𝑗 + 𝑡, … , 𝑥𝑚)∣

𝑡=0
, (10.52)

and higher order partial derivatives accordingly. If f is a vector-valued function, that is, f ∶ ℝ𝑚 → ℝ𝑘,
then all partial derivatives are vector-valued as well (each component is differentiated). All first
derivatives of such a function can conveniently be combined into an 𝑘 × 𝑚 matrix,

𝜕f
𝜕x = ⎛⎜⎜

⎝

𝜕𝑓1
𝜕𝑥1

⋯ 𝜕𝑓1
𝜕𝑥𝑚

⋮ ⋮
𝜕𝑓(𝑘)

𝜕𝑥1
⋯ 𝜕𝑓(𝑘)

𝜕𝑥𝑚

⎞⎟⎟
⎠

(10.53)

The multi-dimensional chain rule can be expressed quite easily in this formalism: if f and g are vector-
valued mappings such that g ∘ f ∶ x ↦ g(f(x)) is defined (i.e. the range of f matches the domain of g)
then the derivative of g ∘ f is given by

𝜕(g ∘ f)
𝜕x = 𝜕g

𝜕y ⋅ 𝜕f
𝜕x . (10.54)

where ⋅ represents matrix multiplication. Higher-order derivatives can be treated in a similar, though
somewhat more complicated matrix formalism.

Also, a generalization of Taylor’s theorem holds for functions of several variables. This is summarized
in Appendix A.

10.3.3 ODEs

We now treat initial value problems for ODEs in our vector formalism. In a first reading, it is
always a useful exercise to reduce our statements to the case of one ODE (𝑚 = 1), in which case the
computations become more elementary. In this case, we can simply replace y with a scalar function 𝑦,
the initial value vector 𝛼 with a number 𝛼, the norm ‖ ⋅ ‖ with the absolute value | ⋅ |, and so forth.

Let us first define formally what we mean by a solution of an initial value problem.

Definition 10.1. Let 𝑚 ∈ ℕ, 𝑎 < 𝑏 ∈ ℝ, 𝛼 ∈ ℝ𝑚, and f ∶ [𝑎, 𝑏] × ℝ𝑚 → ℝ𝑚. We say that a function
y ∈ 𝒞1([𝑎, 𝑏], ℝ𝑚) is a solution of the initial value problem (IVP)

y′ = f(𝑥, y), 𝑎 ≤ 𝑥 ≤ 𝑏, y(𝑎) = 𝛼 (10.55)

if for all 𝑥 ∈ [𝑎, 𝑏],
y′(𝑥) = f(𝑥, y(𝑥)) and y(𝑎) = 𝛼. (10.56)

Our first question is when such an IVP has a unique solution (so that we can reasonably search for a
numerical approximation of it). The key condition involved here is the so-called Lipschitz condition.

Definition 10.2. We say that f ∶ [𝑎, 𝑏] × ℝ𝑚 → ℝ𝑚 satisfies a Lipschitz condition if there is a
constant 𝐿 > 0 such that for all 𝑥 ∈ [𝑎, 𝑏] and y, ŷ ∈ ℝ𝑚,

‖f(𝑥, y) − f(𝑥, ŷ)‖ ≤ 𝐿‖y − ŷ‖. (10.57)
The constant 𝐿 above is called a Lipschitz constant.
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The Lipschitz condition is in a sense an intermediate concept between continuity and differentiability.
Often, we can use a simple criterion to check it — in fact, we already have, in the definition of the
constant 𝐿 in the error analysis of Euler’s method in one variable.

Lemma 10.1. If 𝜕f/𝜕y exists and is bounded, then f satisfies a Lipschitz condition with Lipschitz
constant

𝐿 = sup{∥ 𝜕f
𝜕y(𝑥, y)∥ ∶ 𝑥 ∈ [𝑎, 𝑏], y ∈ ℝ𝑚} . (10.58)

Note here that 𝜕f/𝜕y is an 𝑚 × 𝑚 matrix! Again, you may first want to consider the case 𝑚 = 1.

Proof. Given 𝑥 ∈ [𝑎, 𝑏], y, ŷ ∈ ℝ𝑚, and 𝑗 ∈ {1, … , 𝑚}, consider the function 𝑔 ∶ [0, 1] → ℝ defined
by 𝑔(𝑡) = 𝑓𝑗((1 − 𝑡)ŷ + 𝑡y), so 𝑔(0) = ŷ and 𝑔(1) = y, and apply the scalar MVT to give y − ŷ =
𝑔(1) − 𝑔(0) = 𝑔′(𝑡0) for some 𝑡0 ∈ (0, 1); now, using the chain rule,

𝑔′(𝑡) = 𝜕𝑓𝑗
𝜕y (𝑥, (1 − 𝑡)ŷ + 𝑡y) ⋅ 𝑑

𝑑𝑡((1 − 𝑡)ŷ + 𝑡y)

= 𝜕𝑓𝑗
𝜕y (𝑥, (1 − 𝑡)ŷ + 𝑡y) ⋅ (y − ŷ).

(10.59)

Combining these gives us

𝑓𝑗(𝑥, y) − 𝑓𝑗(𝑥, ŷ) = 𝜕𝑓𝑗
𝜕y (𝑥, 𝜂) ⋅ (y − ŷ) (10.60)

where 𝜂 = (1 − 𝑡0)ŷ + 𝑡0y. Using the property of the vector norm of the scalar product (see Defini-
tion 4.1) we find

|𝑓𝑗(𝑥, y) − 𝑓𝑗(𝑥, ŷ)| ≤ ∥𝜕𝑓𝑗
𝜕y (𝑥, 𝜂)∥ ‖y − ŷ‖ ≤ 𝐿‖y − ŷ‖ (10.61)

with 𝐿 as in Eq. 10.58. Taking the maximum over 𝑗 implies the result. �

Why do we consider this kind of condition? Because the Lipschitz condition is the essential ingredient
for the well-definedness of the initial value problem. Namely, one has:

Theorem 10.1. Let f ∶ [𝑎, 𝑏] × ℝ𝑚 → ℝ𝑚 be continuous and satisfy a Lipschitz condition. Then, for
any 𝛼 ∈ ℝ𝑚, the initial value problem Eq. 10.55 has a unique solution y.

This theorem is given here without proof. (It is one of the central theorems in the theory of ordinary
differential equations. See (Burden and Faires 2010 Theorem 5.17) for references.)

The Lipschitz condition is not only relevant for the abstract existence of a solution. Recalling
Eqs. Eq. 10.30–Eq. 10.31, we see that it also enters our error estimates for numeric approximations.
We will analyse this in more detail later.

Let us discuss a few examples for 𝑚 = 1, on the interval [𝑎, 𝑏] = [0, 2].

Example 10.4 (Unique solution). Let us recall the example Eq. 10.12, with 𝑓(𝑥, 𝑦) = 𝑦−𝑥2 +1. This
function is certainly continuous in both variables, and differentiable in 𝑦. We have 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 = 1;
in particular, the derivative is bounded. By Lemma 10.1, we have a Lipschitz constant 𝐿 = 1 and
thus, by Theorem 10.1, a unique solution of the IVP. In fact, for the initial condition 𝑦(0) = 1/2, the
solution is given in Eq. 10.13.

Example 10.5 (No solution). Consider 𝑓(𝑥, 𝑦) = 𝑦2 + 1. Again, the function is continuous and
differentiable. However, 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 = 2𝑦 is unbounded, so Lemma 10.1 cannot be applied. Actually,
we can explicitly see that 𝑓 does not satisfy a Lipschitz condition. Namely, if it did, then the quotient

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, ̂𝑦)|
|𝑦 − ̂𝑦| (for 𝑥 ∈ [0, 2], 𝑦 ≠ ̂𝑦 ∈ ℝ) (10.62)
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would be bounded (by the Lipschitz constant 𝐿). However, in our case, set ̂𝑦 = 0; then

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, ̂𝑦)|
|𝑦 − ̂𝑦| = |𝑦2 + 1 − 1|

|𝑦| = |𝑦| (10.63)

which is not bounded. So 𝑓 cannot satisfy a Lipschitz condition.

Hence, for the corresponding initial value problem,

𝑦′ = 𝑦2 + 1, 0 ≤ 𝑥 ≤ 2, 𝑦(0) = 0, (10.64)

the existence and uniqueness result Theorem 10.1 does not apply. In fact, a solution for small 𝑥 is
given by

𝑦(𝑥) = tan(𝑥), (10.65)

but this solution does not exist for all 𝑥 ∈ [0, 2].
The problem here is that 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 is unbounded as 𝑦 grows large. One can still control IVPs of
this kind, using so-called local Lipschitz conditions, where the estimate Eq. 10.57 is required to hold
only for (𝑥, y), (𝑥, ŷ) ∈ 𝒟 with 𝒟 any fixed compact set, and the Lipschitz constant 𝐿 is allowed
to depend on 𝒟. Our numerical methods will still be applicable in this case, as long as we do not
approach the possible singularities of the solution too closely. However, the formalism becomes much
more complicated, and we do not treat these cases explicitly here.

Example 10.6 (Non-unique solution). Consider 𝑓(𝑥, 𝑦) = 3
√𝑦. While 𝑓 is continuous, the partial

derivative 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 does not exist at 𝑦 = 0, so again, Lemma 10.1 cannot be applied. Indeed, set
̂𝑦 = 0, then

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, ̂𝑦)|
|𝑦 − ̂𝑦| = |𝑦|1/3

|𝑦| = |𝑦|−2/3 (10.66)

which is unbounded near 𝑦 = 0. So 𝑓 does not satisfy a Lipschitz condition, and we are not guaranteed
a unique solution of the IVP

𝑦′ = 3√𝑦, 0 ≤ 𝑥 ≤ 2, 𝑦(0) = 0. (10.67)

In fact, this IVP has at least three solutions:

𝑦(𝑥) = (2𝑥
3 )

3/2
, 𝑦(𝑥) = −(2𝑥

3 )
3/2

, 𝑦(𝑥) = 0. (10.68)

This case is, in a sense, worse than the other examples above. Running our numerical methods for
the IVP Eq. 10.67 is likely to give unpredictable results; even a small rounding error might cause us
to “switch” between the different solutions of the IVP.

10.4 One-Step Difference Methods

We now return to the initial value problem Eq. 10.55:

y′(𝑥) = f(𝑥, y(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, y(𝑎) = 𝛼. (10.69)

As in Euler’s method, we use equally-spaced mesh points 𝑥0, … , 𝑥𝑁 in the interval [𝑎, 𝑏], with a uniform
step size ℎ = (𝑏 − 𝑎)/𝑁 , so 𝑥𝑖 = 𝑎 + 𝑖ℎ, and we seek approximate values w𝑖 ∈ ℝ𝑚, with w𝑖 ≈ y(𝑥𝑖).
Euler’s method was based on the Taylor expansion

𝑦(𝑥 + ℎ)⏟
exact

= 𝑦(𝑥) + ℎ𝑦′(𝑥)⏟⏟⏟⏟⏟
approx

+ ℎ2

2 𝑦″(𝜉)⏟
error

. (10.70)
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Any other formula of this type can be used to define a similar method and, if the error term is smaller
than the one in Euler’s method, should lead to smaller errors in the approximate solution. In complete
generality, and for vectors instead of scalars, we consider a formula

y(𝑥 + ℎ) = y(𝑥) + ℎ𝜙(𝑥, y(𝑥), ℎ) + error (10.71)

All the higher-order Taylor approximations fit in to this framework, as do the important Runge-Kutta
methods described below. This leads to the general single-step method

w0 ∶= �,
w𝑖+1 ∶= w𝑖 + ℎ𝜙(𝑥𝑖, w𝑖, ℎ). (10.72)

Introducing some notation for the error, we write

y(𝑥𝑖+1) = y(𝑥𝑖) + ℎ𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) + ℎ𝜏 𝑖+1(ℎ) (10.73)

where 𝜏 𝑖+1(ℎ), the local truncation error, is defined by

𝜏 𝑖+1(ℎ) = 1
ℎ [y(𝑥𝑖+1) − y(𝑥𝑖) − ℎ𝜙(𝑥𝑖, y(𝑥𝑖), ℎ)] (10.74)

In terms of the numerical method, this is the error that would occur at step 𝑖 + 1 if we started on the
exact solution curve, divided by the step size. We assume we have an upper bound 𝜏(ℎ) such that,
for some ℎ0 > 0,

‖𝜏 𝑖(ℎ)‖ ≤ 𝜏(ℎ) (10.75)

for all 𝑖 ∈ {0, … , 𝑁} and all ℎ ∈ (0, ℎ0]. For the method to be useful, we must have 𝜏(ℎ) → 0 as
ℎ → 0+; in Euler’s method, 𝜏(ℎ) = 𝑀ℎ/2 but in other methods 𝜏(ℎ) is much smaller than this:
typically 𝜏(ℎ) = 𝑂(ℎ𝑛) as ℎ → 0+ for some 𝑛 > 1. We also assume the existence of a Lipschitz
constant 𝐿 such that

‖𝜙(𝑥, y, ℎ) − 𝜙(𝑥, ŷ, ℎ)| ≤ 𝐿‖y − ŷ‖ (10.76)

for all 𝑥 ∈ [𝑎, 𝑏], for all y, ŷ ∈ ℝ𝑚 and all ℎ ∈ (0, ℎ0] (this replaces the second use of Taylor’s Theorem
in the analysis of Euler’s method; looking back at that calculation, the Lipschitz constant is all that
was needed). We conclude the setup by defining the actual error at step 𝑖 by

𝜀𝑖 = y(𝑥𝑖) − w𝑖. (10.77)

Under these hypotheses, we have:

Theorem 10.2. Consider an initial value problem as in Eq. 10.55, which we assume to have a solution
y. For this IVP, consider the one-step difference method described by Eq. 10.72. Then,

‖y(𝑥𝑖) − w𝑖‖ ≤ 𝜏(ℎ)
𝐿 (𝑒𝐿(𝑥𝑖−𝑎) − 1) for all ℎ ∈ (0, ℎ0], 𝑖 ∈ {0, … , 𝑁}. (10.78)

Proof. We establish this in much the same way as we did the corresponding result for Euler’s method.
Starting with the Taylor-like formula for y(𝑥𝑖+1) in terms of y(𝑥𝑖), 𝜙 and 𝜏 𝑖+1, we have:

y(𝑥𝑖+1) = y(𝑥𝑖 + ℎ)
= y(𝑥𝑖) + ℎ𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) + ℎ𝜏 𝑖+1(ℎ)
= 𝜀𝑖 + w𝑖 + ℎ𝜙(𝑥𝑖, w𝑖, ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟

=w𝑖+1

+ℎ[𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)] + ℎ𝜏 𝑖+1(ℎ)

= 𝜀𝑖 + w𝑖+1 + ℎ[𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)] + ℎ𝜏 𝑖+1(ℎ)

(10.79)

so, subtracting w𝑖+1 from both sides,

𝜀𝑖+1 = 𝜀𝑖 + ℎ[𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)] + ℎ𝜏 𝑖+1(ℎ) (10.80)
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Exactly as for Euler’s method, we estimate using the triangle inequality

‖𝜀𝑖+1‖ ≤ ‖𝜀𝑖‖ + ℎ‖𝜙(𝑥𝑖, y(𝑥𝑖), ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)‖ + ‖𝜏 𝑖+1(ℎ)‖
≤ (1 + ℎ𝐿)‖𝜀𝑖‖ + ℎ𝜏(ℎ) (10.81)

using the Lipschitz hypothesis on 𝜙 and the upper bound 𝜏 for the local truncation errors. This is
exactly the same formula as for Euler, so we can read off the same answer:

‖𝜀𝑛‖ ≤ 𝜏(ℎ)
𝐿 (𝑒𝐿(𝑥𝑛−𝑎) − 1) ≤ 𝜏(ℎ)

𝐿 (𝑒𝐿(𝑏−𝑎) − 1) (10.82)

The main conclusion is that if we leave the integration width fixed and decrease the step size, then
the error at each point is bounded above by a fixed multiple of 𝜏(ℎ): local error determines global
error.

Thus, also in the general case, if the local truncation order is of order 𝑂(ℎ𝑛), then the the global
error is of the same order. In the following, we will see a variety of one-step methods which aim at
achieving a low local truncation error. We will then only need to prove an estimate for 𝜏𝑖 as defined
in Eq. 10.74, and the behaviour of the global error with ℎ will be under control.

10.5 Taylor Methods

We will now see the first example of one-step difference methods (beyond Euler’s method), namely
the so-called Taylor Methods.

The idea here is as follows. In Euler’s Method, we approximated the exact solution 𝑦(𝑥) with a
linear function, as in Eq. 10.23. In other words, we used a first-order Taylor expansion. For a better
approximation, we can use an 𝑛-th order Taylor expansion, now for a vector-valued y(𝑥):

y(𝑥𝑖+1) = y(𝑥𝑖 + ℎ) = y(𝑥𝑖) + ℎ𝑑y
𝑑𝑥(𝑥𝑖) + ℎ2

2
𝑑2y
𝑑𝑥2 (𝑥𝑖) + ⋯

+ ℎ𝑛

𝑛!
𝑑𝑛y
𝑑𝑥𝑛 (𝑥𝑖) + R𝑖,

(10.83)

where, according to Theorem A.3, the remainder term R𝑖 is bounded by

‖R𝑖‖ ≤ ℎ𝑛+1

(𝑛 + 1)! sup
𝑥∈[𝑥𝑖,𝑥𝑖+1]

∥𝑑𝑛+1y
𝑑𝑥𝑛+1 (𝑥)∥ . (10.84)

Following our approach in the Euler method, we now need to replace the unknown exact solution y(𝑥)
in the right-hand side of Eq. 10.83 with expressions in the function f. Since y(𝑥) solves the ODE, we
can certainly write

dy
d𝑥 (𝑥) = f(𝑥, y(𝑥)), (10.85)

To obtain the second derivative, we need to differentiate this, which requires the use of the chain rule
At this point, we need to use the chain rule in several variables: Even if 𝑚 = 1, the function 𝑓 depends
on two variables, 𝑥 and 𝑦. One of the functions we need to consider (the outermost function) is the
mapping from ℝ𝑚+1 to ℝ𝑚

(𝑥, 𝑦1, … , 𝑦𝑚) ↦ f(𝑥, y) (10.86)

The derivative of this is the 𝑚 × (𝑚 + 1) matrix given by

[𝜕f(𝑥, y)
𝜕𝑥 , 𝜕f(𝑥, y)

𝜕y ] , (10.87)
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which represents the 𝑚×1 column vector 𝜕f(𝑥, y)/𝜕𝑥 being concatenated horizontally with the 𝑚×𝑚
matrix 𝜕f(𝑥, y)/𝜕y. The other function we need to consider (the innermost function) is the mapping
from ℝ to ℝ𝑚+1

𝑥 ↦ [𝑥, y(𝑥)] ∶= (𝑥, 𝑦1(𝑥), … , 𝑦𝑚(𝑥)) (10.88)
whose derivative is the 𝑚 + 1 dimensional column vector

[ 1
y′(𝑥)] = [ 1

f(𝑥, y(𝑥))] (10.89)

where we have substituted for y′(𝑥) using the differential equation. Here we have stacked the scalar
1 on top of the 𝑚-dimensional column vector y′(𝑥) = f(𝑥, y(𝑥)).
Now, the derivative of the RHS of Eq. 10.85 is the product of the 𝑚 × (𝑚 + 1) matrix Eq. 10.87 and
the 𝑚 + 1 dimensional vector Eq. 10.89. This product has the general form

[𝐴, 𝐵] ⋅ [𝐶
𝐷] = 𝐴 ⋅ 𝐶 + 𝐵 ⋅ 𝐷 (10.90)

(which works for any block matrices, provided all the sizes are compatible, i.e. provided 𝐴 ⋅ 𝐶 + 𝐵 ⋅ 𝐷
makes sense). We need to substitute

𝐴 = 𝜕f(𝑥, y)
𝜕𝑥 ; 𝐵 = 𝜕f(𝑥, y)

𝜕y ; 𝐶 = 1; 𝐷 = f(𝑥, y(𝑥)) (10.91)

which gives us

𝑑2y
𝑑𝑥2 (𝑥) = 𝜕f

𝜕𝑥(𝑥, y(𝑥)) + 𝜕f
𝜕y ⋅ f(𝑥, y(𝑥))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶ df

d𝑥 (𝑥,y(𝑥))

. (10.92)

We call the right-hand side the total derivative of f.

