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Welcome

This site will contain the lecture notes and problem sheets for the Ecology and Epidemiology
part of the “Mathematical Ecology, Epidemiology and Evolution” module as taught at the
University of York in the Spring of 2024. The mathematics used in Mathematical Ecology
and in Mathematical Epidemiology are quite similar, whereas the mathematics used in Math-
ematical Evolution has a different flair and that part is taught by a different lecturer, George
Constable.

The Mathematical Ecology and Epidemiology part is taught in three two-week blocks, with
each block consisting of 6 lectures, one problem sheet, one examples class and one small-group
seminar. Between each block there will be a two-week block of Mathematical Evolution.

The notes will be created after each lecture and will continue to be periodically revised. When-
ever you spot something that is not quite right, please email me at gustav.delius@york.ac.uk or
submit your correction in the correction form at https://forms.gle/w17c19vWnM7wpLpz7.
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1 Continuous-time population models

We are interested in modelling the time evolution of the population number 𝑁(𝑡), starting
with the current population number 𝑁(0) = 𝑁0. Thinking about the processes by which the
population number can change, we see that we can write the rate of change in the population
number as

𝑑𝑁
𝑑𝑡 = birth rate− death rate+ immigration rate− emigration rate. (1.1)

The idea behind this approach is that if we understand how the rates at which these processes
take place depend on the population number 𝑁 , then we can find 𝑁(𝑡) by solving the above
differential equation. Different assumptions about the individual rates will give us different
models for N(t). We will look at some influential models now.

1.1 Exponential model

This is the simplest and oldest model, introduced by Thomas Robert Malthus in 1798. If we
assume that the per-capita birth rate 𝑏 and the per-capita death rate 𝑑 are fixed constants,
then the general differential equation Eq. 1.1 becomes the linear equation

𝑑𝑁
𝑑𝑡 = 𝑏𝑁 − 𝑑𝑁 = 𝑟𝑁, (1.2)

where we introduced the new parameter 𝑟 = 𝑏 − 𝑑. This equation is easy to solve:

𝑁(𝑡) = 𝑁0 𝑒𝑟𝑡. (1.3)

If the birth rate exceeds the death rate and hence 𝑟 > 0, the model predicts exponential growth.
In the opposite case of lower birth rate than death rate the model predicts exponential decay
of the population number towards extinction. Only when birth and death rates are perfectly
equal can the population stay steady over time. We illustrate that in Figure 1.1.

1.2 Logistic model

Exponential population growth can not be maintained for ever. There will be a limit to the
size of population that an ecosystem can maintain. When the population gets closer to this
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Solutions of exponential model

r>0
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Figure 1.1: Solutions to the exponential model.

limit its growth rate will decrease, for example due to competition for limited food sources or
space, or due to disease. This decrease in the growth rate is captured by the logistic equation

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾) , (1.4)

where 𝐾 is the carrying capacity of the environment. The extra factor of 1 − 𝑁/𝐾 decreases
the growth rate towards zero as the population number 𝑁 approaches the carrying capacity
𝐾.

In Figure 1.2 make a plot of the right-hand side of the logistic equation Eq. 1.4 to see how
the growth rate depends on the population number. While that figure was created by the
computer, the plot is easy to sketch by hand because the function we want to sketch is simply
an upside-down parabola. The maximum of the parabola is at 𝑁 = 𝐾/2 and the parabola
crosses the 𝑁 -axis at 𝑁 = 0 and 𝑁 = 𝐾. This means that the population growth rate is zero
at 𝑁 = 0 and 𝑁 = 𝐾, and it is maximal at 𝑁 = 𝐾/2.
From the plot we see that the growth rate is zero at 𝑁 = 0 and 𝑁 = 𝐾, and it is maximal
at 𝑁 = 𝐾/2. By realising that 𝑑𝑁/𝑑𝑡 is the slope of the graph of 𝑁(𝑡) we can sketch a few
solutions to the logistic equation Eq. 1.4 in Figure 1.3.

The logistic equation Eq. 1.4 can be solved analytically to give

𝑁(𝑡) = 𝐾
1 + ( 𝐾

𝑁0
− 1) 𝑒−𝑟𝑡

= 𝑁0𝐾𝑒𝑟𝑡
𝐾 +𝑁0(𝑒𝑟𝑡 − 1). (1.5)
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Figure 1.2: The logistic growth rate as a function of the population number.
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Solutions of logistic model

Figure 1.3: Solutions to the logistic equation.
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1.3 Allee effect

Warder Clyde Allee (1885-1955) was an American ecologist who studied the effects of popula-
tion density on the growth rate of a population. He found that in some cases the per-capita
growth rate can increase with 𝑁 . This is called the Allee effect. It can occur when the
population is too small to find a mate, to find food, or to avoid predators.

Figure Figure 1.4 shows the per-capita growth rate as a function of the population number
for exponential growth in black, for logistic growth in blue and two different growth rates
exhibiting the Allee effect in green and red.

N

pe
r-c

ap
ita

 ra
te

K00 K
exponential model
logistic model
weak Allee effect
strong Allee effect

Figure 1.4: The per-capita growth rate as a function of the population number.