For higher derivatives, we can apply an analogous argument: We define recursively,
d0f(𝑥, y)

d𝑥0 ∶= f(𝑥, y),
d𝑗+1f(𝑥, y)

d𝑥𝑗+1 ∶= 𝜕
𝜕𝑥

d𝑗f(𝑥, y)
d𝑥𝑗 + ( 𝜕

𝜕y
d𝑗f(𝑥, y)

d𝑥𝑗 ) ⋅ f(𝑥, y).
(10.93)

Then we know that, when evaluated on the exact solution, we have

d𝑗f
d𝑥𝑗 (𝑥, y(𝑥)) = d𝑗+1y

d𝑥𝑗+1 (𝑥, y). (10.94)

Hence, Eq. 10.83 rewrites to

y(𝑥𝑖+1) = y(𝑥𝑖) + ℎ𝑓(𝑥𝑖, y(𝑥𝑖)) + ℎ2

2
𝑑f
𝑑𝑥(𝑥𝑖, y(𝑥𝑖)) + ⋯ + ℎ𝑛

𝑛!
𝑑𝑛−1f
𝑑𝑥𝑛−1 (𝑥𝑖, y(𝑥𝑖))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶h𝜙(𝑥,y(𝑥𝑖),ℎ)=∶hT𝑛(𝑥,y(𝑥𝑖),ℎ)

+R𝑖. (10.95)

This motivates us to define the Taylor method of order 𝑛 by the difference equation

w0 ∶= 𝛼,

w𝑖+1 ∶= w𝑖 + ℎf(𝑥𝑖, w𝑖) + ℎ2

2
df
d𝑥 (𝑥𝑖, w𝑖) + … + ℎ𝑛

𝑛!
d𝑛−1f
d𝑥𝑛−1 (𝑥𝑖, w𝑖)

= w𝑖 + ℎT𝑛(𝑥𝑖, w𝑖, ℎ),

(10.96)

where

T𝑛(𝑥, y, ℎ) ∶=
𝑛−1
∑
𝑗=0

ℎ𝑗

(𝑗 + 1)!
d𝑗f
d𝑥𝑗 (𝑥, y). (10.97)

We have thus defined a one-step difference method with function 𝜙 = T𝑛. According to Theorem 10.2,
its global error is determined by its local truncation error, and by a Lipschitz constant for T𝑛 (which
we do not consider in detail here).
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Theorem 10.3. The local truncation error of the Taylor method of order 𝑛 satisfies the bound

‖𝜏 𝑖(ℎ)‖ ≤ ℎ𝑛

(𝑛 + 1)! sup
𝑥∈[𝑎,𝑏]

∥d
𝑛+1y

d𝑥𝑛+1 (𝑥)∥ =∶ 𝜏(ℎ), (10.98)

supposing that the exact solution y(𝑥) has (𝑛 + 1) continuous derivatives.

Proof. By definition of the local truncation error in Eq. 10.74 and using Eq. 10.97, we have

‖𝜏 𝑖+1(ℎ)‖ = 1
ℎ∥y(𝑥𝑖+1) − y(𝑥𝑖) − ℎ T𝑛(𝑥𝑖, y(𝑥𝑖), ℎ)∥

= 1
ℎ∥y(𝑥𝑖+1) − y(𝑥𝑖) −

𝑛−1
∑
𝑗=0

ℎ𝑗+1

(𝑗 + 1)!
d𝑗f
d𝑥𝑗 (𝑥𝑖, y(𝑥𝑖))∥.

(10.99)

However, comparing with Eq. 10.95, this means

‖𝜏 𝑖+1(ℎ)‖ = 1
ℎ‖R𝑖‖, (10.100)

and the proposed statement now follows from Eq. 10.84. �

So, for any 𝑛, we get an approximation method of order 𝑂(ℎ𝑛). The Taylor method of order 1 coincides
with Euler’s method. Thus, as a side result, we have proved that Euler’s method converges in the case
of ODE systems.

Example 10.7. Let us once again consider the example IVP 1 from Eq. 10.12,

𝑦′(𝑥) = 𝑦(𝑥) − 𝑥2 + 1, 0 ≤ 𝑥 ≤ 1, 𝑦(0) = 1
2. (10.101)

Thus 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 + 1. To set up the Taylor methods, say of order up to 4, we need to compute
the first 3 total derivatives of 𝑓 . In our example, this yields:

d𝑓(𝑥, 𝑦)
d𝑥 = 𝜕𝑓(𝑥, 𝑦)

𝜕𝑥 + 𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 𝑓(𝑥, 𝑦)

= (−2𝑥) + 1 ⋅ (𝑦 − 𝑥2 + 1) = 𝑦 − 𝑥2 − 2𝑥 + 1;
d2𝑓(𝑥, 𝑦)

d𝑥2 = 𝜕
𝜕𝑥

d𝑓(𝑥, 𝑦)
d𝑥 + 𝜕

𝜕𝑦
d𝑓(𝑥, 𝑦)

d𝑥 𝑓(𝑥, 𝑦)

= (−2𝑥 − 2) + 1 ⋅ (𝑦 − 𝑥2 + 1) = 𝑦 − 𝑥2 − 2𝑥 − 1;
d3𝑓(𝑥, 𝑦)

d𝑥3 = 𝜕
𝜕𝑥

d2𝑓(𝑥, 𝑦)
d𝑥2 + 𝜕

𝜕𝑦
d2(𝑥, 𝑦)𝑓

d𝑥2 𝑓(𝑥, 𝑦)

= (−2𝑥 − 2) + 1 ⋅ (𝑦 − 𝑥2 + 1) = 𝑦 − 𝑥2 − 2𝑥 − 1.

(10.102)

In this simple example, we can now see that all higher-order total derivatives are equal to d2𝑓(𝑥, 𝑦)/d𝑥2;
this will not normally be true.

Our second-order Taylor function 𝑇2 is then

𝑇2(𝑥, 𝑦, ℎ) = 𝑓(𝑥, 𝑦) + ℎ
2
d𝑓(𝑥, 𝑦)

d𝑥
= (𝑦 − 𝑥2 + 1) + ℎ

2 (𝑦 − 𝑥2 − 2𝑥 + 1)

= (1 + ℎ
2 )(𝑦 − 𝑥2 + 1) − ℎ𝑥.

(10.103)

1The same example is considered in (Burden and Faires 2010, sec. 5.3).
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The second-order Taylor method therefore reads,

𝑤0 ∶=1
2,

𝑤𝑖+1 ∶=𝑤𝑖 + ℎ𝑇2(𝑥𝑖, 𝑤𝑖, ℎ)

=𝑤𝑖 + (ℎ + ℎ2

2 )(𝑤𝑖 − 𝑥2
𝑖 + 1) − ℎ2𝑥𝑖.

(10.104)

Analogously, one finds after a bit of computation that

𝑇4(𝑥, 𝑦, ℎ) = 𝑓(𝑥, 𝑦) + ℎ
2
d𝑓(𝑥, 𝑦)

d𝑥 + ℎ2

6
d2𝑓(𝑥, 𝑦)

d𝑥2 + ℎ3

24
d3𝑓(𝑥, 𝑦)

d𝑥3

= (1 + ℎ
2 + ℎ2

6 + ℎ3

24)(𝑦 − 𝑥2)

+ (1 + ℎ
3 + ℎ2

12)ℎ𝑥

+ (1 + ℎ
2 − ℎ2

6 − ℎ3

24).

(10.105)

10.5.1 Advantages and disadvantages

We have seen that the error of the order 𝑛 Taylor method is 𝑂(ℎ𝑛). This is much improved over the
𝑂(ℎ1) of Euler’s method. Thus, in most situations, Taylor methods will give a much more accurate
result.

However, the error estimate depends on the supremum of the (𝑛+1)-th derivative of the exact solution,
and on the Lipschitz constant for 𝑇𝑛. We do not know a priori that these are small. Usually, this does
not pose a problem in practice; we will however see some counterexamples in Section 10.9.

Taylor methods can be constructed for any order 𝑛, in a straightforward and unique way, by computing
derivatives of the function 𝑓 .
Still, Taylor methods are not so frequently used in practice. The main reason for this is that they
require us to compute the total derivatives of the function 𝑓 explicitly. In practice, this is too cumber-
some to be done by hand. It can be achieved with symbolic differentiation algorithms, using computer
algebra packages such as Maple. However, one would like to avoid this extra complexity. Also, it may
not always be feasible to compute the derivatives explicitly: Suppose that, in a computer program, the
function 𝑓 is given as a “black box” procedure that computes (or rather approximates) the function
values 𝑓(𝑥, 𝑦) numerically; how would we gain access to the derivatives of 𝑓?

10.6 Runge-Kutta Methods

Runge-Kutta methods are another example of one-step difference methods; they are very relevant in
practice. They arise as modifications of the Taylor methods discussed in the previous section. Their
main advantage is that they do not require us to compute derivatives of the function 𝑓 explicitly.

10.6.1 Motivation: The Modified Euler Method

The idea of Runge-Kutta methods is to avoid computing the total derivatives 𝑑𝑛𝑓/𝑑𝑥𝑛. Rather, these
are replaced with finite difference quotients.

Recall that, if 𝑔 is a twice differentiable function, then we can use Taylor’s Theorem to write

𝑔(𝑥 + ℎ) = 𝑔(𝑥) + ℎ𝑔′(𝑥) + 𝑂(ℎ2) (10.106)
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and rearrange to give
𝑔′(𝑥) = 𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ + 𝑂(ℎ). (10.107)

The fraction on the r.h.s. is called a finite difference quotient. We also remark that, by the MVT (or
Taylor’s Theorem)

𝑔(𝑥 + ℎ) = 𝑔(𝑥) + 𝑂(ℎ). (10.108)

We can replace ℎ by 𝑂(ℎ𝑘) here to give

𝑔(𝑥 + 𝑂(ℎ𝑘)) = 𝑔(𝑥) + 𝑂(𝑂(ℎ𝑘)) = 𝑔(𝑥) + 𝑂(ℎ𝑘). (10.109)

We start with the Taylor method of order two, here for 𝑚 = 1, given by the function

𝑇2(𝑥, 𝑦, ℎ) = 𝑓(𝑥, 𝑦) + ℎ
2
d𝑓
d𝑥 (𝑥, 𝑦). (10.110)

We use a difference quotient to approximate the total derivative, evaluated on the exact solution
𝑦(𝑥):

d𝑓
d𝑥 (𝑥, 𝑦(𝑥)) = 𝑓(𝑥 + ℎ, 𝑦(𝑥 + ℎ)) − 𝑓(𝑥, 𝑦(𝑥))

ℎ + 𝑂(ℎ). (10.111)

Inside this expression, for the term 𝑦(𝑥 + ℎ), we use a Taylor approximation:

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) + 𝑂(ℎ2) = 𝑦(𝑥) + ℎ𝑓(𝑥, 𝑦(𝑥)) + 𝑂(ℎ2). (10.112)

Using Eq. 10.109 we obtain

d𝑓
d𝑥 (𝑥, 𝑦(𝑥)) = 1

ℎ(𝑓(𝑥 + ℎ, 𝑦(𝑥) + ℎ𝑓(𝑥, 𝑦(𝑥))) − 𝑓(𝑥, 𝑦(𝑥))) + 𝑂(ℎ). (10.113)

Inserting into Eq. 10.110, we have

𝑇2(𝑥, 𝑦(𝑥), ℎ) = 1
2𝑓(𝑥, 𝑦(𝑥)) + 1

2𝑓(𝑥 + ℎ, 𝑦(𝑥) + ℎ𝑓(𝑥, 𝑦(𝑥))) + 𝑂(ℎ2). (10.114)

Thus, if instead of the function 𝑇2, we use the function

𝜙(𝑥, 𝑦, ℎ) = 1
2𝑓(𝑥, 𝑦) + 1

2𝑓(𝑥 + ℎ, 𝑦 + ℎ𝑓(𝑥, 𝑦)) (10.115)

for our one-step method, we will incur an additional local truncation error of order 𝑂(ℎ2). However,
this is not “much worse” than the Taylor method, which already has an error of order 𝑂(ℎ2).
The one-step difference method corresponding to 𝜙 is called the Modified Euler method. Its difference
equation, 𝑤𝑖+1 ∶= 𝑤𝑖 + ℎ𝜙(𝑥𝑖, 𝑤𝑖, ℎ), can be rewritten in the following cleaned-up form:

𝑤0 ∶= 𝛼,
𝑘𝑖,1 ∶= ℎ𝑓(𝑥𝑖, 𝑤𝑖),
𝑘𝑖,2 ∶= ℎ𝑓(𝑥𝑖 + ℎ, 𝑤𝑖 + 𝑘𝑖,1),

𝑤𝑖+1 ∶= 𝑤𝑖 + 1
2𝑘𝑖,1 + 1

2𝑘𝑖,2.

(10.116)

This shows in particular that only two evaluations of 𝑓 are needed in each step of the method. That
is important to know, since the evaluation of 𝑓 is usually the time-consuming part when the method
is implemented on a computer.

We have seen now, roughly, that the Modified Euler method works, and is of order 𝑂(ℎ2). A more
complete proof will follow below. Let us first have a look at other methods of the same kind.
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10.6.2 General Runge-Kutta methods

A general Runge-Kutta method is defined by a Butcher tableau:

𝑎1
𝑎2 𝑏21
𝑎3 𝑏31 𝑏32
⋮ ⋮ ⋱

𝑎𝑠 𝑏𝑠1 𝑏𝑠2 … 𝑏𝑠,𝑠−1
𝑐1 𝑐2 … 𝑐𝑠−1 𝑐𝑠

(10.117)

where 𝑎𝑖, 𝑏𝑖𝑗, 𝑐𝑖 are real numbers. The tableau is a shorthand notation for the associated difference
equation of a one-step method:

w0 ∶= 𝛼;
k1 ∶= ℎf(𝑥𝑖 + 𝑎1ℎ, w𝑖 + 0),
k2 ∶= ℎf(𝑥𝑖 + 𝑎2ℎ, w𝑖 + 𝑏21k1),
k3 ∶= ℎf(𝑥𝑖 + 𝑎3ℎ, w𝑖 + 𝑏31k1 + 𝑏32k2),

⋮

k𝑠 ∶= ℎf(𝑥𝑖 + 𝑎𝑠ℎ, w𝑖 +
𝑠−1
∑
𝑗=1

𝑏𝑠𝑗k𝑗);

w𝑖+1 ∶= w𝑖 +
𝑠

∑
𝑗=1

𝑐𝑗k𝑗

(10.118)

(The k𝑗 depend in addition on the step 𝑖, but they are regarded as “intermediate results”, and we do
not denote this dependence explicitly.) Our Modified Euler method is an example of such a scheme,
namely with the tableau

0
1 1

1
2

1
2

(10.119)

We do not discuss here in general how these tableaux are obtained, or how to prove in general of what
order their local truncation error is. However, here are some more examples.

The Midpoint method is another method of order 𝑂(ℎ2). It is given by the tableau

0
1
2

1
2
0 1

(10.120)

and its difference equation can be written explicitly as

w0 ∶= 𝛼, w𝑖+1 = w𝑖 + ℎ f(𝑥𝑖 + ℎ
2 , w𝑖 + ℎ

2 f(𝑥𝑖, w𝑖)). (10.121)

There are more methods of order 𝑂(ℎ2); for example, Heun’s method: 2

0
2
3

2
31
4

3
4

(10.122)

The explicit form of the difference equation is

w0 ∶= 𝛼, w𝑖+1 = w𝑖 + ℎ
4 (f(𝑥𝑖, w𝑖) + 3f(𝑥𝑖 + 2

3ℎ, w𝑖 + 2
3ℎ f(𝑥𝑖, w𝑖))). (10.123)

2The names of methods may vary in the literature; it is best to compare the tableaux when reading different sources!
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Finally, let us mention the “classical” Runge-Kutta method 3 of order 𝑂(ℎ4). This method is widely
used in practice. Its Butcher tableau is

0
1
2

1
21

2 0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

(10.124)

and it is not very useful to write its difference equation in one line! (In general, when used in
programming, working with the intermediate results k𝑖 is a good way of organizing the code.)

10.6.3 Local truncation error for second-order methods

The general idea of proving a rigorous error estimate for a Runge-Kutta method is comparing it to the
Taylor method of order 𝑛, with 𝑛 appropriately chosen. Given the function 𝜙RK(𝑥, 𝑦, ℎ) that defines
the method (as a one-step difference method), one would try to prove that

||�RK(𝑥, y(𝑥), ℎ) − T𝑛(𝑥, y(𝑥), ℎ)|| ≤ 𝑐ℎ𝑛 (10.125)

with a constant 𝑐 > 0. This proof will usually involve a Taylor expansion of the function f within 𝜙RK,
and the constant 𝑐 will depend on estimates for the function f and its derivatives. Once Eq. 10.125 is
known, it follows from the definition of the local truncation error Eq. 10.74 and the triangle inequality
that

𝜏RK(ℎ) ≤ 𝜏Taylor-𝑛(ℎ) + 𝑐 ℎ𝑛. (10.126)

With the estimate for 𝜏Taylor-𝑛(ℎ) (the truncation error of the 𝑛-th order Taylor method) known from
Theorem 10.3 this yields

𝜏RK(ℎ) ≤ 𝑐′ ℎ𝑛. (10.127)

with another constant 𝑐′ > 0. Theorem 10.2 then tells us that the global error of the Runge-Kutta
method is of order 𝑂(ℎ𝑛).
However, for most higher-order methods, such as the classical Runge-Kutta method Eq. 10.124 of
order 𝑂(ℎ4), the proof of Eq. 10.125 is rather tedious, since the computation becomes quite lengthy.