The green curve in Figure 1.4 shows a weak Allee effect, where the per-capita rate is small
but possitive for small population sizes, then initially increases with the population size before
then decreasing again as the population approaches its carrying capacity. The red curve shows
a strong Allee effect, which is similar but so strong that the growth rate starts out not just
small but actually negative for small 𝑁 .

The simplest model for the Allee effect is the logistic equation with a modified growth rate
that includes another factor that decreases the growth rate for small 𝑁 :

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾)( 𝑁
𝐾0

− 1) . (1.6)

If 0 < 𝐾0 < 𝐾, this exhibits the strong Allee effect because the growth rate is negative when
𝑁 < 𝐾0. This means that the population will be driven towards extinction when it is below
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the threshold size 𝐾0 and it will grow towards its carrying capacity when it is above 𝐾0. This
is illustrated in Figure 1.5.

N

dN
/d

t

K00 K

Figure 1.5: The Allee growth rate as a function of the population number.

This phenomenon is important for conservation biology because it means that small popula-
tions are particularly vulnerable to extinction. It is also important for fisheries management
because it means that the population can collapse if it falls below a certain threshold size. The
phenomenon is called “critical depensation”. We will meet it again when we discuss harvesting
later in this section.

1.4 General autonomous ODE model

The logistic model is a special case of a general autonomous ordinary differential equation
(ODE) model

𝑑𝑁
𝑑𝑡 = 𝑓(𝑁), (1.7)

where 𝑓(𝑁) is a function of 𝑁 only, not 𝑡. The logistic equation Eq. 1.4 is an example of such
a model with

𝑓(𝑁) = 𝑟𝑁 (1 − 𝑁
𝐾) .

If 𝑓 is Lipschitz continuous, then, given 𝑁(0) = 𝑁0, there exists a unique solution 𝑁(𝑡) to the
initial value problem Eq. 1.7. This is a consequence of the Picard-Lindelöf theorem.

We are interested in the steady states of the model, i.e. the values 𝑁 ∗ for which 𝑓(𝑁 ∗) = 0.
These are the values of 𝑁 for which the population number does not change. To determine
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the stability of the steady states, we can look near 𝑁 ∗ by writing 𝑁(𝑡) = 𝑁 ∗ + 𝑛(𝑡) with 𝑛(𝑡)
small. Then 𝑑𝑁

𝑑𝑡 = 𝑑𝑁 ∗

𝑑𝑡 + 𝑑𝑛
𝑑𝑡 = 𝑓(𝑁 ∗ + 𝑛(𝑡)) ≈ 𝑓(𝑁 ∗) + 𝑓 ′(𝑁 ∗) 𝑛(𝑡).

We now use that 𝑑𝑁 ∗/𝑑𝑡 = 0 and 𝑓(𝑁 ∗) = 0 to find

𝑑𝑛
𝑑𝑡 ≈ 𝑓 ′(𝑁 ∗) 𝑛(𝑡).

This is a linear equation for 𝑛(𝑡) with solution

𝑛(𝑡) = 𝑛(0)𝑒𝑓′(𝑁∗)𝑡

and we can use the sign of 𝑓 ′(𝑁 ∗) to determine the stability of the steady state:

• If 𝑓 ′(𝑁 ∗) < 0, then 𝑛(𝑡) will decrease towards zero, and the steady state is stable.

• If 𝑓 ′(𝑁 ∗) > 0, then 𝑛(𝑡) will increase away from zero, and the steady state is unstable.

If 𝑓 ′(𝑁 ∗) = 0, then we need to look at higher order terms to determine the stability.

We illustrate this in the example of the logistic model. The fixed points are 𝑁 ∗ = 0 and
𝑁 ∗ = 𝐾. The derivative of 𝑓(𝑁) is

𝑓 ′(𝑁) = 𝑟(1 − 2𝑁
𝐾 ) .

So we find that 𝑓 ′(0) = 𝑟 > 0 and 𝑓 ′(𝐾) = −𝑟 < 0. This means that the steady state 𝑁 ∗ = 0
is unstable and the steady state 𝑁 ∗ = 𝐾 is stable. This agrees with what we had already seen
graphically in Figure 1.2 and Figure 1.3.

1.5 Harvesting a renewable resource

Ecologists model populations not only out of academic interest but also for practical purposes.
Humans are interested in exploiting the natural resources. They want o harvest fish from the
sea, to hunt deer in the forest, and to cut down trees in the jungle. They want to do this in a
way that is sustainable, i.e. that does not lead to the extinction of the resource, while at the
same time giving the highest yield.

My personal interest is in understanding how fish populations react to different kinds of fish-
ing. I use coupled partial integro-differential equations for that purpose, but most fisheries
management is based on simpler models and we get a good first idea by using the logistic
model, which we will now modify to include harvesting.

12



1.5.1 Harvesting with fixed effort

We assume that in the absence of fishing the fish population number 𝑁(𝑡) is governed by the
logistic equation Eq. 1.4. We also assume that the fish are harvested at a rate 𝐸𝑁(𝑡), where
𝐸 is the harvesting rate, which is determined by the effort that is put into fishing. This means
that the rate of change in the fish population number is given by

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾)−𝐸𝑁 = 𝑓(𝑁). (1.8)

We can rewrite this equation in the form of a logistic equation with modified parameters:
𝑑𝑁
𝑑𝑡 = 𝑟𝑁 ((1 − 𝐸

𝑟 ) − 𝑁
𝐾) . (1.9)

This makes it easy to read off the fixed points 𝑁 ∗ = 0 and 𝑁 ∗ = 𝐾 (1 − 𝐸
𝑟 ). The nonzero

fixed point gets smaller when fishing effort 𝐸 increases. This is illustrated in Figure 1.6.

N

dN
/d

t

E = 0
0 < E < r
E > r

Figure 1.6: Growth rate when harvesting with fixed effort.

We are now interested in finding out at what level we should fish in order to achive the
maximum sustainable yield (MSY). This is the level of fishing effort that gives the highest
possible yield that can be sustained indefinitely. So we are interested in the yield at the non-
zero fixed point 𝑁 ∗ = 𝐾 (1 − 𝐸

𝑟 ). The yield is the amount of fish that can be harvested per
unit time, and it is given at the fixed point by

𝑌 = 𝐸𝑁 ∗ = 𝐸𝐾 (1 − 𝐸
𝑟 ) .

We can find the maximum of 𝑌 by differentiating with respect to 𝐸 and setting the derivative
equal to zero:

𝑑𝑌
𝑑𝐸 = 𝐾 (1 − 2𝐸

𝑟 ) = 0.
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We can solve this equation for 𝐸 to find the optimal fishing effort 𝐸∗:

𝐸∗ = 𝑟
2.

The resulting maximum sustainable yield is

𝑀𝑆𝑌 = 𝑟
2𝐾 (1 − 𝑟

2𝑟) = 𝑟𝐾
4 .

1.5.2 Harvesting with fixed quote

Fisheries managers in the Mediterranean are aiming to control the fishing effort in order to
achieve the maximum sustainable yield, and we have seen how to model that in the previous
section. Fisheries in the North Sea or the North Atlantic however are instead managed by
setting the total allowable catch (TAC) for the whole fleet. This is a fixed quota for the total
amount of fish that can be harvested in a year. To model that policy we use the logistic
equation with harvesting, but we replace the harvesting rate 𝐸𝑁 by a harvesting quota 𝑄:

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾)−𝑄. (1.10)

This is visualised in Figure 1.7.

N

dN
/d

t

Q = 0
rK/4 > Q > 0
Q > rK/4

Figure 1.7: Growth rate when harvesting with fixed quota.

We see that any non-zero quota leads to critical depensation, i.e., it introduces a critical
threshold below which the population will collapse. This is a well-known problem in fisheries
management, and it is the reason why the TAC is set to zero for some fish stocks. As the fishing
quota is increased, the critical depensation threshold moves to higher population numbers and
the stable steady state moves to lower population numbers. Eventually all non-zero fixed
points disappear and the population collapses.
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1.6 Exercises

Exercises marked with a * are essential and are to be handed in. Exercises marked with
a + are important and you are urged to complete them. Other exercises are optional but
recommended.

1.6.0.1 *Sketching solutions

Exercise 1.1. Consider the population model with carrying capacity and Allee effect given
by the differential equation

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾)( 𝑁
𝐾0

− 1) .

Here 𝑟 > 0, 𝐾 > 𝐾0 > 0 are constants. Simply by considering the shape of the right hand
side, sketch a graph with several solutions for different initial conditions. Choose two initial
conditions between 0 and𝐾0, two initial conditions between𝐾0 and𝐾 and one initial condition
larger than 𝐾. Note that the graph only needs to be qualitatively correct, similar to the rough
sketch for the solutions of the logistic model sketched in the first lecture.

1.6.0.2 +Von Bertalanffy growth

Exercise 1.2. Assume the weight 𝑤(𝑡) of an individual fish at time 𝑡 is governed by the
differential equation

𝑑𝑤
𝑑𝑡 = 𝛼𝑤2/3 − 𝛽𝑤

with initial condition 𝑤(0) = 𝑤0 (the weight at birth), and where 𝛼 and 𝛽 are positive param-
eters depending on the fish species.

i) Without solving the differential equation, just thinking about fixed points and their
stability, determine lim𝑡→∞ 𝑤(𝑡).

ii) Derive the linear first order ODE for 𝑢 = 𝑤1/3 and solve it.

iii) Use the solution for 𝑢 to find the solution for 𝑤.
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1.6.0.3 Solving logistic equation

Exercise 1.3. By using separation of variables and partial fractions, solve the logistic equation

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾)

with initial condition 𝑁(0) = 𝑁0.