Here, we will give the proof only for 𝑂(ℎ2) methods with a Butcher tableau of the form

0
𝑐 𝑐

(1−𝑑) 𝑑
(10.128)

where 𝑐, 𝑑 ∈ (0, 1], 𝑐𝑑 = 1
2 . This includes the Modified Euler method (𝑐 = 1, 𝑑 = 1/2), the Midpoint

method (𝑐 = 1/2, 𝑑 = 1), and Heun’s method (𝑐 = 2/3, 𝑑 = 3/4).

Theorem 10.4. Consider a Runge-Kutta method of the form Eq. 10.128. Suppose that the function
f and all its derivatives up to order 2 are bounded. 4 Then, there exists a constant 𝐶 such that the
local truncation error is bounded by

‖𝜏 𝑖(ℎ)‖ ≤ 𝐶ℎ2. (10.129)

3If you hear someone speaking of “the Runge-Kutta method”, they are probably referring to this 𝑂(ℎ4) method.
4This is not necessarily a realistic assumption - but one that simplifies the proof. One can do a similar argument using

local bounds on f and its derivatives in a suitable neighbourhood of the exact solution; however, this introduces
formal complications which we want to avoid here.
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Proof. As explained above, we need to prove Eq. 10.125 in our case. The function 𝜙 is here given by

𝜙(𝑥, y, ℎ) = (1 − 𝑑) f(𝑥, y) + 𝑑 f(𝑥 + 𝑐ℎ, y + 𝑐ℎf(𝑥, y))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶k

, (10.130)

and we need to compare it to the Taylor method of order 2, given by

T2(𝑥, 𝑦, ℎ) = f(𝑥, y) + ℎ
2
df
d𝑥 (𝑥, y). (10.131)

We first take the term k from Eq. 10.130, and use a first-order Taylor expansion of the function f
around the point (𝑥, y), in the form of Theorem A.5. This gives

k = f(𝑥, y) + 𝜕f(𝑥, y)
𝜕(𝑥, 𝑦(1), … , 𝑦(𝑚)) ⋅

⎛⎜⎜⎜⎜
⎝

𝑐ℎ
𝑐ℎ 𝑓 (1)(𝑥, y)

⋮
𝑐ℎ 𝑓 (𝑚)(𝑥, y)

⎞⎟⎟⎟⎟
⎠

+ R

= f(𝑥, y) + 𝑐ℎ 𝜕f
𝜕𝑥 + 𝑐ℎ 𝜕f

𝜕y ⋅ f(𝑥, y) + R

= f(𝑥, y) + 𝑐ℎ 𝑑f
𝑑𝑥(𝑥, y) + R.

(10.132)

We assume that all second partial derivatives of f (by 𝑥 or 𝑦𝑗) are bounded by a constant 𝑀 . According
to Theorem A.5, the Taylor remainder term R is then bounded by

‖R‖ ≤ 1
2(𝑐ℎ)2‖(1, 𝑓1, … , 𝑓𝑚)‖2 ⋅ (𝑚 + 1)2𝑀. (10.133)

After possibly modifying the constant 𝑀 , we can assume that ‖𝑓𝑗‖ ≤ 𝑀 as well, and that 𝑀 ≥ 1.
This gives

‖R‖ ≤ (𝑚 + 1)2𝑀3𝑐2

2 ℎ2. (10.134)

Inserting Eq. 10.132 into Eq. 10.130 yields

𝜙(𝑥, y, ℎ) = (1 − 𝑑)f(𝑥, y) + 𝑑k

= f(𝑥, y) + 𝑐𝑑ℎ df
d𝑥 (𝑥, 𝑦) + 𝑑R

= T2(𝑥, 𝑦, ℎ) + 𝑑R,

(10.135)

since 𝑐𝑑 = 1/2. Consequently,

‖𝜙(𝑥, y, ℎ) − T2(𝑥, y, ℎ)‖ ≤ (𝑚 + 1)2𝑀3𝑐
4 ℎ2, (10.136)

which completes the proof. �

10.6.4 Advantages and disadvantages

Runge-Kutta methods are very widely used in practice. While they are slightly less accurate than
Taylor methods, they can be chosen of the same order 𝑂(ℎ𝑛), and in this sense they are “as good”
as Taylor methods. However, they have the advantage that it is not necessary to compute the total
derivatives of f explicitly. They are rather straightforward to implement on a computer, given the
Butcher tableau of a method. Particularly, the “classical” Runge-Kutta method is a good choice where
one needs an algorithm of reasonable accuracy which is easy to implement.

However, the error bounds of Runge-Kutta methods are sensitive to the higher-order derivatives of f.
(They share this problem with Taylor methods.) In some cases, to be discussed in Section 10.9, this
leads to problems.
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10.7 Error Control, Runge-Kutta-Fehlberg Method

10.7.1 Error control

We have so far discussed how the approximation error changes with the step size ℎ, but we have not
really explained how to choose ℎ in practice.

In principle, given an IVP, one might first try to prove rigorous error estimates, like in the example
in Section 10.2, but with ℎ left open. Then one can choose ℎ according to the maximum error one
wants to allow. However, these estimates are very hard (if not impossible) to compute in realistic
examples.

Instead, one would like to have an approximation algorithm that automatically computes an estimate
for the error, at least roughly, and that chooses the step size ℎ accordingly. This technique is known
as error control.

The idea is roughly as follows. Let us use two approximation methods, with approximation values w𝑖
and w̃𝑖. Suppose that w̃𝑖 is much more exact than w𝑖, i.e., that the absolute error of w̃𝑖 is much
smaller than that of w𝑖. (For example, the second approximation method might be of higher order in
ℎ.) Then we have

‖y(𝑥𝑖) − w𝑖‖ ≤ ‖y(𝑥𝑖) − w̃𝑖‖⏟⏟⏟⏟⏟
negligible

+‖w̃𝑖 − w𝑖‖ ≈ ‖w̃𝑖 − w𝑖‖. (10.137)

However, the right-hand side can be computed without knowing the exact solution y(𝑥).
To make this more concrete, let us say that w𝑖 and w̃𝑖 are computed by two one-step difference
methods, with defining functions 𝜙 and 𝜙̃, respectively. Let us assume that 𝜙 yields a local truncation
error ‖𝜏 𝑖(ℎ)‖ of order 𝑂(ℎ𝑛), while the local truncation error ‖ ̃𝜏 𝑖(ℎ)‖ of 𝜙̃ is of order 𝑂(ℎ𝑛+1).
Further, we fix 𝑖 and suppose that y(𝑥𝑖) = w𝑖 = w̃𝑖, that is, we start form an exact value in the
previous step. 5 For given step size ℎ, we want to estimate the local truncation error ‖𝜏 𝑖+1(ℎ)‖ of the
first method, supposing that ̃𝜏 𝑖+1 is negligible compared with it.

‖𝜏 𝑖+1(ℎ)‖ = 1
ℎ‖y(𝑥𝑖+1) − y(𝑥𝑖) − ℎ𝜙(𝑥𝑖, w𝑖, ℎ)‖

= 1
ℎ‖(y(𝑥𝑖+1) − y(𝑥𝑖) − ℎ𝜙̃(𝑥𝑖, w𝑖, ℎ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∼ ℎ‖ ̃𝜏𝑖+1‖, negligible

+ℎ𝜙̃(𝑥𝑖, w𝑖, ℎ) − ℎ𝜙(𝑥𝑖, w𝑖, ℎ)‖

≈ ‖𝜙̃(𝑥𝑖, w𝑖, ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)‖.

(10.138)

Thus we can determine the local truncation error approximately by evaluating the functions 𝜙 and
𝜙̃.
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2
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(10.139)

However, what we actually want is to choose the step size ℎ so that ‖𝜏 𝑖+1(ℎ)‖ ≤ 𝑇 with some given
“tolerance” value 𝑇 . To that end, let us assume that ‖𝜏 𝑖+1(ℎ)‖ is not only of order 𝑂(ℎ𝑛), but in fact
(roughly) proportional to ℎ𝑛:

‖𝜏 𝑖+1(ℎ)‖ ≈ 𝐾 ℎ𝑛 for some 𝐾 > 0. (10.140)

5We will not deal with any “global” error behaviour here.
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We proceed as follows. We start with some fixed step size ℎ and compute the related function values:

|𝜏 𝑖+1(ℎ)| ≈ 𝐾 ℎ𝑛 ≈ ‖𝜙̃(𝑥𝑖, w𝑖, ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)‖. (10.141)

Now we want to adjust ℎ by a factor 𝑞 > 0, such that ‖𝜏 𝑖+1(𝑞ℎ)‖ ≈ 𝑇 . By our assumption Eq. 10.140,

‖𝜏 𝑖+1(𝑞ℎ)‖ ≈ 𝐾 (𝑞ℎ)𝑛 ≈ 𝑇 . (10.142)

Dividing Eq. 10.142 by Eq. 10.141 yields

𝑞𝑛 ≈ 𝑇
‖𝜙̃(𝑥𝑖, w𝑖, ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)‖

, (10.143)

thus we should choose

𝑞 = ( 𝑇
‖𝜙̃(𝑥𝑖, w𝑖, ℎ) − 𝜙(𝑥𝑖, w𝑖, ℎ)‖

)
1/𝑛

= ( ℎ𝑇
‖w̃𝑖+1 − w𝑖+1‖)

1/𝑛
, (10.144)

where it is understood that w𝑖+1, w̃𝑖+1 are computed with 𝜙, 𝜙̃ using the step size ℎ.

10.7.2 The Runge-Kutta-Fehlberg method

A popular implementation of the above principle is the Runge-Kutta-Fehlberg method. It uses an
order-4 Runge-Kutta method for 𝜙 and an order-5 Runge-Kutta method for 𝜙̃. The Butcher tableaux
for both methods is ?@eq-butcherrkf.
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The special feature of this algorithm is that the two approximation methods share most parts of their
coefficient schemes; more precisely, the auxiliary values k1, … , k6 are the same in both approximation
methods. Only the “final lines” in the Butcher tableaux are different: for computing w𝑖+1, one uses the
line marked (a), while for w̃𝑖+1, the line marked (b) is used. This arrangement makes the algorithm
rather efficient: the function f needs to be evaluated only 6 times per step. Compare this with the
4 function evaluations needed for the classical Runge-Kutta method of order 4 without error control.
The additional overhead caused by the error control method is noticeable, but not too large.

Algorithm 10.1 shows the Runge-Kutta-Fehlberg method in pseudocode. It works roughly by the
principles discussed above, but with some modification in detail. In lines 4–8, the next approximation
value w𝑖+1 is computed; however, this happens only if the estimate for the local truncation error,
computed according to Eq. 10.138, is below the specified tolerance 𝑇 . Then, in lines 9–22, the step size
ℎ for the next step is computed. In slight deviation from Eq. 10.144, one chooses a more conservative
factor,

𝑞 = ( ℎ𝑇
2‖w̃𝑖+1 − w𝑖+1‖)

1/4
(10.145)

(note 𝑛 = 4). Also, the factor 𝑞 is limited to the interval [0.1, 4] (lines 10–16), in order to avoid possible
instabilities by rapid changes in the step size. Further, the step size is never increased beyond a given
value ℎmax (line 17); and if it decreases below a minimum step size ℎmin, we terminate with an error
message (line 21) – otherwise we might run into problems with limited floating point precision. Some
extra handling is needed for the last step of the approximation, in order to ensure that we end up
exactly at the right-hand boundary of the interval [𝑎, 𝑏] (line 19).
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Algorithm 10.1 The Runge-Kutta-Fehlberg method
1: function RungeKuttaFehlberg(𝑎, 𝑏, 𝛼, 𝑇 , ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥)
2: → tolerance 𝑇 ; minimal/maximal step size ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥
3: 𝑥 ∶= 𝑎, 𝑤 ∶= 𝛼, ℎ ∶= ℎ𝑚𝑎𝑥
4: repeat
5: Compute 𝑘1, … , 𝑘6 from Butcher tableau with step size ℎ
6: 𝑅 ∶= ℎ−1‖∑6

𝑗=1(𝑐𝑗 − ̃𝑐𝑗)𝑘𝑗‖ → Estimate local truncation error
7: if 𝑅 ≤ 𝑇 then
8: 𝑥 ∶= 𝑥 + ℎ, 𝑤 ∶= 𝑤 + ∑5

𝑗=1 𝑐𝑗𝑘𝑗 → accept approximation
9: end if

10: → Now choose the new step size
11: 𝑞 ∶= (𝑇 /2𝑅)1/4 → factor to multiply ℎ with
12: if 𝑞 ≤ 0.1 then
13: ℎ ∶= 0.1ℎ → do not decrease too much
14: else if 𝑞 ≥ 4 then
15: ℎ ∶= 4ℎ → do not increase too much
16: else
17: ℎ ∶= ℎ ⋅ 𝑞
18: end if
19: if ℎ ≥ ℎ𝑚𝑎𝑥 then
20: ℎ ∶= ℎ𝑚𝑎𝑥 → do not exceed max step size
21: end if
22: if 𝑥 + ℎ > 𝑏 then
23: ℎ ∶= 𝑏 − 𝑥 → next step would exceed interval
24: else if ℎ < ℎ𝑚𝑖𝑛 then
25: Error: minimum step size exceeded
26: end if
27: until 𝑥 ≥ 𝑏
28: return 𝑤
29: end function

10.8 Multi-Step Methods

N.B.: This section is intended as a brief overview, and its material is not examinable. More information
can be found, e.g., in (Burden and Faires 2010, sec. 5.6).

Multi-step methods are an altervative way of approximating the solution of the initial value problem

y′ = f(𝑥, y), 𝑎 ≤ 𝑥 ≤ 𝑏, y(𝑎) = 𝛼. (10.146)

Again, they are generalizations of Euler’s method, and we use the same division of [𝑎, 𝑏] into equally
spaced mesh points 𝑥0, … , 𝑥𝑛. But rather than using several evaluations of the function f in each
approximation step, like Runge-Kutta methods do, we make use of the values of f that have already
been computed at previous mesh points.

A general 𝑘-step multi-step method is given by a difference equation

w0 ∶= �,
w1 ∶= 𝛼1, … , w𝑘−1 ∶= 𝛼𝑘−1,

w𝑖+1 ∶= 𝛼𝑘−1w𝑖 + 𝛼𝑘−2w𝑖−1 + ⋯ + 𝛼0w𝑖−𝑘+1

+ ℎ (𝑏𝑘f(𝑥𝑖+1, w𝑖+1) + 𝑏𝑘−1f(𝑥𝑖, w𝑖) + ⋯ + 𝑏0f(𝑥𝑖−𝑘+1, w𝑖−𝑘+1)) .

(10.147)

Here 𝑎0 … 𝑎𝑘−1, 𝑏0 … 𝑏𝑘 ∈ ℝ are constants that define the method. 𝛼1 … 𝛼𝑘−1 ∈ ℝ𝑚 are certain starting
values that are needed for the difference equation to work; we will discuss later how to obtain them.
If 𝑏𝑘 = 0, the method is called explicit; otherwise, it is called implicit. In the latter case, w𝑖+1 appears
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on both sides of the difference equation, and is hence defined only implicitly; we will discuss later how
such methods can be used.

Like for one-step methods, one defines the local truncation error of the multistep method Eq. 10.147
by

�𝑖+1 ∶= 1
ℎ [y(𝑥𝑖+1) −

𝑘−1
∑
𝑗=0

𝑎𝑘−1−𝑗y(𝑥𝑖−𝑗) − ℎ
𝑘

∑
𝑗=0

𝑏𝑘−𝑗f(𝑥𝑖+1−𝑗, y(𝑥𝑖−𝑗+1))] . (10.148)

Again, the local truncation error determines the global error, i.e., an analogue of Theorem 10.2 for
multi-step methods holds. However, we do not discuss this here.

Examples of 𝑘-step multistep methods are the so-called Adams-Bashforth and Adams-Moulton meth-
ods. They are derived from rewriting the differential equation as an integral equation,

y′ = f(𝑥, y(𝑥)) ⇔ y(𝑥𝑖+1) = y(𝑥𝑖) + ∫
𝑥𝑖+1

𝑥𝑖

f(𝑥, y(𝑥)) 𝑑𝑥, (10.149)

and then approximating the components ̂𝑓𝑗 on the right hand side with Lagrange interpolating poly-
nomials. The integral can be done explicitly, and one obtains the difference equation of a multi-step
method; see (Burden and Faires 2010, sec. 5.6) for details. The number 𝑘 of steps depends on the
number of interpolation points chosen. Adams-Bashforth methods (?@tbl-abmethod) are 𝑘-step
explicit methods of error order 𝑂(ℎ𝑘) and Adams-Moulton methods (?@tbl-ammethod) are 𝑘-step
implicit methods of error order 𝑂(ℎ𝑘+1),
Notation: f𝑗 ∶= f(𝑥𝑗, w𝑗).
As with Taylor and Runge-Kutta methods, the estimates for the local truncation error depend on
higher-order total derivatives of f.

In order to apply these multi-step methods in examples, we need additional start values w1 =
𝛼1, … , w𝑘−1 = 𝛼𝑘−1. These are normally obtained by using one-step methods of the same error order.
For example, for the four-step Adams-Bashforth method, one might use the classical Runge-Kutta
method of order 𝑂(ℎ4).
Notation: f𝑗 ∶= f(𝑥𝑗, w𝑗).

10.8.1 Predictor-corrector methods

Implicit multi-step methods, like the Adams-Moulton methods shown in ?@tbl-ammethod, involve
the term f(𝑥𝑖+1, w𝑖+1) on the right-hand side of the difference equation. This means that w𝑖+1 is
defined only implicitly; it is unclear at first how these methods should be used in practice.

One option would be to solve the difference equation for w𝑖+1, either symbolically (for simple cases
of f) or numerically. This is useful only in very specific cases; we will come back to this approach in
Section 10.9.

The other, and indeed frequently used, option is to combine them with explicit multi-step methods
into so-called predictor-corrector methods. These work as follows.

Suppose that w0, … , w𝑖 are already known. These are inserted into the difference equation of an
explicit method, the (predictor), which gives an approximation value w(𝑝)

𝑖+1. This value is then inserted
into the r.h.s. of the difference equation of an implicit method, the corrector, in order to obtain w𝑖+1.