1.6.0.4 * Harvesting with fixed effort

Exercise 1.4. Consider a population 𝑁(𝑡) that is described by the by the Gompertz model

𝑑𝑁
𝑑𝑡 = 𝛼𝑁 log 𝐾

𝑁 ,

where 𝛼 and 𝐾 are positive constants. You want to harvest this population, for example by
hunting or fishing, with some effort 𝐸. The rate at which you harvest individuals (which
removes them from the population and hence results in an additional source of death) is
proportional to the size of the population: 𝑌 = 𝐸𝑁 . This is called the yield. Write down
the differential equation for 𝑁(𝑡) including this harvesting term. Determine the fixed points
and their stability. Find the maximum sustainable yield, i.e., the maximum yield that can be
sustained indefinitely.

1.6.0.5 Harvesting with fixed quota

Exercise 1.5. As in Exercise 1.4, consider a population 𝑁(𝑡) that is described by the Gom-
pertz model. Imagine that this describes a fish population in a lake where fishing is going to
be introduced, and that you are tasked with setting the quota that limits the rate at which
the fishers are allowed to take fish out of the lake. The fishers demand that you set the quota
to the maximum sustainable level. What is the maximum sustainable quota according to the
model? Would it be wise to give in to the demand of the fishers and set the quota at this
level?
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1.6.0.6 Wasp model

Exercise 1.6. In a colony of the European Hornet there is a single queen that produces all
the offspring. It produces two kinds of offspring: workers and reproducers. We’ll denote the
number of workers alive at time 𝑡 by 𝑛(𝑡) and the number of reproducers by 𝑁(𝑡). The workers
are responsible for collecting food. They can’t breed themselves and they die in the winter.
However they are necessary to allow the queen to reproduce because without the food that
they are collecting the queen would have nothing to eat. So we need workers. But because
they die in winter, they don’t help the survival of the colony in the long run. That’s where
the reproducers come in. They don’t do any work, but they can, if they survive the winter,
breed in the next spring as new queens.

So the queen now has a strategy of how to proceed: It first of all needs to produce workers,
and from time zero to time 𝑡𝑐 it only produces workers. We assume that the birth rate is
proportional to the number of workers, so that the total birth rate of workers is 𝑟𝑛(𝑡) for some
constant 𝑟 > 0. The queen then switches to producing only reproducers from time 𝑡𝑐 up to
the start of winter at time 𝑇 and we assume that the total birth rate of reproducers is 𝑅𝑛(𝑡)
for some constant 𝑅 > 0. We also assume that until the start of winter there are no deaths.

What is the optimal time 𝑡𝑐 at which the queen should switch from producing workers to
producing reproducers in order to achieve the largest number of producers 𝑁(𝑇 ) at the start
of the winter and therefore to the largest number of wasps in the following year.

1.6.0.7 Wasp model with death

Exercise 1.7. In the wasp example from question 1, assume that the worker wasps die at
a constant per-capita rate 𝑑 but the reproducers do not die. Also assume that at time t=0
there is one worker, n(0)=1. Keep the birth rates as in Exercise 1.6. Determine the number
of workers 𝑛(𝑡) for any time between 𝑡𝑐 and 𝑇 . Determine the number of reproducers at the
onset of winter at time 𝑇 . Derive the optimal time for the switchover time 𝑡𝑐.
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2 Discrete-time population models

So far we have assumed that the rate of change of the population number has no explicit time
dependence. However births and also deaths often happen on an annual cycle. Many fish have
their spawning season in the spring, and many birds breed in the summer and annual plants
produce their seed and then die in winter. In this case, the rate of change of the population
number is not constant, but depends on the time of the year. We can model this by introducing
a time dependence in the birth and death rates. However this will lead to equations that will
be difficult to analyse. Instead we can give up on the idea of modelling the population numbers
continuously through time and instead only follow how the population changes from year to
year.

So we will use models of the form
𝑁𝑡+1 = 𝑓(𝑁𝑡) (2.1)

where 𝑁𝑡 is the population number at time 𝑡 and 𝑓 is some function. Time 𝑡 now takes
on only integer values, and the population number is only defined at these times. This is
called a discrete-time model. Given the initial population number 𝑁0, we can calculate the
population number at any future time 𝑡 by iterating the function 𝑓 : 𝑁1 = 𝑓(𝑁0), 𝑁2 =
𝑓(𝑁1) = 𝑓(𝑓(𝑁0)),…𝑁𝑡 = 𝑓(𝑓(…𝑓(𝑁0)…)).

2.1 Exponential model

The simplest discrete-time model is the exponential model

𝑁𝑡+1 = 𝑅𝑁𝑡 (2.2)

where 𝑅 > 0 is the growth factor. This is the discrete-time version of the continuous-time
exponential model. The solution to this equation is

𝑁𝑡 = 𝑁0𝑅𝑡. (2.3)

It is important to stress that 𝑅 is not a growth rate but a dimensionless growth factor. Com-
paring the discrete-time solution to the continuous-time solution 𝑁(𝑡) = 𝑁0 exp(𝑟𝑡) we see
that they agree at integer times 𝑡 if we measure time in years and set

𝑅 = exp(𝑟 ⋅ 1 year). (2.4)
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If you are confused by the units, remember that the exponential function is dimensionless, so
the argument of the exponential function must be dimensionless. We need the extra factor of
1 year because 𝑟 is a rate and has dimension 1/time.

The population number grows exponentially with time if 𝑅 > 1 and declines exponentially if
𝑅 < 1. To get more realistic models we again need to introduce a limited carrying capacity.

2.2 Models with limited carrying capacity

Recall how we introduced the logistic model by assuming that the per-capita birth rate declines
linearly with the population number and vanishes when the population reaches its carrying
capacity. This gave us the equation

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾) (2.5)

where 𝑟 is the per-capita growth rate and 𝐾 is the carrying capacity.

It turns out that there are several models which all deserve to be called the discrete-time
logistic model.

2.2.1 Verhulst model

The most famous discrete-time logistic model is the Verhulst model.

𝑁𝑡+1 = (𝑅0 + 1)𝑁𝑡 (1 − 𝑁𝑡
𝐾(𝑅0 + 1)/𝑅0

)

= 𝑁𝑡 +𝑅0𝑁𝑡 (1 − 𝑁𝑡
𝐾 ) = 𝑓(𝑁𝑡).

(2.6)

Again it is important to stress that 𝑅0 is not a growth rate but a dimensionless growth factor.

We have written the model in two alternative forms because the first form makes the analogy
with the continuous-time logistic model more obvious, while the second form makes it easier
to read off the fixed point.

The fixed point is a value for which 𝑁𝑡+1 = 𝑁𝑡, i.e. a value of 𝑁 for which the population
number does not change from year to year. Thus it is a value 𝑁 ∗ for which 𝑓(𝑁 ∗) = 𝑁 ∗. Using
the second form of the model, we can see easily that the fixed points are 𝑁 ∗ = 0 and 𝑁 ∗ = 𝐾,
so 𝐾 is the carrying capacity.

A problem with the Verhulst model is that it can give rise to negative population numbers.
This is not realistic, so we are motivated to modify the model to prevent this.
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2.2.2 Ricker model

The Ricker model is a modification of the Verhulst model that prevents negative population
numbers. It is given by

𝑁𝑡+1 = 𝑁𝑡 𝑒𝑅0(1−𝑁𝑡
𝐾 ). (2.7)

By moving the logistic factor inside the exponential, the Ricker model prevents negative popu-
lation numbers. The fixed points are still 𝑁 ∗ = 0 and 𝑁 ∗ = 𝐾. Ricker introduced this model
to describe salmon populations.

2.2.3 Beverton-Holt model

The Beverton-Holt model is another modification of the Verhulst model which prevents nega-
tive population numbers. It is given by

𝑁𝑡+1 = 𝑅𝑁𝑡
1 + 𝑅−1

𝐾 𝑁𝑡
. (2.8)

This has been a very influential model in fisheries science. On the face of it the model does
not look very similar to the logistic model, but we will see the relationship when we solve the
model. The Beverton-Holt model is one of the rare cases where a non-linear model can be
solved exactly. The trick is to make a change of variables from 𝑁𝑡 to 𝑢𝑡 = 1/𝑁𝑡. Then we
have

𝑢𝑡+1 = 1
𝑁𝑡+1

= 1 + 𝑅−1
𝐾 𝑁𝑡

𝑅𝑁𝑡
= 𝑢𝑡

𝑅 + 𝑅 − 1
𝑅𝐾 . (2.9)

This is a linear equation for 𝑢𝑡, and linear equations are easy to solve. The easiest way to
proceed is to look at the first few terms of the sequence 𝑢𝑡 and guess the general form of the
solution. We find

𝑢1 = 𝑢0
𝑅 + 𝑅 − 1

𝑅𝐾 ,

𝑢2 = 𝑢0
𝑅2 + 𝑅 − 1

𝑅𝐾 (1 + 1
𝑅) ,

𝑢3 = 𝑢0
𝑅3 + 𝑅 − 1

𝑅𝐾 (1 + 1
𝑅 + 1

𝑅2) ,

⋮

𝑢𝑡 =
𝑢0
𝑅𝑡 + 𝑅 − 1

𝑅𝐾 (1 + 1
𝑅 + 1

𝑅2 +…+ 1
𝑅𝑡−1) .

(2.10)

The sum in the second term is a geometric series. We know the general formula for a geometric
series:

1 + 𝑥 + 𝑥2 +…+ 𝑥𝑡−1 = 1 − 𝑥𝑡

1 − 𝑥 . (2.11)
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We can use this with 𝑥 = 1/𝑅 to sum terms in the second term. We find

𝑢𝑡 =
𝑢0
𝑅𝑡 + 𝑅 − 1

𝑅𝐾
1 − (1/𝑅)𝑡
1 − 1/𝑅 .

We simplify this a bit and bring everything on the same denominator.

𝑢𝑡 =
𝑢0
𝑅𝑡 − (1/𝑅)𝑡 − 1

𝐾 = 𝐾𝑢0 − 1 + 𝑅𝑡

𝐾𝑅𝑡 . (2.12)

We can now change back to 𝑁𝑡 = 1/𝑢𝑡 to find the solution to the Beverton-Holt model. We
find

𝑁𝑡 =
1
𝑢𝑡

= 𝐾𝑅𝑡

𝐾𝑢0 − 1 + 𝑅𝑡

= 𝐾/𝑢0
𝐾𝑅−𝑡 −𝑅−𝑡/𝑢0 + 1/𝑢0

= 𝐾𝑁0
𝑁0 + (𝐾 −𝑁0)𝑅−𝑡 .