To illustrate this, let us consider a frequently used case: the Adams-Bashforth 4-step method as the
predictor, combined with the Adams-Moulton 3-step method as the corrector. In each step of the
method, we compute the “predicted value” by the explicit method,

w(𝑝)
𝑖+1 = w𝑖 + ℎ

24(55f𝑖 − 59f𝑖−1 + 37f𝑖−2 − 9f𝑖−3), (10.150)
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and afterwards the “corrected value” using the implicit method:

w𝑖+1 = w𝑖 + ℎ
24(9f(𝑥𝑖+1, w(𝑝)

𝑖+1) + 19f𝑖 − 5f𝑖−1 + f𝑖−2). (10.151)

Here f𝑗 ∶= f(𝑥𝑗, w𝑗). Both the predictor and the corrector are of order 𝑂(ℎ4), and so is the entire
method, as it turns out. However, the combined predictor-corrector method is more precise than each
of the parts alone.

Algorithm 10.2 Adams fourth-order predictor-corrector
1: function AdamsPredictorCorrector(𝑎, 𝑏, 𝛼, 𝑁)
2: → endpoints 𝑎 ≤ 𝑏; initial condition 𝛼; number of steps 𝑁
3: ℎ ∶= (𝑏 − 𝑎)/𝑁 , 𝑥0 ∶= 𝑎, 𝑤0 ∶= 𝛼, 𝑓0 ∶= 𝑓(𝑥0, 𝑤0).
4: for 𝑖 = 1, 2, 3 do → prepare first steps
5: Compute 𝑤𝑖 using Runge-Kutta fourth order
6: 𝑥𝑖 ∶= 𝑥𝑖−1 + ℎ; 𝑓 𝑖 ∶= 𝑓(𝑥𝑖, 𝑤𝑖)
7: end for
8: for 𝑖 = 4, … , 𝑁 do → main approximation
9: 𝑥 ∶= 𝑎 + 𝑖ℎ

10: 𝑤 ∶= 𝑤3 + ℎ
24(55𝑓3 − 59𝑓2 + 37𝑓1 − 9𝑓0) → predict

11: 𝑤 ∶= 𝑤3 + ℎ
24(9𝑓(𝑥, 𝑤) + 19𝑓3 − 5𝑓2 + 𝑓1) → correct

12: for j = 0,1,2 do
13: 𝑥𝑗 ∶= 𝑥𝑗+1; 𝑤𝑗 ∶= 𝑤𝑗+1; 𝑓𝑗 ∶= 𝑓𝑗+1;
14: end for
15: 𝑥3 ∶= 𝑥; 𝑤3 ∶= 𝑤; 𝑓3 ∶= 𝑓(𝑥, 𝑤);
16: end for
17:
18: return 𝑤
19: end function

Algorithm 10.2 shows this predictor-corrector method in pseudocode. Lines 3–6 use the classical Runge-
Kutta method to set up the required initial values, while lines 7–15 implement the actual multistep
method. The scheme is quite efficient, since in each step of the method, only two evaluations of the
function f are used: in line 10 and in line 14 of the algorithm. All other values f𝑗 are already known
from the previous steps.

10.8.2 Advantages and disadvantages

Multistep methods, in particular Adams-Bashforth and Adams-Moulton methods, can be formulated
for any error order 𝑂(ℎ𝑛). However, independent of 𝑛, they involve only one evaluation of f per step
(or two for predictor-corrector methods). Compare this with Runge-Kutta methods, where the number
of evaluations needed in each step grows approximately like 𝑛. Therefore, in particular at high orders,
multistep methods tend to be faster than Runge-Kutta methods.

We can naturally combine an explicit and an implicit method of same error order into a predictor-
corrector method, which further improves precision. (It should be noted that a similar approach is
possible with implicit Runge-Kutta methods, which we have not discussed here.)

However, multistep methods have the disadvantage that they are more difficult to implement. In
particular, an additional one-step method is needed in order to compute the extra start values needed
for the method.

Like for Taylor and Runge-Kutta methods, the error estimates for Adams-Bashforth and Adams-
Moulton methods depends on higher-order derivatives of f, which are not always small. We will
discuss this in Section 10.9.

Similar to the Runge-Kutta-Fehlberg algorithm described in Section 10.7, we can modify Adams
predictor-corrector methods so that they include an automatic choice of the step size. The difference
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between predicted and corrected value gives a natural indication of the local truncation error. However,
the implementation of such a method is not really straightforward, and we do not discuss it in detail
here; see for example (Burden and Faires 2010, sec. 5.7). One of the difficulties is that, each time
when we change the step size ℎ, also the initial values 𝛼𝑗 need to be computed again. This can make
changing the step size rather costly. It is also possible to generalize multistep methods so that they
work with variable order. Again, we do not discuss that here.

10.9 Stiff equations

In this section, we will discuss a certain class of initial value problems, called stiff equations, which
give rise to particular problems when applying numerical methods to them.

Let us consider the following IVP as an example:

𝑦′(𝑥) = −20𝑦(𝑥) + 10 cos(2𝑥), 0 ≤ 𝑥 ≤ 3, 𝑦(0) = 1. (10.152)

This IVP has the exact solution

𝑦(𝑥) = 50
101 cos(2𝑥) + 5

101 sin(2𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
steady-state solution

+ 51
101 exp(−20𝑥)⏟⏟⏟⏟⏟⏟⏟
transient solution

. (10.153)

Note here that one part of the solution, the transient solution, decays very rapidly as 𝑥 grows. For
large 𝑥, only the remainder - the steady-state solution - contributes to 𝑦(𝑥).
When applying our approximation methods developed so far to this IVP, one notices the following
behaviour: Below a certain “critical step size”, our methods give a reasonable approximation of the
exact solution, as expected. However, above this step size, the approximation is completely unreliable,
and usually grows very rapidly – although the exact solution is bounded by 1. This applies to all
methods developed so far, and going to higher-order methods – such as classical Runge-Kutta – does
not help.

The reason for this becomes apparent when computing the derivatives of the transient solution:

d𝑛

d𝑥𝑛 exp(−20𝑥) = (−20)𝑛 exp(−20𝑥). (10.154)

This expression can be very large, in particular for high 𝑛. Since our error bounds all depended on
the supremum of higher-order derivatives of 𝑦(𝑥), this explains the large approximation error.

ODEs that show this behaviour are called stiff equations. An exact definition of this term is hard
to give. Roughly speaking, their crucial property is that they have a transient part of the solution,
which decays very rapidly. Looking at the ODE Eq. 10.152 directly, this might be seen from the large
negative factor in front of 𝑦. Of course, in realistic examples, the exact solution of the problem will not
be known, the ODE may look more complicated, and one will need to deal with a system of equations
rather than with a single equation, so that it is much harder to deduce the “stiff” behaviour from the
ODE directly. In applications, it is often apparent from the context whether a problem is stiff or not.
Stiff equations take their name from problems in mechanics: a system with “stiff” springs, i.e., with
large spring constants and/or strong friction, is typically described by a stiff ODE.

10.9.1 The test equation

In order to understand the problem better, and to decide which numerical methods best to apply, we
need a simple but comprehensive test case for our numerical methods. To that end, we apply our
methods to the test equation

𝑦′(𝑥) = 𝜆𝑦(𝑥), 0 ≤ 𝑥, 𝑦(0) = 1, (10.155)
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where 𝜆 ∈ ℂ is a constant, with Re𝜆 < 0. The exact solution is

𝑦(𝑥) = exp(𝜆𝑥). (10.156)

This solution has only a transient part, which makes it ideal for our purposes.

(We are now dealing with an ODE for a complex-valued function 𝑦. This does not really need a
generalization of our previous methods: We can always split 𝑦 into a two-vector (Re 𝑦, Im 𝑦), and thus
rewrite our equations as a system of two first-order ODEs with real values. However, the complex-
valued notation is convenient here. The nonzero imaginary part of 𝜆 allows us to include oscillatory
solutions as well, with almost no added effort.)

Let us apply the Euler method to the test equation. The difference equation gives

𝑤𝑖+1 = 𝑤𝑖 + ℎ 𝑓(𝑥𝑖, 𝑤𝑖) = 𝑤𝑖 + 𝜆ℎ𝑤𝑖 = (1 + 𝜆ℎ)𝑤𝑖. (10.157)

With 𝑤0 = 1, it is then clear that for all 𝑖 ∈ ℕ,

𝑤𝑖 = (1 + 𝜆ℎ)𝑖. (10.158)

Thus, if |1 + 𝜆ℎ| > 1, the approximation grows exponentially for large 𝑖, and is therefore “grossly
wrong” as the exact solution vanishes for large 𝑥. If |1 + 𝜆ℎ| < 1, then 𝑤𝑖 → 0, which at least roughly
resembles the behaviour of the exact solution.

For our other (explicit) approximation methods, one finds in generalization of Eq. 10.158,

𝑤𝑖 = (𝑄(𝜆ℎ))𝑖 (10.159)

with some function 𝑄 (for explicit methods, 𝑄 is in fact a polynomial). The approximation values
grow or decay if |𝑄(𝜆ℎ)| > 1 or |𝑄(𝜆ℎ)| < 1, respectively.
This motivates us to define the region of stability of an approximation method:

ℛ ∶= {𝜇 ∈ ℂ ∣ |𝑄(𝜇)| < 1}. (10.160)

In order for the approximation to be “reasonable”, i.e. to ensure 𝑤𝑖 → 0 as 𝑖 → ∞, we then need to
choose our step size ℎ so that ℎ𝜆 ∈ ℛ.

Specifically for Euler’s method, we have 𝑄(𝜇) = 1 + 𝜇, and ℛ is a disc with center −1 and radius 1.
For higher-order Taylor methods, the regions of stability can be computed similarly; they are shown
in Figure 10.2. For all examples of Runge-Kutta methods discussed in Section 10.6, the region agrees
with that of the Taylor method of the same order. 6

However, from this picture, it appears that all of our methods are vulnerable to the problems posed by
stiff equations, as suggested also by the example above. For having a stable method for a large range
of step sizes, we need to look at a different approach. It turns out that certain implicit multi-step
methods provide an advantage here.

Let us, in particular, consider the Implicit Trapezoidal method, which is given by the difference equa-
tion

w0 ∶= 𝛼,

w𝑖+1 = w𝑖 + ℎ
2 (f(𝑥𝑖+1, w𝑖+1) + f(𝑥𝑖, w𝑖)).

(10.161)

Applying it to the test equation Eq. 10.155, we obtain

𝑤𝑖+1 = 𝑤𝑖 + ℎ
2 (𝜆𝑤𝑖+1 + 𝜆𝑤𝑖) = (1 + 𝜆ℎ

2 )𝑤𝑖 + 𝜆ℎ
2 𝑤𝑖+1. (10.162)

We can solve this for 𝑤𝑖+1:
𝑤𝑖+1 = 2 + 𝜆ℎ

2 − 𝜆ℎ𝑤𝑖. (10.163)

6This is true for all of our examples, but not for all Runge-Kutta methods in general.
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Figure 10.2: Region of stability for Taylor methods

97



Thus, the result is again of the form Eq. 10.159, with

𝑄(𝜇) = 2 + 𝜇
2 − 𝜇. (10.164)

Since
|𝑄(𝜇)| < 1 ⇔ |2 + 𝜇|2 < |2 − 𝜇|2

⇔ 4 + 4Re𝜇 + |𝜇|2 < 4 − 4Re𝜇 + |𝜇|2 ⇔ Re𝜇 < 0, (10.165)

the region of stability ℛ is just the left half plane. This is the maximum we could hope for: the
implicit trapezoidal method gives reasonable results on stiff problems for all step sizes.

Methods of this kind, i.e., whose region of stability ℛ contains the entire left half plane, are called
absolutely stable or A-stable.

One can apply the above stability analysis to other implicit methods as well, with some added com-
plication – namely, when solving the difference equation as in Eq. 10.163, we may in general find
several solutions. Figure 10.3 show the resulting regions of stability in some examples. Not all im-
plicit methods are A-stable. In fact, there are no A-stable multistep methods of order 𝑂(ℎ3) or above.
Sometimes, one uses a class of implicit multistep methods known as backward differentiation methods
(BDM), which exist for arbitrary error order and come at least close to A-stability; we do not discuss
them here.

Figure 10.3: Region of stability for Adams-Bashforth and Adams-Moulton methods, AB4: Adams-
Bashforth 4-step; AM3/AM4: Adams-Moulton 3-step/4-step; ABM43: Adams-Bashforth-
Moulton predictor-corrector, 4/3-step. Graphics taken from

10.9.2 Implementing the Implicit Trapezoidal Method

Our analysis so far suggests that we should use the Implicit Trapezoidal method for the numerical
treatment of stiff ODEs. However, since the difference equation of the method defines 𝑤𝑖+1 only
implicitly, this poses conceptual problems.
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In the extremely simple case of the test equation Eq. 10.155, we were able to solve the difference
equation explicitly for 𝑤𝑖+1; see Eq. 10.163. We can generalize this to the case of a linear ODE:

𝑦′(𝑥) = ℓ(𝑥)𝑦(𝑥) + 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼. (10.166)

Here ℓ, 𝑔 are continuous functions from [𝑎, 𝑏] to ℝ. In this case, the difference equation Eq. 10.161 of
the implicit trapezoidal method reads,

𝑤𝑖+1 = 𝑤𝑖 + ℎ
2 (ℓ(𝑥𝑖+1)𝑤𝑖+1 + 𝑔(𝑥𝑖+1) + ℓ(𝑥𝑖)𝑤𝑖 + 𝑔(𝑥𝑖)). (10.167)

Much like in Eq. 10.163, this can be solved for 𝑤𝑖+1:

𝑤𝑖+1(1 − ℎ
2 ℓ(𝑥𝑖+1)) = (1 + ℎ

2 ℓ(𝑥𝑖)) + ℎ
2 𝑔(𝑥𝑖+1) + ℎ

2 𝑔(𝑥𝑖)

⇒ 𝑤𝑖+1 = 2 + ℎℓ(𝑥𝑖)
2 − ℎℓ(𝑥𝑖+1)𝑤𝑖 + ℎ𝑔(𝑥𝑖+1) + 𝑔(𝑥𝑖)

2 − ℎℓ(𝑥𝑖+1) .
(10.168)

Thus, for linear ODEs as in Eq. 10.166, the implicit trapezoidal method can be applied with an explicit
difference equation.

For a nonlinear ODE, it will generally not be possible to solve the difference equation symbolically.
However, we can try to solve it numerically. As an approach for numerically solving nonlinear equa-
tions, we shall use Newton Iteration.

As a reminder: 7 Let 𝐹 ∶ ℝ → ℝ be twice differentiable; suppose we are looking for a solution 𝑥 of the
equation

𝐹(𝑥) = 0. (10.169)

This solution is found with Newton’s method as follows. Starting with 𝑥0 sufficiently close to a solution,
one recursively defines the sequence

𝑥𝑘 ∶= 𝑥𝑘−1 − 𝐹(𝑥𝑘−1)
𝐹 ′(𝑥𝑘−1) . (10.170)

Then 𝑥𝑘 → 𝑥∞ with 𝐹(𝑥∞) = 0.
When implementing this on a computer, one cannot pass to the limit 𝑘 → ∞, but needs to stop
the iteration when a sufficient precision is reached. In practice, one usually takes the magnitude
of the difference term on the r.h.s. of Eq. 10.170 as an indicator: The iteration is stopped when
|𝐹 (𝑥𝑘−1)/𝐹 ′(𝑥𝑘−1)| < 𝑇 , where 𝑇 > 0 is the desired tolerance level.

In our situation of the implicit trapezoidal method, we need to solve the equation

𝑤𝑖+1 = 𝑤𝑖 + ℎ
2 (𝑓(𝑥𝑖, 𝑤𝑖) + 𝑓(𝑥𝑖+1, 𝑤𝑖+1)). (10.171)

for 𝑤𝑖+1, where 𝑥𝑖, 𝑥𝑖+1, 𝑤𝑖 are given numbers. In other words, we are looking for zeros of the
function

𝐹(𝑤̂) = 𝑤̂ − 𝑤𝑖 − ℎ
2 (𝑓(𝑥𝑖, 𝑤𝑖) + 𝑓(𝑥𝑖+1, 𝑤̂)). (10.172)

Following Eq. 10.170, the following sequence should converge to the solution 𝑤𝑖+1:

𝑤̂0 ∶= 𝑤𝑖,

𝑤̂𝑘 ∶= 𝑤̂𝑘−1 − 𝑤̂𝑘−1 − 𝑤𝑖 − ℎ
2 (𝑓(𝑥𝑖, 𝑤𝑖) + 𝑓(𝑥𝑖+1, 𝑤̂𝑘))

1 − ℎ
2

𝜕𝑓
𝜕𝑦 (𝑥𝑖+1, 𝑤̂𝑘−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝑣

. (10.173)

We would run this iteration until |𝑣| < 𝑇 .
7For more details on Newton’s method for solving (single) nonlinear equations, see Section 3.5, or (Burden and Faires

2010, sec. 2.3).
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Both in the case of linear and nonlinear equations, we have so far discussed a single ODE only. For
applications in practice, we would need to generalize the methods to systems of ODEs. This is indeed
possible, but requires a bit of thought.

In the linear case Eq. 10.166, one would consider a matrix-valued function ℓ and a vector-valued 𝑔. The
difference equation can then still be solved symbolically, like in Eq. 10.168; however, the division by the
factor (2−ℎℓ(𝑥𝑖+1)) needs to be replaced by a multiplication with an inverse matrix, or equivalently, by
solving a system of linear equations. Likewise, in the nonlinear case, we can handle ODE systems but
would need the multi-dimensional version of Newton’s method (or, in other words, Newton’s method
for systems of nonlinear equations). We shall not discuss the details of this generalization here.
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11 Boundary Value Problems

11.1 Fundamentals

In this last part of the course, we will consider boundary problems (BVPs) for ODEs, specifically
second-order ODEs. Here, in contrast to initial value problems, one does not specify the value of the
function 𝑦 and its derivative at the left-hand side of the interval in question. Rather, one fixes the
value of 𝑦(𝑥) at both the left- and the right-hand side. The BVP we will consider throughout is

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽, (11.1)

where 𝑓 ∶ [𝑎, 𝑏] × ℝ2 → ℝ and 𝛼, 𝛽 ∈ ℝ.
Boundary value problems for first-order ODEs are not meaningful, so we need to consider at least
ODEs of second order. One can as well formulate BVPs for higher-order ODEs, for systems of ODEs,
or by specifying the derivative 𝑦′ at the boundary rather than the function 𝑦 itself. We will however
not treat these cases here.

Our first question is whether a unique solution of Eq. 11.1 exists, before approximating it numerically.
This question turns out to be more delicate than with IVPs. We first consider a few examples.