(2.13)

This is the solution to the Beverton-Holt model. Comparing this to the solution of the
continuous-time logistic model

𝑁(𝑡) = 𝐾𝑁0
𝑁0 + (𝐾 −𝑁0) exp(−𝑟𝑡) (2.14)

we see that they agree at integer times 𝑡 if we measure time in years and set 𝑅 = exp(𝑟 ⋅
1 year).

2.3 Stability and Cobwebs

We now want to study the stability of the fixed points in discrete-time models. As discussed,
fixed points 𝑁 ∗ satisfy the equation 𝑁 ∗ = 𝑓(𝑁 ∗). We study the stability of the fixed points by
looking at the sequence 𝑁𝑡 for 𝑡 close to the fixed point. That means we write 𝑁(𝑡) = 𝑁 ∗+𝑛𝑡
for 𝑛𝑡 << 1. We then have

𝑁𝑡+1 = 𝑁 ∗ + 𝑛𝑡+1 = 𝑓(𝑁𝑡) = 𝑓(𝑁 ∗ + 𝑛𝑡) = 𝑓(𝑁 ∗) + 𝑓 ′(𝑁 ∗)𝑛𝑡 +… (2.15)

where we have used the Taylor expansion of 𝑓 around 𝑁 ∗. Because 𝑁 ∗ is a fixed point, we
have 𝑓(𝑁 ∗) = 𝑁 ∗. Thus we find that

𝑛𝑡+1 ≈ 𝑓 ′(𝑁 ∗)𝑛𝑡 (2.16)

where we neglected the higher order terms in the Taylor expansion. This is a linear equation
for 𝑛𝑡 that we know how to solve:

𝑛𝑡 = 𝑛0(𝑓 ′(𝑁 ∗))𝑡. (2.17)

So we have found that:
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• If |𝑓 ′(𝑁 ∗)| < 1, then 𝑛𝑡 will decrease with time and the fixed point is stable.

• If |𝑓 ′(𝑁 ∗)| > 1, then 𝑛𝑡 will increase with time and the fixed point is unstable.

If |𝑓 ′(𝑁 ∗)| = 1, then we cannot say anything about the stability of the fixed point from this
analysis.

In the continuous-time case we also had a graphical way to see the stability of fixed points. We
will now introduce a graphical method for studying the stability of fixed points in discrete-time
models, called the cobweb method.

We plot the function 𝑓(𝑁𝑡) and the line 𝑁𝑡+1 = 𝑁𝑡. The fixed points are the intersection
points of the function and the line. We then draw the graph of the sequence 𝑁𝑡 by starting at
the initial population number 𝑁0 and iterating the function 𝑓(𝑁𝑡) to find 𝑁1, then iterating
the function again to find 𝑁2, and so on. The graph of the sequence 𝑁𝑡 is called the cobweb.
The stability of the fixed points can be read off from the cobweb. If the cobweb spirals into
the fixed point, as shown in Figure 2.1, then the fixed point is stable. If the cobweb spirals
out of the fixed point, as shown in Figure 2.2, then the fixed point is unstable. You have to
press the play button below the figures to see the cobweb diagrams in action.

<IPython.core.display.HTML object>

Figure 2.1: Cobweb diagram for a stable fixed point.

<IPython.core.display.HTML object>

Figure 2.2: Cobweb diagram for an unstable fixed point.

The oscillatory nature of the sequence 𝑁𝑡, hopping from one side of the fixed point to the
other, that creates the cobweb pattern is due to the fact that the slope of 𝑓 is negative at the
fixed point. The graphical method for visualising the iterations will work also when the slope
is positive at the fixed point, but it will not look like a cobweb. Figure 2.3 shows the cobweb
for a stable fixed point with positive slope.

<IPython.core.display.HTML object>

Figure 2.3: Cobweb diagram for a fixed point with positive slope.

2.4 Discrete-time harvesting model

We will now look at an example of a discrete-time model with harvesting and apply the
techniques we have learned. The model has the standard discrete-time model form 𝑁𝑡+1 =
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𝑓(𝑁𝑡), where 𝑓 in our example is

𝑓(𝑁) = 𝑏𝑁2

1 + 𝑁2 −𝐸𝑁.

The constant 𝑏 > 2 determines the growth rate of the population and the harvesting rate is
determined by the harvesting effort 𝐸.

We start by studying the model without harvesting, so we set 𝐸 = 0 for now. As usual, we
start by looking at the steady states of the model. The fixed points are the solutions to the
equation

𝑁 ∗ = 𝑏𝑁 ∗2

1 + 𝑁 ∗2
.

There is the obvious solution 𝑁 ∗ = 0. We can then find the non-zero solutions by dividing
both sides by 𝑁 ∗ and multiply them by 1 + 𝑁 ∗2 to get the equation

1 + 𝑁 ∗2 = 𝑏𝑁 ∗.

This is a quadratic equation for 𝑁 ∗, which we could rewrite in the more convential form

𝑁 ∗2 − 𝑏𝑁 ∗ + 1 = 0.

The solutions to this equation are

𝑁 ∗
± = 𝑏 ±

√
𝑏2 − 4
2 .

The solutions are real if 𝑏2 − 4 ≥ 0, i.e. if 𝑏 ≥ 2, which we have stipulated earlier. Both
solutions are positive.

We now have enough information to draw a good sketch to understand the dynamics of the
model. We can draw the function 𝑓(𝑁) and the line 𝑁𝑡+1 = 𝑁𝑡. It may not be immediately
obvious what the sketch of 𝑓(𝑁) = 𝑏𝑁2/(1 + 𝑁2) looks like. We’ll reason ourselves through
this in steps:

• First let us consider what happens near 𝑁 = 0. There the function is approximately
𝑓(𝑁) ≈ 𝑏𝑁2. This is a parabola that opens upwards. The function is zero at 𝑁 = 0 and
increases quadratically with 𝑁 .

• Next we consider what happens as 𝑁 becomes large. There the function is approximately
𝑓(𝑁) ≈ 𝑏. So the graph has a horizontal asymptote at 𝑦 = 𝑏.

• We know that in between there are two fixed points. That means the graph needs to
cross the diagonal line 𝑦 = 𝑁 twice.

• Finally we observe that the function is monotonically increasing.
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Figure 2.4: Graph of the function 𝑓(𝑁) = 𝑏𝑁2
1+𝑁2 .

If we now draw something that has all these features, we will have a sufficiently good sketch of
the function for our purpose of understanding the dynamics of the model. We will necessarily
end up with something that qualitatively looks like the graph in Figure 2.4.

Using our cobweb technique, or simply looking at the slope of 𝑓 at the fixed points, we can
easily convince ourselves that the extinction fixed point is stable, the smaller non-zero fixed
point 𝑁 ∗

− is unstable and the larger fixed point 𝑁 ∗
+ is stable. in Figure 2.4 we have indicated

the stable fixed points by solid circles and the unstable fixed points by open circles. So when
the population number is larger than 𝑁 ∗

− it will grow towards 𝑁 ∗
+, and when it is smaller than

𝑁 ∗
− it will go extinct. So this model exhibits a strong Allee effect with critical depensation.

𝑁 ∗
− is the smallest viable population size.

We can now add harvesting to the model. The extra term in the function 𝑓(𝑁) is −𝐸𝑁 . This
lowers the graph of 𝑓(𝑁) by an amount that grows linearly with 𝑁 . This is illustrated in
Figure 2.5.

We see that as the harvesting effort 𝐸 increases, the two fixed points move closer together.
At a critical value 𝐸𝑐 the two fixed points merge and disappear. The population number will
then go extinct for all initial population numbers.

Let us find the critical value 𝐸𝑐. For that we first determine the location of the fixed points
in the presence of harvesting. So we solve the equation

𝑁 ∗ = 𝑏𝑁 ∗2

1 + 𝑁 ∗2
−𝐸𝑁 ∗.

Again this has a solution 𝑁 ∗ = 0. We can then find the non-zero solutions by dividing both
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Figure 2.5: Graph of the function 𝑓(𝑁) = 𝑏𝑁2
1+𝑁2 −𝐸𝑁 .

sides by 𝑁 ∗ and multiply them by 1 + 𝑁 ∗2 to get the equation

(1 + 𝐸)𝑁 ∗2 − 𝑏𝑁 ∗ + 1 + 𝐸 = 0.

This is solved by

𝑁 ∗
± =

𝑏
1+𝐸 ±√( 𝑏

1+𝐸)2 − 4
2 .

We see that these solutions are real only if ( 𝑏
1+𝐸)2 − 4 ≥ 0, i.e., if 𝐸 < 𝑏−2

2 . Thus the critical
effort is 𝐸𝑐 = 𝑏−2

2 . Fishing above this level will lead to extinction of the population. But even
fishing just near this level is risky because the population number will be very close to the
minimum viable population and a small disturbance could lead to extinction.

2.5 Bifurcations

A bifurcation is a change in the existence and/or stability of the fixed points as the parameters
of the model are varied.

You have met bifurcations in continuous-time models already in your Dynamical Systems
module. You have seen there that in one-dimensional systems described by a single ODE
there are three different types of bifurcation: saddle-node, pitchfork, transcritical. The same
types of bifurcations can occur in discrete-time models but there is also one more type: the
period-doubling bifurcation.

We have already seen a bifurcation in the discrete-time harvesting model. The bifurcation was
a saddle-node bifurcation, where two fixed points merge and disappear. This is also sometimes
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referred to as a tangent bifurcation, because at the critical value of the parameter the curve
𝑦 = 𝑓(𝑁) is tangent to the line 𝑦 = 𝑁 at the fixed point.

In the period-doubling bifurcation the stability of the fixed point changes as the parameter is
varied. The fixed point changes from stable to unstable, and at the same time a stable period-2
orbit appears, where the population number oscillates between two values. The period-2 orbit
is stable in the sense that if the population number is close to the orbit it will converge to
the orbit. This kind of bifurcation can obviously not arise in one-dimensional continuous-time
models because a continuous orbit can not move from one side of a fixed point to the other.