Example 11.1. Let us consider the very simple BVP

𝑦″ = 𝑦, 0 ≤ 𝑥 ≤ 1, 𝑦(0) = 𝑦(1) = 1. (11.2)

The ODE 𝑦″ = 𝑦 itself (disregarding the boundary conditions for a moment) clearly has the two
solutions 𝑦(𝑥) = 𝑒𝑥 and 𝑦(𝑥) = 𝑒−𝑥. From the theory of linear ODEs, one knows then that the general
solution of the ODE is

𝑦(𝑥) = 𝑐𝑒𝑥 + 𝑑𝑒−𝑥, 𝑐, 𝑑 ∈ ℝ. (11.3)

That is, every solution of 𝑦″ = 𝑦 has this form. Now inserting the boundary conditions, we have

1 = 𝑐𝑒0 + 𝑑𝑒0 = 𝑐 + 𝑑 ⇔ 𝑑 = 1 − 𝑐, (11.4)

and
1 = 𝑐𝑒1 + 𝑑𝑒−1 = 𝑐𝑒 + 𝑑

𝑒 ⇔ 1 = 𝑐𝑒 + 1 − 𝑐
𝑒 = 𝑐 (𝑒 − 1

𝑒) + 1
𝑒 . (11.5)

From Eq. 11.5, we find that the boundary conditions are satisfied if and only if

1 − 1
𝑒 = 𝑐 (𝑒 − 1

𝑒) ⇔ 𝑐 = 𝑒 − 1
𝑒2 − 1 = 1

𝑒 + 1, (11.6)

of which we compute 𝑑 = 1 − 𝑐 = 𝑒
𝑒+1 . That means, the function

𝑦(𝑥) = 𝑒𝑥

𝑒 + 1 + 𝑒1−𝑥

𝑒 + 1 (11.7)

is a solution of the BVP Eq. 11.2, and by our computation, it is the only solution of the BVP. In short,
Eq. 11.2 has a unique solution.
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Example 11.2. Now let us consider a slightly modified BVP,

𝑦″ = −𝑦, 0 ≤ 𝑥 ≤ 2𝜋, 𝑦(0) = 𝑦(2𝜋) = 1. (11.8)

Again, from the theory of linear ODEs, one knows that the general solution of the ODE (disregarding
the boundary conditions) is

𝑦(𝑥) = 𝑐 cos(𝑥) + 𝑑 sin(𝑥), 𝑐, 𝑑 ∈ ℝ. (11.9)

The boundary conditions demand that

1 = 𝑦(0) = 𝑐 cos(0) + 𝑑 sin(0) = 𝑐 ⇔ 𝑐 = 1, (11.10)

and likewise
1 = 𝑦(2𝜋) = 𝑐 ⇔ 𝑐 = 1. (11.11)

However, the choice of 𝑑 does not affect the boundary conditions! In fact, any function of the form

𝑦(𝑥) = cos(𝑥) + 𝑑 sin(𝑥), 𝑑 ∈ ℝ (11.12)

solves the BVP Eq. 11.8. This BVP has many solutions.

Example 11.3. Finally, consider another slight modification of our example:

𝑦″ = −𝑦, 0 ≤ 𝑥 ≤ 2𝜋, 𝑦(0) = 0, 𝑦(2𝜋) = 1. (11.13)

Again, the general solution of the ODE is given by Eq. 11.9. However, now our boundary conditions
demand that

0 = 𝑦(0) = 𝑐, and 1 = 𝑦(2𝜋) = 𝑐, (11.14)

which gives us a contradiction. In other words, the BVP Eq. 11.13 has no solution.

11.1.1 A criterion

We need a criterion that guarantees that a BVP has a unique solution. As is clear from the above
examples, the Lipschitz condition which we previously considered does not suffice. The following
theorem (Burden and Faires 2010 Theorem 11.1), which we quote here without proof, gives a sufficient
(not a necessary) criterion.

Theorem 11.1. Suppose that 𝑓 ∶ [𝑎, 𝑏] × ℝ2 → ℝ is continuous, that the partial derivatives1

𝜕𝑓(𝑥, 𝑦, 𝑦′)/𝜕𝑦 and 𝜕𝑓(𝑥, 𝑦, 𝑦′)/𝜕𝑦′ exist and are continuous, and that*

1. 𝜕𝑓
𝜕𝑦 (𝑥, 𝑦, 𝑦′) > 0 for all 𝑥 ∈ [𝑎, 𝑏], 𝑦, 𝑦′ ∈ ℝ,

2. ∣ 𝜕𝑓
𝜕𝑦′ (𝑥, 𝑦, 𝑦′)∣ ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏], 𝑦, 𝑦′ ∈ ℝ,

with a constant 𝑀 > 0. Then, the boundary value problem

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽 (11.15)

has a unique solution for any 𝛼, 𝛽 ∈ ℝ.

Briefly speaking, in order to obtain a unique solution, it suffices that 𝜕𝑓/𝜕𝑦 is positive and 𝜕𝑓/𝜕𝑦′ is
bounded. The former condition was violated in our examples Eq. 11.8 and Eq. 11.13.

1To explain the notation: These are the partial derivatives of 𝑓 by its second and third argument, respectively.
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11.1.2 Linear ODEs

We will often consider the simplified, but still very relevant, case of boundary value problems for linear
ODEs. By this, we mean a BVP of the form

𝑦″(𝑥) = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽, (11.16)

where 𝑝, 𝑞, 𝑟 ∶ [𝑎, 𝑏] → ℝ. A uniqueness criterion for these can be given as follows.

Theorem 11.2. Suppose that 𝑝, 𝑞, 𝑟 ∈ 𝒞0([𝑎, 𝑏]), and that 𝑞(𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏]. Then, the
boundary value problem Eq. 11.16 has a unique solution for any 𝛼, 𝛽 ∈ ℝ.

Proof. This follows immediately from Theorem 11.1. In the present case,

𝑓(𝑥, 𝑦, 𝑦′) = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥),
𝜕𝑓(𝑥, 𝑦, 𝑦′

𝜕𝑦 = 𝑞(𝑥),
𝜕𝑓(𝑥, 𝑦, 𝑦′

𝜕𝑦′ = 𝑝(𝑥),

(11.17)

and continuous functions on a bounded interval are always bounded. �

11.1.3 Approximation methods

In the following sections, we will discuss three very different approximation methods for the solutions
of BVPs:

• the Shooting Method, which makes use of the techniques for IVPs which we discussed in Chap-
ter 10,

• the Finite Difference Method, which approximates the derivatives of the ODE with difference
quotients,

• the Rayleigh-Ritz Method, which reformulates the BVP as a minimization problem of a certain
integral.

The Finite Difference Method and the Rayleigh-Ritz method are particularly important: first, because
they are adapted to the nature of boundary value problems; second, because they have generalizations
to the approximation theory of partial differential equations.

11.2 The Shooting Method

As the first approximation method for the solutions of BVPs, we will discuss the Shooting Method. It
works by transforming the boundary value problem into an initial value problem, and then using our
known approximation methods for BVPs.
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11.2.1 The idea

We will consider the BVP

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽. (11.18)

For applying our approximation methods for IVPs to the differential equation, we are missing one
initial value, namely for 𝑦′(𝑎).
Let us, for the moment, just pick some fixed 𝛾 ∈ ℝ, and then consider the initial value problem

𝑦″
𝛾(𝑥) = 𝑓(𝑥, 𝑦𝛾(𝑥), 𝑦′

𝛾(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦𝛾(𝑎) = 𝛼, 𝑦′
𝛾(𝑎) = 𝛾. (11.19)

(The solution 𝑦𝛾(𝑥) will depend on our choice of 𝛾, and we indicate this with the 𝛾 subscript.) We
can solve the IVP Eq. 11.19 with one of our known approximation methods. This will yield an
approximation value 𝑤𝑁 ≈ 𝑦𝛾(𝑏). Now we can compare whether our choice of 𝛾 was reasonable:
Namely, we can see whether 𝑤𝑁 ≈ 𝛽, or how far 𝑤𝑁 is away from 𝛽. Depending on this result, we
adjust our value 𝛾, and run the approximation method for Eq. 11.19 again. We repeat this until
𝑤𝑁 ≈ 𝛽 to a reasonable precision; then the 𝑤𝑗 will approximate 𝑦(𝑥𝑗), where 𝑦 is the solution of the
BVP Eq. 11.18.

11.2.2 Systematic Approach

The open point is how to choose the value 𝛾. Of course, we want a systematic (i.e., algorithmic) way
to find the optimum value.

To formalize this, let us consider the map

𝑔 ∶ ℝ → ℝ, 𝛾 ↦ 𝑦𝛾(𝑏), (11.20)

where 𝑦𝛾(𝑥) is the exact solution of the IVP Eq. 11.19. We already have methods to compute 𝑔
approximately (by using approximation methods for IVPs). We need to find 𝛾 such that 𝑦𝛾(𝑥) = 𝛽,
i.e., such that

𝑔(𝛾) = 𝛽. (11.21)

In other words, we need to find an (approximate) solution to the equation Eq. 11.21. We will consider
two cases:

In the simpler case, 𝑔 is a linear function, i.e., 𝑔(𝛾) = 𝑚𝛾 + 𝑐. In this case, Eq. 11.21 can be solved
explicitly (once 𝑚 and 𝑐 are known), namely

𝛾 = 𝛽 − 𝑐
𝑚 . (11.22)

It remains to determine the constants 𝑚 and 𝑐.
More generally, 𝑔 can be a nonlinear function, and in this case we need to solve Eq. 11.21 numerically.
We will use Newton’s method to that end. That is, we consider a sequence 𝛾𝑘, recursively defined
by

𝛾𝑘 ∶= 𝛾𝑘−1 − 𝑔(𝛾𝑘−1) − 𝛽
𝑔′(𝛾𝑘−1) , (11.23)

which is expected to converge to the desired value 𝛾. To that end, it remains to compute the derivative
𝑔′ of the map 𝑔.
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11.2.3 Linear Shooting

Let us first consider the linear case. Not very surprisingly, this arises when the underlying ODE is
linear. That is, let us assume that our BVP is of the form

𝑦″(𝑥) = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽, (11.24)

with 𝑝, 𝑞, 𝑟 being continuous functions on [𝑎, 𝑏].
It turns out to be convenient to consider two related IVPs, neither of which involves the value 𝛾:

𝑦″
0 (𝑥) = 𝑝(𝑥)𝑦′

0(𝑥) + 𝑞(𝑥)𝑦0(𝑥) + 𝑟(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦0(𝑎) = 𝛼, 𝑦′
0(𝑎) = 0; (11.25)

𝑧″ = 𝑝(𝑥)𝑧′(𝑥) + 𝑞(𝑥)𝑧(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑧(𝑎) = 0, 𝑧′(𝑎) = 1. (11.26)

Using their exact solutions 𝑦0(𝑥) and 𝑧(𝑥), we can define

𝑦𝛾(𝑥) ∶= 𝑦0(𝑥) + 𝛾𝑧(𝑥); (11.27)

and by adding Eq. 11.25 and Eq. 11.26, we see that this 𝑦𝛾 is the (unique) solution of the IVP
Eq. 11.19.

The solutions 𝑦0(𝑥) and 𝑧(𝑥) can be found (approximately) by our known methods from Chap-
ter 10. We can then compute the correct value of 𝛾 for our boundary value problem, as indicated in
Eq. 11.22:

𝛾 = 𝛽 − 𝑦0(𝑏)
𝑧(𝑏) . (11.28)

Re-inserting this value 𝛾 into Eq. 11.27, we have found the (approximate) solution of the BVP.

Algorithm 11.1 The Linear Shooting method with Runge-Kutta approximation
1: function LinearShooting(𝑎, 𝑏, 𝛼, 𝛽, 𝑁)
2: → boundary values 𝛼, 𝛽; number of Runge-Kutta steps 𝑁
3: 𝐹 ∶= (𝑥, u) ↦ (𝑢(2), 𝑝(𝑥)𝑢(2) + 𝑞(𝑥)𝑢(1) + 𝑟(𝑥)) → Rewrite and solve IVP for 𝑦0
4: y ∶= RungeKutta(𝐹, 𝑎, 𝑏, (𝛼, 0), 𝑁) → y = (y0, … , y𝑁), each y𝑗 is a 2-vector
5: 𝐺 ∶= (𝑥, u) ↦ (𝑢(2), 𝑝(𝑥)𝑢(2) + 𝑞(𝑥)𝑢(1)) → Rewrite and solve IVP for 𝑧
6: z ∶= RungeKutta(𝐺, 𝑎, 𝑏, (0, 1), 𝑁) → z = (z0, … , z𝑁), each z𝑗 is a 2-vector

7: 𝛾 ∶= 𝛽 − 𝑦(1)
𝑁

𝑧(1)
𝑁

→ Determine correct initial value

8: for 𝑖 = 0, … , 𝑁 do
9: 𝑤𝑖 ∶= 𝑦(1)

𝑖 + 𝛾𝑧(1)
𝑖 → compute solution of BVP

10: end for
11: return (𝑤0, … , 𝑤𝑁)
12: end function

Algorithm 11.1 summarizes the Linear Shooting Method. We first rewrite the IVP Eq. 11.25 for 𝑦0
as a system of two first-order ODEs, and approximate its solution (lines 3–4). For concreteness’ sake,
we choose the classical Runge-Kutta method for the approximation. We do likewise with the IVP
Eq. 11.26 for 𝑧, in lines 5–6. Now we can compute the correct value of 𝛾 (line 7), and combine the
approximations for 𝑦0 and 𝑧 into the approximation of the BVP solution (lines 8–10).

11.2.4 Nonlinear Shooting

Now let us turn to the nonlinear case, i.e., to a generic BVP of the form

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽. (11.29)

105



As said before, we will use Newton’s method for finding the correct value of 𝛾. That means, we need
to compute the sequence (𝛾𝑘) given by

𝛾𝑘 ∶= 𝛾𝑘−1 − 𝑔(𝛾𝑘−1) − 𝛽
𝑔′(𝛾𝑘−1) . (11.30)

To that end, we need to know how to compute 𝑔(𝛾) and 𝑔′(𝛾) numerically.

Here finding 𝑔(𝛾) is not difficult: We have 𝑔(𝛾) = 𝑦𝛾(𝑏), where 𝑦𝛾 is the solution of the IVP

𝑦″
𝛾(𝑥) = 𝑓(𝑥, 𝑦𝛾(𝑥), 𝑦′

𝛾(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦𝛾(𝑎) = 𝛼, 𝑦′
𝛾(𝑎) = 𝛾. (11.31)

We can approximate this solution numerically with any of our known methods – say, classical Runge-
Kutta – and thus obtain an approximation of 𝑔(𝛾).
However, for its derivative 𝑔′, the right approach is much less obvious. We need to compute

𝑔′(𝛾) = 𝜕
𝜕𝛾 𝑦𝛾(𝑥)∣

𝑥=𝑏
. (11.32)

In order to find this value, we differentiate Eq. 11.31 by 𝛾, using the chain rule.

𝜕𝑦′
𝛾

𝜕𝛾 (𝑎) = 1. (11.33)

This does not determine 𝜕𝑦𝛾/𝜕𝛾 directly. However, it gives us a second-order IVP from which the
derivative can be determined.

To make this more concrete, let us use the substitution

𝑢(1) = 𝑦𝛾, 𝑢(2) = 𝑦′
𝛾, 𝑢(3) = 𝜕𝑦𝛾

𝜕𝛾 , 𝑢(4) = 𝜕𝑦′
𝛾

𝜕𝛾 . (11.34)

We can then rewrite Eq. 11.31 and Eq. 11.33 into an IVP for 4 first-order ODEs:

u′ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢(2)

𝑓(𝑥, 𝑢(1), 𝑢(2))
𝑢(4)

𝜕𝑓
𝜕𝑦 (𝑥, 𝑢(1), 𝑢(2)) 𝑢(3) + 𝜕𝑓

𝜕𝑦′ (𝑥, 𝑢(1), 𝑢(2)) 𝑢(4)

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑎 ≤ 𝑥 ≤ 𝑏, u(𝑎) =
⎛⎜⎜⎜⎜
⎝

𝛼
𝛾
0
1

⎞⎟⎟⎟⎟
⎠

. (11.35)

From this IVP, which can be treated, e.g., with the classical Runge-Kutta method, we can now read
off

𝑔(𝛾) = 𝑢(1)(𝑏), 𝑔′(𝛾) = 𝑢(3)(𝑏). (11.36)
This finally allow us to compute the Newton step Eq. 11.30.

Let us summarize the Nonlinear Shooting Method in Algorithm 11.2. Its structure is of the now
well-known Newton iteration type. In each iteration of the loop, we solve the IVP Eq. 11.35 with the
classical Runge-Kutta method. We then pick the approximation values at the rightmost mesh point
and compute the next 𝛾 value from them. The usual methods of breaking the Newton loop are in
place - either after sufficient precision is reached, or (with an error) after too many steps have been
taken.

11.3 The Finite Difference Method

The Finite Difference Method (FDM) is another, very different method of approximating the solution
of the BVP

𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽. (11.37)

This method does not refer back to our approximation methods for IVPs, but is adapted directly to
BVPs.
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Algorithm 11.2 The Nonlinear Shooting method with Runge-Kutta approximation
1: function NonlinearShooting(𝑎, 𝑏, 𝛼, 𝛽, 𝛾0, 𝑁, 𝑇 , 𝑀)
2: → boundary values 𝛼, 𝛽; start value 𝛾0; number of Runge-Kutta steps 𝑁 ;
3: → tolerance 𝑇 ; maximum number of Newton iterations 𝑀
4: 𝐹 ∶= (𝑥, u) ↦ (𝑢(2), 𝑓(𝑥, 𝑢(1), 𝑢(2)), 𝑢(4), 𝜕𝑓

𝜕𝑦 (𝑥, 𝑢(1), 𝑢(2)) 𝑢(3) + 𝜕𝑓
𝜕𝑦′ (𝑥, 𝑢(1), 𝑢(2)) 𝑢(4))

5: 𝛾 ∶= 𝛾0; 𝑘 ∶= 0
6: while 𝑘 ≤ 𝑀 do
7: w ∶= RungeKutta(𝐹, 𝑎, 𝑏, (𝛼, 𝛾, 0, 1), 𝑁)
8: → here w = (w0, … , w𝑁), each w𝑗 is a 4-vector

9: 𝑣 ∶= 𝑤(1)
𝑁 − 𝛽
𝑤(3)

𝑁
; 𝛾 ∶= 𝛾 − 𝑣

10: if |𝑣| < 𝑇 then
11: break
12: end if
13: 𝑘 ∶= 𝑘 + 1
14: end while
15: return (𝑤(1)

0 , … , 𝑤(1)
𝑁 )

16: end function

11.3.1 The idea

Similar to before, we divide our interval with equally spaced mesh points, 𝑥0, … , 𝑥𝑁+1, where 𝑥0 = 𝑎
and 𝑥𝑁+1 = 𝑏.2 As before, we want to approximate 𝑦(𝑥𝑖) with a value 𝑤𝑖 (𝑖 = 1, … , 𝑁).

The main idea of the FDM is to approximate the derivatives 𝑦′(𝑥𝑖) and 𝑦″(𝑥𝑖) with difference quotients
(“finite differences”). For example, we could use

𝑦′(𝑥𝑖) ≈ 𝑤𝑖+1 − 𝑤𝑖
ℎ , (11.38)

but we will see an even better choice later. A similar approximation will need to be found for 𝑦″(𝑥𝑖).
In this way, the ODE is transformed into a system of equations for 𝑤1, … , 𝑤𝑁 , and the boundary
conditions are expressed by 𝑤0 = 𝛼, 𝑤𝑁+1 = 𝛽.

11.3.2 Centred difference formulas

As a first step, we will derive an improved version of the difference quotient approximation Eq. 11.38,
in which the error term was of order 𝑂(ℎ). Let us assume that the solution 𝑦(𝑥) of the BVP has
three continuous derivatives. We write down second-order Taylor expansions of 𝑦(𝑥𝑖+1) and 𝑦(𝑥𝑖−1),
cf. Theorem A.1:

4𝑦(𝑥𝑖+1) = 𝑦(𝑥𝑖 + ℎ) = 𝑦(𝑥𝑖) + ℎ𝑦′(𝑥𝑖) + ℎ2

2 𝑦″(𝑥𝑖) + ℎ3

6 𝑦‴(𝜉+); (11.39)

𝑦(𝑥𝑖−1) = 𝑦(𝑥𝑖 − ℎ) = 𝑦(𝑥𝑖) − ℎ𝑦′(𝑥𝑖) + ℎ2

2 𝑦″(𝑥𝑖) − ℎ3

6 𝑦‴(𝜉−) (11.40)

with some 𝜉+ ∈ [𝑥𝑖, 𝑥𝑖+1] and 𝜉− ∈ [𝑥𝑖−1, 𝑥𝑖]. Subtracting Eq. 11.40 from Eq. 11.39, we obtain

𝑦(𝑥𝑖+1) − 𝑦(𝑥𝑖−1) = 2ℎ𝑦′(𝑥𝑖) + ℎ3

6 (𝑦‴(𝜉+) + 𝑦‴(𝜉−))⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑦‴(𝜉)

. (11.41)

Here 𝜉 ∈ [𝑥𝑖−1, 𝑥𝑖+1] is some point obtained from the intermediate value theorem. Solving for 𝑦′(𝑥𝑖),
we find

2Note the change of convention: Our step size is now ℎ = (𝑏 − 𝑎)/(𝑁 + 1), and we have 𝑁 + 2 (not 𝑁 + 1) mesh
points, of which 𝑁 are inside the interval (𝑎, 𝑏). This convention, which we shall use from now on, is very useful for
boundary value problems: the function 𝑦 needs to be determined at 𝑥1, … , 𝑥𝑁 but is already known at 𝑥0 and 𝑥𝑁+1.
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𝑦′(𝑥𝑖) = 𝑦(𝑥𝑖+1) − 𝑦(𝑥𝑖−1)
2ℎ − ℎ2

6 𝑦‴(𝜉). (11.42)

This is known as a centred difference formula. Note that the “error term” here is of order 𝑂(ℎ2) which
is better than the 𝑂(ℎ) one obtains in Eq. 11.38.

We can obtain a similar formula for 𝑦″(𝑥𝑖) as well, using a third-order Taylor expansion of 𝑦. See
(Burden and Faires 2010, sec. 4.1, Eq. (4.9)) for details. The result is

𝑦″(𝑥𝑖) = 𝑦(𝑥𝑖+1) − 2𝑦(𝑥𝑖) + 𝑦(𝑥𝑖−1)
ℎ2 − ℎ2

12𝑦⁗(𝜉) (11.43)

with some 𝜉 ∈ [𝑥𝑖−1, 𝑥𝑖+1].

11.3.3 Recipe for the Finite Difference Method

We can now formulate an outline of the FDM in our context. Starting from a boundary value problem
of the form Eq. 11.37, we consider the 𝑁 equations

𝑦″(𝑥𝑖) = 𝑓(𝑥𝑖, 𝑦(𝑥𝑖), 𝑦′(𝑥𝑖)), 𝑖 = 1, … , 𝑁. (11.44)

In order to obtain an approximate solution, we manipulate the equations as follows:

• Replace all occurrences of 𝑦(𝑥𝑖) with 𝑤𝑖.

• Replace all occurrences of 𝑦′(𝑥𝑖) with 𝑤𝑖+1 − 𝑤𝑖−1
2ℎ ; cf. Eq. 11.42.

• Replace all occurrences of 𝑦″(𝑥𝑖) with 𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1
ℎ2 ; cf. Eq. 11.43.

• Set 𝑤0 = 𝛼, 𝑤𝑁+1 = 𝛽.

This will leave us with a system of 𝑁 equations for the 𝑁 variables 𝑤1, … , 𝑤𝑁 . This equation system
can either be linear, in which case we can apply algorithms for solving linear equation systems (see
Chapter 5); or it can be nonlinear, in which case we need Newton’s method in several variables (see
Chapter 4) to approximate the solution.

The error order of this approximation scheme is determined by the remainder term in the centred
difference formulas, Eqs. Eq. 11.42 and Eq. 11.43; namely, the method is of order 𝑂(ℎ2). However, we
will not prove this here.

11.3.4 The Linear Finite Difference Method

Let us first apply the recipe to a linear ODE, that is, to a boundary value problem of the form

𝑦″(𝑥) = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽. (11.45)

In this case, Eq. Eq. 11.44 reads

𝑦″(𝑥𝑖) = 𝑝(𝑥𝑖)𝑦′(𝑥𝑖) + 𝑞(𝑥𝑖)𝑦(𝑥𝑖) + 𝑟(𝑥𝑖), 𝑖 = 1, … , 𝑁. (11.46)

By the substitution rules mentioned above, and with the abbreviations 𝑝𝑖 ∶= 𝑝(𝑥𝑖), 𝑞𝑖 ∶= 𝑞(𝑥𝑖),
𝑟𝑖 ∶= 𝑟(𝑥𝑖), we get:

𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1
ℎ2 = 𝑝𝑖

𝑤𝑖+1 − 𝑤𝑖−1
2ℎ + 𝑞𝑖𝑤𝑖 + 𝑟𝑖, 𝑖 = 1, … , 𝑁. (11.47)
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Multiplying with ℎ2, and bringing all 𝑤𝑗 to the left-hand side, we can rewrite this as

𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1 − ℎ
2 𝑝𝑖𝑤𝑖+1 + ℎ

2 𝑝𝑖𝑤𝑖−1 − ℎ2𝑞𝑖𝑤𝑖 = ℎ2𝑟𝑖, (11.48)

or

(−1 + ℎ
2 𝑝𝑖) 𝑤𝑖+1 + (2 + ℎ2𝑞𝑖)𝑤𝑖 + (−1 − ℎ

2 𝑝𝑖) 𝑤𝑖−1 = −ℎ2𝑟𝑖 (11.49)

for 𝑖 = 1, … , 𝑁 .

Note here that 𝑤𝑖−1 may be 𝑤0 (if 𝑖 = 1) and 𝑤𝑖+1 may be 𝑤𝑁+1 (if 𝑖 = 𝑁). So not all 𝑤𝑗 are variables,
some need to be replaced with the boundary values 𝛼 and 𝛽. Keeping this in mind, we can rewrite
the equation system Eq. 11.49 in matrix form:

⎛⎜⎜⎜⎜⎜⎜
⎝

2 + ℎ2𝑞1 −1 + ℎ
2 𝑝1 0 ⋯ 0

−1 − ℎ
2 𝑝2 2 + ℎ2𝑞2 −1 + ℎ

2 𝑝2 0 ⋮
0 ⋱ ⋱ ⋱ 0
⋮ 0 −1 − ℎ

2 𝑝𝑁−1 2 + ℎ2𝑞𝑁−1 −1 + ℎ
2 𝑝𝑁−1

0 ⋯ 0 −1 − ℎ
2 𝑝𝑁 2 + ℎ2𝑞𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶A

w

=
⎛⎜⎜⎜⎜⎜⎜
⎝

−ℎ2𝑟1 + (1 + ℎ
2 𝑝1)𝛼

−ℎ2𝑟2
⋮

−ℎ2𝑟𝑁−1
−ℎ2𝑟𝑁 + (1 − ℎ

2 𝑝𝑁)𝛽

⎞⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶b

.

(11.50)

The matrix A is tridiagonal. Therefore, we can use fast algorithms (e.g. Crout factorization) in order
to solve the linear equation system, and obtain the vector w = (𝑤1, … , 𝑤𝑁) in 𝑂(𝑁) time. This
directly gives us the required approximation of the solution 𝑦(𝑥).

11.3.5 The Nonlinear Finite Difference Method

Let us now discuss the case of a completely generic, possibly nonlinear ODE. As before, we set out
from the 𝑁 equations in Eq. 11.44. Again we substitute the function 𝑦 and its derivatives with 𝑤𝑖
and their finite differences. However, in absence of more information about the function 𝑓 , we end up
with just

𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1
ℎ2 = 𝑓(𝑥𝑖, 𝑤𝑖,

𝑤𝑖+1 − 𝑤𝑖−1
2ℎ ), 𝑖 = 1, … , 𝑁. (11.51)

We can rewrite this in a more convenient form:

0 = − 𝑤𝑖+1 + 2𝑤𝑖 − 𝑤𝑖−1 + ℎ2𝑓(𝑥𝑖, 𝑤𝑖,
𝑤𝑖+1 − 𝑤𝑖−1

2ℎ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝐹 (𝑖)(w)

(11.52)

for 𝑖 = 1, … , 𝑁 . Our task is now to solve the nonlinear equation system F(w) = 0 for w = (𝑤1, … , 𝑤𝑁),
where it is understood that 𝑤0 = 𝛼 and 𝑤𝑁+1 = 𝛽.
We will do this with the 𝑁 -dimensional version of Newton’s method, as discussed in Chapter 4. To
that end, we need to compute the Jacobian matrix of F; that is, we need to compute all the partial
derivatives 𝜕𝐹 (𝑖)/𝜕𝑤(𝑗). Fortunately, most of these turn out to vanish. We compute from Eq. 11.52,

𝜕𝐹 (𝑖)

𝜕𝑤(𝑖+1) = −1 + ℎ
2

𝜕𝑓
𝜕𝑦′ (𝑥𝑖, 𝑤𝑖,

𝑤𝑖+1 − 𝑤𝑖−1
2ℎ ) for 𝑖 = 1, … , 𝑁 − 1, (11.53)

𝜕𝐹 (𝑖)

𝜕𝑤(𝑖−1) = −1 − ℎ
2

𝜕𝑓
𝜕𝑦′ (𝑥𝑖, 𝑤𝑖,

𝑤𝑖+1 − 𝑤𝑖−1
2ℎ ) for 𝑖 = 2, … , 𝑁, (11.54)
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𝜕𝐹 (𝑖)

𝜕𝑤(𝑖) = 2 + ℎ2 𝜕𝑓
𝜕𝑦 (𝑥𝑖, 𝑤𝑖,

𝑤𝑖+1 − 𝑤𝑖−1
2ℎ ) for 𝑖 = 1, … , 𝑁. (11.55)

All other partial derivatives are 0. That is, the Jacobian matrix J = 𝜕F/𝜕w is tridiagonal. This
allows us to solve the linear system involved in each step of the Newton iteration very quickly.

For doing the Newton iteration, we need a sensible start value for the vector w. A common choice is
to place the points (𝑥𝑖, 𝑤(𝑖)) on a straight line from (𝑎, 𝛼) to (𝑏, 𝛽):

𝑤(𝑖)
0 = 𝛼 + 𝑖ℎ𝛽 − 𝛼

𝑏 − 𝑎 . (11.56)

Algorithm 11.3 The Nonlinear Finite Difference method
1: function NonlinearFiniteDifference(𝑎, 𝑏, 𝛼, 𝛽, 𝑁, 𝑀)
2: → boundary values 𝛼, 𝛽; number of mesh points 𝑁 ; max. Newton iterations 𝑀
3: ℎ ∶= (𝑏 − 𝑎)/(𝑁 + 1); 𝑘 ∶= 1
4: 𝑤(𝑖) ∶= 𝛼 + 𝑖ℎ𝛽−𝛼

𝑏−𝑎 (𝑖 = 1, … , 𝑁) → Set start value for w
5: while 𝑘 ≤ 𝑀 do
6: Compute F(w) and J(w)
7: Solve J(w)v = F(w) for v using e.g. Crout factorization
8: w ∶= w − v
9: if |v| < 𝑇 then

10: break
11: end if
12: 𝑘 ∶= 𝑘 + 1
13: end while
14: return w
15: end function

All that’s left to do is to assemble the algorithm. This is done in Algorithm 11.3. The pattern follows
our usual approach to Newton’s method.

In each step of the Newton iteration, we need to solve one linear equation system. We can use e.g. the
Crout factorization algorithm ((Burden and Faires 2010) Algorithm 6.7) to this end — this makes use
of the fact that the Jacobian is tridiagonal, and allows every Newton step to run in only 𝑂(𝑁) time.

11.4 The Rayleigh-Ritz Method

The third, and radically different, approximation method for BVPs that we will discuss is called the
Rayleigh-Ritz method.

11.4.1 Motivation

We start with a brief motivation originating in physics, or in engineering. Consider a beam of length
𝐿, fixed at both end points, which is deflected under its own weight. Denote with 𝑦(𝑥), 0 ≤ 𝑥 ≤ 𝐿,
the deflection of the beam at point 𝑥. There are two complementary approaches of finding 𝑦(𝑥).
a) One may think of the problem in terms of a local equilibrium of forces. Several types of forces act at
each point 𝑥 of the beam - the gravitational force (downwards), but also forces relating to the elasticity
of the beam, which pull the deflected beam upwards. In the rest position of the beam, the sum of
these forces will be 0 at each point. This leads us to an ODE of the form 𝑦″(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
(we do not specify the function 𝑓 further here). The ends of the beam are fixed, so we are enforcing
𝑦(0) = 𝑦(𝐿) = 0. Thus, we are dealing with a boundary value problem for an ODE.

b) Particularly in physics, one alternatively thinks of the situation as an energy minimization problem.
The total energy of the beam will consist of its energy in the gravitational field, and of the energy
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associated with elasticity. We can associate with each point of the beam an energy density, 𝜆, which
depends on the deflection 𝑦. It will roughly have the form

𝜆 = 𝑐𝑦′(𝑥)2 − 𝑑𝑦(𝑥) + … (11.57)

with constants 𝑐 and 𝑑, where the term proportional to (𝑦′(𝑥))2 comes from elasticity, and the term
proportional to 𝑦 from gravitation. (We are not interested in the form of 𝜆 in detail here). The rest
position of the beam is now found by the requirement that the total energy of the beam is minimal.
This total energy is found by integrating 𝜆 over the length of the beam:

𝐸 = ∫
𝐿

0
𝜆(𝑦(𝑥), 𝑦′(𝑥))d𝑥 (11.58)

So we are left with the problem of finding the function 𝑦(𝑥) that minimizes the integral Eq. 11.58,
while satisfying the boundary conditions 𝑦(0) = 𝑦(𝐿) = 0.
This example – which is added here only for illustration – raises an interesting mathematical question:
Can we, under more general conditions, rewrite a boundary value problem for an ODE equivalently
as a minimization problem for an integral expression? If yes, we can try to approximate the integral
expression numerically (rather than the BVP), which may offer new options for numerical methods.

11.4.2 Equivalence of BVPs with minimization problems

In this section, we will specialize to a boundary value problems of the following form (a so-called
Sturm-Liouville problem):

− d
d𝑥 (𝑝(𝑥)d𝑦

d𝑥 (𝑥)) + 𝑞(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 ≤ 𝑥 ≤ 1, 𝑦(0) = 𝑦(1) = 0. (11.59)

Here 𝑝, 𝑞 and 𝑓 are sufficiently smooth functions from [0, 1] to ℝ; for details see below. We can refor-
mulate this BVP as a minimization problem for an integral expression: The solution 𝑦(𝑥) minimizes
the integral

𝐼[𝜙] = ∫
1

0
(𝑝(𝑥)(𝜙′(𝑥))2 + 𝑞(𝑥)𝜙(𝑥)2 − 2𝑓(𝑥)𝜙(𝑥))𝑑𝑥; (11.60)

over all functions 𝜙 that satisfy the boundary conditions that is, if 𝜙 is any function satisfying the
boundary conditions, then one has 𝐼[𝑦] ≤ 𝐼[𝜙].
More precisely, let 𝒞2

0[0, 1] denote the space of 𝒞2 functions on [0, 1] that vanish at the endpoints of
the interval. One has:

Theorem 11.3. Let 𝑝 ∈ 𝒞1[0, 1], and 𝑞, 𝑓 ∈ 𝒞[0, 1]. Further, suppose that there exists a constant
𝛿 > 0 such that

∀𝑥 ∈ [0, 1] ∶ 𝑝(𝑥) ≥ 𝛿, 𝑞(𝑥) ≥ 0. (11.61)

Then, for any function 𝑦 ∈ 𝒞2
0[0, 1], the following conditions are equivalent.

(i) 𝑦 is the unique solution of the boundary value problem in Eq. 11.59.

(ii) 𝑦 is the unique function in 𝒞2
0[0, 1] which minimizes the integral 𝐼[𝑦] in Eq. 11.60.

Proof. Proof. Here we prove only (ii) ⟹ (i), neglecting the aspect of uniqueness. For a full proof,
see (Burden and Faires 2010 Theorem 11.4) and references quoted there.

If 𝑦 minimizes the integral 𝐼[𝑦], then for any fixed 𝑢 ∈ 𝒞2
0[0, 1], the function

𝜖 ↦ 𝐼[𝑦 + 𝜖𝑢] (11.62)

has a minimum at 𝜖 = 0. Therefore, its derivative at 𝜖 = 0 must vanish:
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0 = d
d𝜖𝐼[𝑦 + 𝜖𝑢]∣

𝜖=0

= d
d𝜖 ∣

𝜖=0
∫

1

0
(𝑝(𝑥)(𝑦′(𝑥) + 𝜖𝑢′(𝑥))2 + 𝑞(𝑥)(𝑦(𝑥) + 𝜖𝑢(𝑥))2 − 2(𝑦(𝑥) + 𝜖𝑢(𝑥))𝑓(𝑥))𝑑𝑥

= ∫
1

0
(2𝑝(𝑥)(𝑦′(𝑥) + 𝜖𝑢′(𝑥))𝑢′(𝑥) + 2𝑞(𝑥)(𝑦(𝑥) + 𝜖𝑢(𝑥))𝑢(𝑥) − 2𝑢(𝑥)𝑓(𝑥))∣

𝜖=0
𝑑𝑥

= 2 ∫
1

0
(𝑝(𝑥)𝑦′(𝑥)𝑢′(𝑥) + 𝑞(𝑥)𝑦(𝑥)𝑢(𝑥) − 𝑢(𝑥)𝑓(𝑥))𝑑𝑥.

(11.63)

We integrate by parts in the first term of the integral, (𝑝(𝑥)𝑦′(𝑥))𝑢′(𝑥), noting that the boundary
terms vanish since 𝑢(0) = 𝑢(1) = 0. This gives

0 = ∫
1

0
( − (𝑝(𝑥)𝑦′(𝑥))′ + 𝑞(𝑥)𝑦(𝑥) − 𝑓(𝑥))𝑢(𝑥) 𝑑𝑥 (11.64)

Since this holds for all 𝑢 ∈ 𝒞2
0[0, 1], and since all functions under the integral sign are continuous, we

can conclude that
0 = −(𝑝𝑦′)′ + 𝑞𝑦 − 𝑓 (11.65)

on the entire interval [0, 1], which is what we wanted to show. �

11.4.3 Approximating the integral

The Rayleigh-Ritz method makes use of the equivalence stated in Theorem 11.3. The idea is to
approximate the function that minimizes the integral 𝐼[𝜙], rather than approximating the boundary
value problem directly. That is, we try to find functions 𝜙 that make 𝐼[𝜙] as small as possible.

Of course, we cannot try all functions in the infinite dimensional vector space 𝒞2
0[0, 1]. Rather we

choose a set of 𝑁 linearly independent functions (“basis functions”3) 𝜙𝑖 with 𝜙𝑖(0) = 𝜙𝑖(1) = 0, and
use an arbitrary linear combination

𝜙(𝑥) =
𝑁

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥) (11.66)

of these functions as our trial function. The coefficients 𝑐𝑖 are to minimize the integral. There is a
large freedom of choice for the functions 𝜙𝑗, and this can be exploited to adapt the approximation
method to our needs. We leave the choice of 𝜙𝑗 open for the moment, and will fix them later on.

Substituting the trial function Eq. 11.66 into 𝐼[𝜙] in Eq. 11.60 gives

𝐼[𝜙] = ∫
1

0
(𝑝(𝑥)(

𝑁
∑
𝑖=1

𝑐𝑖𝜙′
𝑖(𝑥))

2
+ 𝑞(𝑥)(

𝑁
∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥))
2

− 2𝑓(𝑥)
𝑁

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥)) 𝑑𝑥. (11.67)

We now minimize over the real parameters 𝑐𝑖. They will be fixed by the necessary requirement for
having an extremum, namely, that all partial derivatives vanish,

0 = 𝜕𝐼[𝜙]
𝜕𝑐𝑗

= ∫
1

0
(2𝑝(𝑥)

𝑁
∑
𝑖=1

𝑐𝑖𝜙′
𝑖(𝑥)𝜙′

𝑗(𝑥) + 2𝑞(𝑥)
𝑁

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥)𝜙𝑗(𝑥) − 2𝑓(𝑥)𝜙𝑗(𝑥)) 𝑑𝑥 (11.68)

for all 𝑗 = 1, … , 𝑁 . This is a linear system of the form

𝑁
∑
𝑖=1

𝐴(𝑗,𝑖)𝑐(𝑖) = 𝑏(𝑗), 𝑗 = 1, … , 𝑁, (11.69)

3While these are usually called “basis functions”, e.g. in (Burden and Faires 2010), they are of course not a basis of the
space 𝒞2

0[0, 1].
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where
𝐴(𝑗,𝑖) = ∫

1

0
(𝑝(𝑥)𝜙′

𝑖(𝑥)𝜙′
𝑗(𝑥) + 𝑞(𝑥)𝜙𝑖(𝑥)𝜙𝑗(𝑥))𝑑𝑥, (11.70)

𝑏(𝑗) = ∫
1

0
𝑓(𝑥)𝜙𝑗(𝑥)𝑑𝑥. (11.71)

Once the basis functions 𝜙𝑗 are chosen, we can compute the components of A and b, solve the linear
system Eq. 11.69 for c, and then obtain the approximation function 𝜙 from Eq. 11.66.

11.4.4 Choosing the basis functions

The question is now how to choose the functions 𝜙𝑗 so that we get a reasonable numerical approxima-
tion of the solution 𝑦(𝑥), which is furthermore fast to compute. Our requirements are:

• The 𝜙𝑗 need to satisfy the boundary conditions: 𝜙𝑗(0) = 𝜙𝑗(1) = 0.
• They should be sufficiently smooth. Note that, for purposes of numerical approximation, it is

not be necessary to require two continuous derivatives (as for the ODE solution). Since we deal
only with integral expressions in 𝜙𝑗 and 𝜙′

𝑗, it should suffice if 𝜙𝑗 has one derivative that exists
almost everywhere and is piecewise continuous, or at least integrable.

• They should be designed so that their linear combinations can approximate a wide range of
functions. (This may seem a bit vague; but e.g. choosing all the 𝜙𝑗 with support in the interval
[0, 1

2 ] would clearly be a bad idea.)

• They should be simple enough so that the integrals for 𝐴(𝑖,𝑗) and 𝑏(𝑗) in Eq. 11.70 and Eq. 11.71
can reasonably be evaluated - if possible, explicitly.

• If possible, not many of them should have overlapping support, so that the matrix A is sparse,
i.e., many of its entries are zero. This will make the linear equation system in Eq. Eq. 11.69 fast
to solve.

A simple choice of basis functions, satisfying the above requirements, are the piecewise linear func-
tions

𝜙𝑖(𝑥) =
⎧{{
⎨{{⎩

0 if 0 ≤ 𝑥 ≤ 𝑥𝑖−1;
1

ℎ𝑖−1
(𝑥 − 𝑥𝑖−1) if 𝑥𝑖−1 < 𝑥 ≤ 𝑥𝑖;

1
ℎ𝑖

(𝑥𝑖+1 − 𝑥) if 𝑥𝑖 < 𝑥 ≤ 𝑥𝑖+1;
0 if 𝑥𝑖+1 < 𝑥 ≤ 1

(11.72)

for some conveniently chosen mesh points

0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 < 𝑥𝑁+1 = 1. (11.73)

The ℎ𝑖 are the distances between neighbouring mesh points, ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖; note that the mesh points
need not be equally spaced. These basis functions 𝜙𝑖 have simple piecewise constant derivatives,

𝜙′
𝑖(𝑥) =

⎧{{
⎨{{⎩

0 if 0 < 𝑥 < 𝑥𝑖−1,
1

ℎ𝑖−1
if 𝑥𝑖−1 < 𝑥 < 𝑥𝑖,

− 1
ℎ𝑖

if 𝑥𝑖 < 𝑥 < 𝑥𝑖+1,
0 if 𝑥𝑖+1 < 𝑥 < 1.

(11.74)

A particular simplifying feature of this set of basis functions is that only neighbouring functions have
any overlap, i.e.,

𝜙𝑖(𝑥)𝜙𝑗(𝑥) = 0 and 𝜙′
𝑖(𝑥)𝜙′

𝑗(𝑥) = 0 unless 𝑗 ∈ {𝑖 − 1, 𝑖, 𝑖 + 1}. (11.75)
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This implies that the matrix A is tridiagonal. To calculate the entries of A and b in Eq. 11.70 and
Eq. 11.71, the following integrals need to be evaluated:

𝑄1,𝑖 = ( 1
ℎ𝑖

)
2

∫
𝑥𝑖+1

𝑥𝑖

(𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖)𝑞(𝑥)𝑑𝑥,

𝑄2,𝑖 = ( 1
ℎ𝑖−1

)
2

∫
𝑥𝑖

𝑥𝑖−1

(𝑥 − 𝑥𝑖−1)2𝑞(𝑥)𝑑𝑥,

𝑄3,𝑖 = ( 1
ℎ𝑖

)
2

∫
𝑥𝑖+1

𝑥𝑖

(𝑥𝑖+1 − 𝑥)2𝑞(𝑥)𝑑𝑥,

𝑄4,𝑖 = ( 1
ℎ𝑖−1

)
2

∫
𝑥𝑖

𝑥𝑖−1

𝑝(𝑥)𝑑𝑥,

𝑄5,𝑖 = 1
ℎ𝑖−1

∫
𝑥𝑖

𝑥𝑖−1

(𝑥 − 𝑥𝑖−1)𝑓(𝑥)𝑑𝑥,

𝑄6,𝑖 = 1
ℎ𝑖

∫
𝑥𝑖+1

𝑥𝑖

(𝑥𝑖+1 − 𝑥)𝑓(𝑥)𝑑𝑥.

(11.76)

Then
𝐴(𝑖,𝑖) = 𝑄4,𝑖 + 𝑄4,𝑖+1 + 𝑄2,𝑖 + 𝑄3,𝑖, 𝑖 = 1, … , 𝑁,

𝐴(𝑖,𝑖+1) = −𝑄4,𝑖+1 + 𝑄1,𝑖, 𝑖 = 1, … , 𝑁 − 1,
𝐴(𝑖,𝑖−1) = −𝑄4,𝑖 + 𝑄1,𝑖−1, 𝑖 = 2, … , 𝑁,

𝑏(𝑖) = 𝑄5,𝑖 + 𝑄6,𝑖, 𝑖 = 1, … , 𝑁.

(11.77)

One way to evaluate the 6𝑁 integrals is to approximate the functions 𝑞(𝑥), 𝑝(𝑥), and 𝑓(𝑥) by their
linear interpolating polynomials. That is, we write

𝑞(𝑥) =
𝑁+1
∑
𝑖=0

𝑞(𝑥𝑖)𝜙𝑖(𝑥) + 𝑂(ℎ2), (11.78)

and similarly for 𝑝 and 𝑓 , where the 𝜙𝑖 are as given above for 𝑖 = 1, … , 𝑁 , and

𝜙0(𝑥) = {
𝑥1−𝑥

𝑥1
if 0 ≤ 𝑥 ≤ 𝑥1,

0 elsewhere;

𝜙𝑁+1(𝑥) = {
𝑥−𝑥𝑁
1−𝑥𝑁

if 𝑥𝑁 ≤ 𝑥 ≤ 1,
0 elsewhere.

(11.79)

The integrals are now trivial to evaluate, for example

𝑄1,𝑖 = ( 1
ℎ𝑖

)
2

∫
𝑥𝑖+1

𝑥𝑖

(𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖)𝑞(𝑥)𝑑𝑥

≈ ( 1
ℎ𝑖

)
2

∫
𝑥𝑖+1

𝑥𝑖

(𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖) (𝑞(𝑥𝑖)
𝑥𝑖+1 − 𝑥

ℎ𝑖
+ 𝑞(𝑥𝑖+1)𝑥 − 𝑥𝑖

ℎ𝑖
) 𝑑𝑥

= ℎ𝑖
12 (𝑞(𝑥𝑖) + 𝑞(𝑥𝑖+1)) .

(11.80)

Similarly we find4

𝑄2,𝑖 ≈ ℎ𝑖−1
12 (3𝑞(𝑥𝑖) + 𝑞(𝑥𝑖−1)) ,

𝑄3,𝑖 ≈ ℎ𝑖
12 (3𝑞(𝑥𝑖) + 𝑞(𝑥𝑖+1)) ,

𝑄4,𝑖 ≈ 1
2ℎ𝑖−1

(𝑝(𝑥𝑖) + 𝑝(𝑥𝑖−1)) ,

𝑄5,𝑖 ≈ ℎ𝑖−1
6 (2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)) ,

𝑄6,𝑖 ≈ ℎ𝑖
6 (2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1)) .

(11.81)

4Note that Burden/Faires (Burden and Faires 2010) reports the formula for 𝑄4,𝑖 incorrectly.
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After this calculation, we can now simply solve the linear system Eq. 11.69 for the coefficients c = (𝑐𝑖)
in the trial function in order to find the approximation

𝑦(𝑥) ≈
𝑁

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥). (11.82)
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12 Partial Differential Equations

12.1 Partial differential equations: Overview

We will now consider approximation methods for partial differential equations (PDEs). An example
for a PDE – familiar from the first-year Calculus course – is the heat equation:

𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡) = 𝜅 𝜕
𝜕𝑡𝑢(𝑥, 𝑡) (12.1)

with some constant 𝜅 > 0. PDEs like the above are defined on a certain region in the 𝑥-𝑡-plane (or
analogously in more than 2 dimensions), and are always complemented by some kind of boundary
conditions on the boundary of that region.

We will try to generalize our methods for boundary value problems of ODEs to the case of PDEs. The
BVP methods we have discussed are:

• the Shooting method,

• the Finite Difference method,

• the Rayleigh-Ritz method.

Unfortunately, there is no obvious generalization of the Shooting method to PDEs; the concept of
transforming a boundary value problem into an initial value problem does not work in this context.

However, the Finite Difference method can be generalized to PDEs. To that end, we would first need to
define a suitable notion of mesh points. Instead of dividing an interval into equally spaced subintervals,
we now need to divide a region in two variables (say, a rectangle) with an equally spaced grid of mesh
points. Then, as before, one can replace the value of 𝑢 at mesh points with an approximation value,
and the derivatives of 𝑢 with finite difference quotients, and finally solve a (linear) equation system to
obtain the approximation values numerically. We will discuss this more in detail in later sections.

The Finite Difference method has limitations when the region in question is not as simple as a rectangle,
but is irregularly shaped. In this case, it may not be possible to divide it reasonably with an equally
spaced grid, or the mesh points at the edge of the grid may not be located exactly on the boundary
(which poses problems when interpreting the boundary values). In these cases, generalizations of the
Rayleigh-Ritz method can successfully be used, the so-called Finite Element methods. Note that in
the Rayleigh-Ritz method, there was a large freedom of choosing the basis functions 𝜙𝑗, and even
when restricting to piecewise linear functions, the mesh points 𝑥𝑖 did not need to be equally spaced.
Likewise, in the multi-dimensional generalizations, one can exploit this freedom to adapt the choice
of mesh points to a (possibly irregular) boundary. Finite Element methods are the most advanced
numerical methods for solving PDEs, and we will not discuss them in detail here; see, e.g., (Burden
and Faires 2010 Ch. 12.4) for an introduction.

12.2 Elliptic PDEs

In this section, we will generalize the Finite Difference method to a very specific PDE, namely the
Poisson equation. This equation for a function 𝑢 of two variables 𝑥 and 𝑦 has the form
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𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 𝑓(𝑥, 𝑦)

on 𝑅 ∶= {(𝑥, 𝑦) ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑},
𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) for 𝑥 ∈ 𝜕𝑅.

(12.2)

Here 𝑓 and 𝑔 are given functions of two variables, and 𝜕𝑅 denotes the boundary of 𝑅, that is, the
four line segments

𝑥 = 𝑎, 𝑐 ≤ 𝑦 ≤ 𝑑; 𝑥 = 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑;
𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦 = 𝑐; 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦 = 𝑑. (12.3)

The equation Eq. 12.2 is, in the case 𝑓 = 0, also known as the Laplace equation. It is a typical example
of the larger class of elliptic differential equations, and the methods we will discuss here apply to other
elliptic equations as well.

We will try to set up a Finite Difference method to approximate the solution of Eq. 12.2, following
our recipe from Section 11.3. To that end, we first have to specify what our mesh points are. Instead
of partitioning the interval [𝑎, 𝑏], they will now need to partition the rectangle 𝑅. To this end, we
choose two numbers of steps, 𝑁 and 𝑀 , associated with the 𝑥 and 𝑦 direction respectively, and two
corresponding step sizes

ℎ ∶= 𝑏 − 𝑎
𝑁 + 1, 𝑘 ∶= 𝑑 − 𝑐

𝑀 + 1.

We then define 𝑁 × 𝑀 mesh points (𝑥𝑖, 𝑦𝑗) as

(𝑥𝑖, 𝑦𝑗) = (𝑎 + 𝑖ℎ, 𝑐 + 𝑗𝑘), 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀.

These lie on a rectangular grid within the rectangle 𝑅.

Our next step is to approximate the relevant derivatives of 𝑢 at the mesh points. We use the centred
difference formula Eq. 11.43 twice, once in 𝑥 direction (at fixed 𝑦) and once in 𝑦 direction (at fixed 𝑥).
This gives

𝜕2𝑢
𝜕𝑥2 (𝑥𝑖, 𝑦𝑗) = 𝑢(𝑥𝑖+1, 𝑦𝑗) − 2𝑢(𝑥𝑖, 𝑦𝑗) + 𝑢(𝑥𝑖−1, 𝑦𝑗)

ℎ2 − ℎ2

12
𝜕4𝑢
𝜕𝑥4 (𝜉𝑖, 𝑦𝑗),

𝜕2𝑢
𝜕𝑦2 (𝑥𝑖, 𝑦𝑗) = 𝑢(𝑥𝑖, 𝑦𝑗+1) − 2𝑢(𝑥𝑖, 𝑦𝑗) + 𝑢(𝑥𝑖, 𝑦𝑗−1)

𝑘2 − 𝑘2

12
𝜕4𝑢
𝜕𝑦4 (𝑥𝑖, 𝜂𝑗),

(12.4)

where 𝜉𝑖 and 𝜂𝑗 are some unknown points in the intervals.

Again following our recipe, we will approximate the solution at mesh points 𝑢(𝑥𝑖, 𝑦𝑗) with approxima-
tion values 𝑤𝑖,𝑗. In the PDE Eq. 12.2, we then replace 𝑢(𝑥𝑖, 𝑦𝑗) with 𝑤𝑖,𝑗 and the derivatives of 𝑢 with
the expressions Eq. 12.4, but leaving away the remainder terms of order 𝑂(ℎ2) + 𝑂(𝑘2). This yields
the following equations for the 𝑤𝑖,𝑗:

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 + 𝑤𝑖−1,𝑗
ℎ2 + 𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1

𝑘2 = 𝑓(𝑥𝑖, 𝑦𝑗)

for 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀 . After multiplying with −ℎ2,

2((ℎ
𝑘 )2 + 1)𝑤𝑖,𝑗 − 𝑤𝑖+1,𝑗 − 𝑤𝑖−1,𝑗 − (ℎ

𝑘 )2𝑤𝑖,𝑗+1 − (ℎ
𝑘 )2𝑤𝑖,𝑗−1 = −ℎ2𝑓(𝑥𝑖, 𝑦𝑗). (12.5)

The boundary conditions are then expressed by setting the values of 𝑤𝑖,𝑗 for 𝑖 = 0, 𝑗 = 0, 𝑖 = 𝑁 + 1
or 𝑗 = 𝑀 + 1 to the required boundary values:

𝑤0,𝑗 = 𝑔(𝑥0, 𝑦𝑗), 𝑤𝑁+1,𝑗 = 𝑔(𝑥𝑁+1, 𝑦𝑗) for 1 ≤ 𝑗 ≤ 𝑀,
𝑤𝑖,0 = 𝑔(𝑥𝑖, 𝑦0), 𝑤𝑖,𝑀+1 = 𝑔(𝑥𝑗, 𝑦𝑀+1) for 1 ≤ 𝑖 ≤ 𝑁. (12.6)

Together, Eq. 12.5 and Eq. 12.6 form a linear equation system that can be solved to obtain approxi-
mation values 𝑤𝑖,𝑗. To that end, it may be useful to renumber the “double indices” 𝑖, 𝑗 with a single
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index, setting, e.g., ℓ ∶= 𝑁(𝑖 − 1) + 𝑗. The index 𝑘 then runs from 1 to 𝑁𝑀 , and we may rewrite the
equation system as Aw = b with a 𝑁𝑀 × 𝑁𝑀 matrix A and a vector b ∈ ℝ𝑁𝑀 .

As in the one-dimensional case, the matrix A is sparse, that is, many of its entries are known to be
zero. (It is not tridiagonal, however.) This makes the system Aw = b fast to solve. Nevertheless, it
is evident that the number of mesh points (and hence of vector dimensions) can become rather large
quite easily, which sets practical limits to the accuracy of this and other approximation methods for
PDEs.

12.3 Parabolic PDEs

As a second class of PDEs to be treated with the Finite Difference method, we consider parabolic
PDEs. A typical example – and the only one we will consider – is the one-dimensional heat equation
(also known as diffusion equation). This equation for a function 𝑢 of two variables 𝑥 and 𝑡 has the
form1

𝛼2 𝜕2𝑢
𝜕𝑥2 = 𝜕𝑢

𝜕𝑡 on 𝑅 ∶= {(𝑥, 𝑡) ∶ 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡},
𝑢(𝑥, 0) = 𝑔(𝑥) for 0 < 𝑥 < 𝐿,
𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 for all 𝑡 > 0.

(12.7)

The boundary of the region 𝑅 consists of three pieces here. One also refers to the condition 𝑢(𝑥, 0) =
𝑔(𝑥) as initial condition; as we will see, it has some similarities to initial conditions for ODEs.

In applications, 𝑢(𝑥, 𝑡) might have the interpretation of a local temperature – say, in a homogeneous
wall of width 𝐿 – depending on the spatial position 𝑥 and on time 𝑡. The initial condition is the
temperature in the wall at time 0, and the remaining boundary conditions represent the temperature
of the environment, depending on time 𝑡.
Again, we will set up a Finite Difference method to approximate the solution of Eq. 12.7, following
our recipe from Section 11.3. As a first step, we restrict the region 𝑅 to a rectangle, introducing the
condition 0 ≤ 𝑡 ≤ 𝑇 (with some fixed 𝑇 > 0). Then, as for the Laplace equation, we introduce two
numbers of steps, 𝑁 and 𝑀 , associated with the 𝑥 and 𝑡 direction respectively, and two corresponding
step sizes

ℎ ∶= 𝐿
𝑁 + 1, 𝑘 ∶= 𝑇

𝑀
(note the slightly different convention for 𝑘 from before). Once more, we define mesh points (𝑥𝑖, 𝑡𝑗)
as

(𝑥𝑖, 𝑡𝑗) = (𝑖ℎ, 𝑗𝑘), 0 ≤ 𝑖 ≤ 𝑁 + 1, 0 ≤ 𝑗 ≤ 𝑀.

The next step is to approximate the derivatives of 𝑢, and here the very specific properties of the
equation Eq. 12.7 show up. In the variable 𝑥, we once more use the centred difference formula
Eq. 11.43, leading to

𝜕2𝑢
𝜕𝑥2 𝑢(𝑥𝑖, 𝑡𝑗) = 𝑢(𝑥𝑖+1, 𝑡𝑗) − 2𝑢(𝑥𝑖, 𝑡𝑗) + 𝑢(𝑥𝑖−1, 𝑡𝑗)

ℎ2 + 𝑂(ℎ2). (12.8)

However, for the derivative by 𝑡, we cannot follow the same approach. The problem here is that the
centred difference formula for the first derivative would involve 𝑢(𝑥𝑖, 𝑡𝑗+1) and 𝑢(𝑥𝑖, 𝑡𝑗−1), but we have
only one boundary (or initial) condition to fix the value if the mesh point is on the boundary of 𝑅,
and this would lead to an under-determined linear equation system later. As a way out, we use the
(much simpler) forward difference formula,

𝜕𝑢
𝜕𝑡 𝑢(𝑥𝑖, 𝑡𝑗) = 𝑢(𝑥𝑖, 𝑡𝑗+1) − 𝑢(𝑥𝑖, 𝑡𝑗)

𝑘 + 𝑂(𝑘). (12.9)

1In the form presented here, the equation is actually explicitly solvable in terms of a Fourier series. One might
ask therefore why numerical approximation methods are necessary. The answer is that the boundary conditions
𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 chosen here are rather simplistic, which was done to simplify the discussion. But the numerical
method can be generalized to more intricate boundary conditions where an explicit solution is no longer feasible.
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Further following our recipe, we insert the finite difference formulas Eq. 12.8 and Eq. 12.9 into the
PDE Eq. 12.7, then replace 𝑢(𝑥𝑖, 𝑦𝑗) with approximation values 𝑤𝑖,𝑗 and leave away the remainder
terms of order 𝑂(ℎ2) + 𝑂(𝑘). This yields the following equations for the 𝑤𝑖,𝑗:

𝛼2 𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 + 𝑤𝑖−1,𝑗
ℎ2 = 𝑤𝑖,𝑗+1 − 𝑤𝑖,𝑗

𝑘 , 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀.

or, setting 𝜆 ∶= 𝛼2𝑘/ℎ2,
𝑤𝑖,𝑗+1 = (1 − 2𝜆)𝑤𝑖,𝑗 + 𝜆(𝑤𝑖+1,𝑗 + 𝑤𝑖−1,𝑗) (12.10)

where 𝑤0,𝑗 = 𝑤𝑁+1,𝑗 = 0 for all 𝑗 (boundary condition) and 𝑤𝑖,0 = 𝑔(𝑥𝑖) for all 𝑖 (initial condition).
An interesting point is that the linear equation system Eq. 12.10 is extremely easy to solve: Namely,
inserting the known values 𝑤𝑖,0 into the right-hand side gives us 𝑤𝑖,1 for all 𝑖; again inserting these
into the right hand side gives us 𝑤𝑖,2 for all 𝑖; and so forth. We can rewrite this procedure in matrix
form: Setting

w𝑗 ∶= (𝑤1,𝑗, … , 𝑤𝑁,𝑗),

A+ ∶=
⎛⎜⎜⎜⎜⎜⎜
⎝

(1 − 2𝜆) 𝜆 0 ⋯ 0
𝜆 (1 − 2𝜆) 𝜆 0 ⋯ 0
0 𝜆 (1 − 2𝜆) 𝜆 ⋯ 0
0 ⋱ ⋱ ⋱ ⋱ 𝜆
0 ⋯ 0 𝜆 (1 − 2𝜆)

⎞⎟⎟⎟⎟⎟⎟
⎠

(an 𝑁 × 𝑁 matrix),

we obtain the relation
w𝑗+1 = A+w𝑗.

Thus, starting with the initial value w0, the approximation can be obtained by an iterated matrix
multiplication. This approximation method is called the Forward Difference method.

The Forward Difference method is very simple to apply, but it has a major disadvantage: it becomes
unstable if the the step size 𝑘 is not chosen very small. This phenomenon is closely related to the one
we saw for stiff equations in Section 10.9. We will skip a more in-depth analysis here; see (Burden
and Faires 2010, sec. 12.2).

We do, however, want to present a solution to the stability problem here, which is similar to the one
found for stiff equations: we use an “implicit method” for approximation, the Backward Difference
method. To that end, instead of the forward difference formula Eq. 12.9, we use the backward difference
formula

𝜕𝑢
𝜕𝑡 (𝑥𝑖, 𝑡𝑗) = 𝑢(𝑥𝑖, 𝑡𝑗) − 𝑢(𝑥𝑖, 𝑡𝑗−1)

𝑘 + 𝑂(𝑘). (12.11)

Leaving all other construction steps the same, we arrive at another method of order 𝑂(ℎ2 + 𝑘) where
the equation system Eq. 12.10 is now replaced by

𝑤𝑖,𝑗−1 = (1 + 2𝜆)𝑤𝑖,𝑗 − 𝜆(𝑤𝑖+1,𝑗 + 𝑤𝑖−1,𝑗). (12.12)

Again, we rewrite this in matrix form: with

w𝑗 ∶= (𝑤1,𝑗, … , 𝑤𝑁,𝑗),

A− ∶=
⎛⎜⎜⎜⎜⎜⎜
⎝

(1 + 2𝜆) −𝜆 0 ⋯ 0
−𝜆 (1 + 2𝜆) −𝜆 0 ⋯ 0
0 −𝜆 (1 + 2𝜆) −𝜆 ⋯ 0
0 ⋱ ⋱ ⋱ ⋱ −𝜆
0 ⋯ 0 −𝜆 (1 + 2𝜆),

⎞⎟⎟⎟⎟⎟⎟
⎠

,

we can rewrite Eq. 12.12 as
w𝑗−1 = A−w𝑗.
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This does no longer explicitly give w𝑗 from w𝑗−1. However, this is only a matter of matrix inversion
(or, equivalently, solving linear equation systems) as we clearly have

w𝑗 = A−1
− w𝑗−1.

Starting from w0, this again allows us to compute all approximation values by iterative matrix multi-
plication (or iteratively solving linear equation systems). Since the matrix A is sparse (tridiagonal),
this can be done very efficiently. Thus the Backward Difference method is only slightly more complex
than the Forward Difference method. It does, however, not suffer from stability problems.

We can reach a unified view of the two schemes by considering the 𝑁 × 𝑁 tridiagonal matrix

𝐵 =
⎛⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
0 ⋱ ⋱ ⋱ ⋱ −1
0 ⋯ 0 −1 2

⎞⎟⎟⎟⎟⎟⎟
⎠

Applied to a vector 𝑦 ∈ ℝ𝑁 , it gives

−2𝑦1 + 𝑦2, … , 𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖+1, … , 𝑦𝑁−1 − 2𝑦𝑁

Apart from a factor of 1/ℎ2, this is exactly the symmetric difference formula for the second derivative,
applied the sequence of values 0, 𝑦1, 𝑦2, … , 𝑦𝑁 , 0.
Consider Euler’s method, with step length 𝑘:

w𝑗+1 = w𝑗 + 𝑘(derivative)

In our problem, the time derivative is 𝛼2 times the second space derivative, which can be calculated
using the matrix 𝐵. Once the scale factors are taken into account, Euler’s method leads us to

w𝑗+1 = w𝑗 + 𝜆𝐵w𝑗 = (𝐼 + 𝜆𝐵)w𝑗 = 𝐴+w𝑗

which is exactly the forward difference method above. The backward difference method is given by

w𝑗+1 = w𝑗 + 𝜆𝐵w𝑗+1

in which we think of the one-sided difference quotient as an approximation for the derivative at the
right-hand endpoint, not the left-hand endpoint. This rearranges to

w𝑗 = (𝐼 − 𝜆𝐵)w𝑗+1 = 𝐴−w𝑗+1,

which is exactly the backward difference method above. As a single-step method for ODEs, this is
known as the backward Euler or implicit Euler method.

Finally, analogously to the implicit trapezoidal method, we can use the average of the steps from the
forward and backward difference method to give the Crank-Nicolson method.

w𝑗+1 = w𝑗 + 1
2 (𝜆𝐵w𝑗 + 𝜆𝐵w𝑗+1)

Rearranging this gives us
(𝐼 − 𝜆𝐵/2)w𝑗+1 = (𝐼 + 𝜆𝐵/2)w𝑗

Like the backward difference method, this gives us a tridiagonal system of equations to solve to get
from w𝑗 to w𝑗+1, and can be used to find w𝑗 for any 𝑗.
It turns out that the error terms for the forward and backward difference methods have the form
𝐶𝑘 + 𝑂(𝑘2) and −𝐶𝑘 + 𝑂(𝑘2). Taking the average cancels the ±𝐶𝑘 terms and leaves an error of
order 𝑂(𝑘2); in combination with the space variable, we have 𝑂(ℎ2) + 𝑂(𝑘2) for the whole method,
as compared with 𝑂(ℎ2) + 𝑂(𝑘) for the forward and backward difference methods. Like the implicit
trapezoidal method, the Crank-Nicolson method is absolutely stable.
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A Taylor’s theorem

In many of the approximations and error estimates that we make throughout this course, Taylor’s
theorem plays an important role. Since the theorem can be formulated in various ways, in particular,
with different forms of the remainder term, it will be recalled in this appendix, with the conventions
we use.

We first repeat the theorem in its simplest form, for a real-valued function of one real variable, with
the remainder in Lagrange form (Apostol 1969, sec. 7.7).

Theorem A.1. Let 𝐼 ⊂ ℝ be an interval, and 𝑓 ∈ 𝒞𝑘+1(𝐼, ℝ). For each 𝑎 ∈ 𝐼 and 𝑥 ∈ 𝐼, there exists
𝜉 ∈ [𝑎, 𝑥] such that

𝑓(𝑥) =
𝑘

∑
𝑗=0

1
𝑗!

𝑑𝑗𝑓
𝑑𝑥𝑗 (𝑎) (𝑥 − 𝑎)𝑗 + 1

(𝑘 + 1)!
𝑑𝑘+1𝑓
𝑑𝑥𝑘+1 (𝜉) (𝑥 − 𝑎)𝑘+1. (A.1)

For our purposes, we need generalizations of Taylor’s theorem both to functions of several variables
and to vector-valued functions. Let us formulate a full generalization to functions f ∶ ℝ𝑚 → ℝ𝑛, even
if we do not actually need it in this generality.

For this, we need some notation. A tuple of 𝑚 nonnegative integers, j = (𝑗(1), … , 𝑗(𝑚)) ∈ ℕ𝑚
0 , is called

a multi-index. We use the following shorthand notation:

|j| = 𝑗(1) + … + 𝑗(𝑚) (the length of the multi-index),
j! = 𝑗(1)! ⋅ … ⋅ 𝑗(𝑚)!,

xj = (𝑥(1))𝑗(1) ⋅ … ⋅ (𝑥(𝑚))𝑗(𝑚) for x ∈ ℝ𝑚,
𝜕 |j|f
𝜕xj = 𝜕 |j|f

(𝜕𝑥(1))𝑗(1) ⋯ (𝜕𝑥(𝑚))𝑗(𝑚) .

(A.2)

Taylor’s theorem can then be formulated as follows.

Theorem A.2. Let 𝐷 ⊂ ℝ𝑚 be convex, and let f ∈ 𝒞𝑘+1(𝐷, ℝ𝑛). For each a ∈ 𝐷, there exists
Ra ∶ 𝐷 → ℝ𝑛 such that

f(x) = ∑
|j|≤𝑘

1
j!

𝜕 |j|f
𝜕xj (a) (x − a)j + Ra(x) (A.3)

and
‖Ra(x)‖ ≤ ‖x − a‖𝑘+1 ∑

|j|=𝑘+1

1
j! sup

x′∈𝐷
∥𝜕 |j|f
𝜕xj (x′)∥ (A.4)

for all x ∈ 𝐷.

(See (Devinatz 1968, sec. 7.4) for a proof in the case 𝑛 = 1 and with an explicit remainder term. The
above version then follows by estimating the remainder with its supremum, and taking the maximum
over the components of f. It is possible to obtain an explicit form of the remainder for 𝑛 > 1 as well,
although not in Lagrange form; but the formula is slightly complicated, and we will not need it.)

We are interested in the following special cases. First, there is the case where 𝑚 = 1, i.e., f depends
only on one variable. Then the multi-index j is just a number 𝑗 ∈ ℕ0, the partial derivatives are
ordinary derivatives, and we obtain:
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Theorem A.3. Let 𝐼 be an interval, and let f ∈ 𝒞𝑘+1(𝐼, ℝ𝑛). For each 𝑎 ∈ 𝐼, there exists R𝑎 ∶ 𝐼 → ℝ𝑛

such that

f(𝑥) =
𝑘

∑
𝑗=0

1
𝑗!

𝑑𝑗f
𝑑𝑥𝑗 (𝑎) (𝑥 − 𝑎)𝑗 + R𝑎(𝑥) (A.5)

and
‖R𝑎(𝑥)‖ ≤ |𝑥 − 𝑎|𝑘+1

(𝑘 + 1)! sup
𝑥′∈𝐼

∥ 𝑑𝑗f
𝑑𝑥𝑗 (𝑥′)∥ (A.6)

for all 𝑥 ∈ 𝐼.

On other occasions, we will need the function f ∶ ℝ𝑚 → ℝ𝑛 in full generality, but use the Taylor
expansion only up to order 𝑘 ≤ 1. In this case, the relevant derivatives of f can be written in an easier
way: Those with |j| = 1 are just single derivatives 𝜕f/𝜕𝑥(𝑝) with 𝑝 ranging from 1 to 𝑚, and they can
conveniently be combined into a matrix 𝜕f/𝜕x. We have

∑
|j|=1

1
j!

𝜕 |j|f
𝜕xj (a) (x − a)j = 𝜕f

𝜕x(a) ⋅ (x − a), (A.7)

reading the r.h.s. as a matrix product. The derivatives with |j| = 2 are of the form 𝜕2f/𝜕𝑥(𝑝)𝜕𝑥(𝑞),
where both cases 𝑝 = 𝑞 and 𝑝 ≠ 𝑞 occur. Working out the numerical prefactors, one obtains the
following special cases for order 𝑘 = 0 and 𝑘 = 1 repectively.

Theorem A.4. Let 𝐷 ⊂ ℝ𝑚 be convex, and let f ∈ 𝒞1(𝐷, ℝ𝑛). For each a ∈ 𝐷, there exists
Ra ∶ 𝐷 → ℝ𝑛 such that

f(x) = f(a) + Ra(x) (A.8)

and
‖Ra(x)‖ ≤ ‖x − a‖ sup

x′∈𝐷
∥ 𝜕f
𝜕x(x′)∥ (A.9)

for all x ∈ 𝐷.

Theorem A.5. Let 𝐷 ⊂ ℝ𝑚 be convex, and let f ∈ 𝒞2(𝐷, ℝ𝑛). For each a ∈ 𝐷, there exists
Ra ∶ 𝐷 → ℝ𝑛 such that

f(x) = f(a) + 𝜕f
𝜕x(a) ⋅ (x − a) + Ra(x) (A.10)

and
‖Ra(x)‖ ≤ 1

2‖x − a‖2
𝑚

∑
𝑝,𝑞=1

sup
x′∈𝐷

∥ 𝜕2f
𝜕𝑥(𝑝)𝜕𝑥(𝑞) (x′)∥ (A.11)

for all x ∈ 𝐷.
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