In the lectures we drew diagrams illustrating three of the four types of bifurcations. For a
discussion of all four types in a similar fashion, you can view the following video.

2.6 Exercises

Exercises marked with a * are essential and are to be handed in. Exercises marked with
a + are important and you are urged to complete them. Other exercises are optional but
recommended. The exercise marked with an o will be worked through in the problems class.

2.6.0.1 + Verhulst model

Exercise 2.1. For some choices of the parameters, the Verhulst model

𝑁𝑡+1 = 𝑟𝑁𝑡 (1 − 𝑁𝑡
𝐾 ) (2.18)

can lead to negative population numbers even when initially starting with a positive population
below its carrying capacity. Derive the condition on the parameters for this to happen. One
good way to approach this is to think about what the cobweb diagram would have to look like
for such a scenario.

2.6.0.2 * Ricker model

Exercise 2.2. Find the fixed points in the Ricker model

𝑁𝑡+1 = 𝑁𝑡 𝑒𝑅0(1−𝑁𝑡
𝐾 ). (2.19)

and investigate their stability. Do this both analytically and by drawing cobweb diagrams.
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2.6.0.3 Beverton-Holt model

Exercise 2.3. Find the fixed points in the Beverton-Holt model

𝑁𝑡+1 = 𝑅𝑁𝑡
1 + 𝑅−1

𝐾 𝑁𝑡
. (2.20)

and investigate their stability. Do this both analytically and by drawing cobweb diagrams.

2.6.0.4 o House finches

Exercise 2.4. [Note: in this problem we combine a continuous time model for the dynamics
within a single year with a discrete model for the dynamics from one year to the next. The
subscript 𝑡 ∈ ℤ refers to the discrete year whereas 𝜏 ∈ ℝ will indicate the continuous time
within a single year.]

A population of house finches resides in an isolated region in North America. In this problem
you want to find out about the long-term prospects for the population.

Each year the males and females begin their search for mates at the beginning of winter with
a combined population number 𝑁𝑡 in year 𝑡, and form 𝑃𝑡 breeding pairs by the end of this
search period, the start of the breeding season.

The mate search period lasts from within-year time 𝜏 = 0 to the end of the search period at
within-year time 𝜏 = 𝑇 . Assume that there is a 1:1 sex ratio and that males 𝑀(𝜏) and females
𝐹(𝜏) locate one another randomly to make a pair at rate 𝜎, such that the number 𝑀(𝜏) of
males that are not in a pair at time 𝜏 satisfies

𝑑𝑀
𝑑𝜏 = −𝜎𝑀 𝐹

and similarly the number 𝐹 of females that are not in a pair at time 𝜏 satisfies
𝑑𝐹
𝑑𝜏 = −𝜎𝑀 𝐹.

You are given that the number of breeding pairs that establish a nest and breed successfully
is 𝐺(𝑃𝑡)𝑃𝑡, where the fraction 𝐺(𝑃𝑡) takes the particular form

𝐺(𝑃𝑡) =
1

1 + 𝑃𝑡/𝛿
,

where 𝛿 represents the density of available nesting sites. Each pair that reproduces successfully
has a mean number 𝑐 of offspring.

The probability that a bird will survive from one year to the next is 𝑠.
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a) Show that the number 𝑛(𝜏) = 𝑀(𝜏) + 𝐹(𝜏) of birds not in a pair is governed by

𝑑𝑛
𝑑𝜏 = −𝜎

2𝑛
2, 𝑛(0) = 𝑁𝑡.

b) Using the above, show that the number 𝑛(𝑇 ) of birds that have not found a mate at the
start of the breeding season in year 𝑡 is

𝑛(𝑇 ) = 𝑟𝑁𝑡
𝑟 + 2𝑁𝑡

where 𝑁𝑡 is the number of birds at the start of the season in that particular year and
where 𝑟 = 4/(𝜎𝑇 ).

c) Explain why the number of pairs 𝑃(𝜏) is governed by

𝑑𝑃
𝑑𝜏 = −1

2
𝑑𝑛
𝑑𝜏 , 𝑃 (0) = 0.

d) Use the above to show that the number of breeding pairs at the start of the breeding
season in year 𝑡 is

𝑃𝑡 ∶= 𝑃(𝑇 ) = 𝑁2
𝑡

𝑟 + 2𝑁𝑡
.

e) Show that the population 𝑁𝑡+1 at the beginning of winter in year 𝑡 + 1 is given by

𝑁𝑡+1 = 𝑠𝑁𝑡 +
𝑐𝑁2

𝑡
𝑟 + 2𝑁𝑡 +𝑁2

𝑡 /𝛿
. (2.21)

f) Find the realistic steady states of the model in Eq. 2.21 for the case that

𝑐
1 − 𝑠 − 2 ≥ √4𝑟

𝛿 .

g) Draw a cobweb diagram to illustrate the stability of the steady states in the case that
there are two positive steady states. Label key features of the curves.

h) What type of bifurcation occurs when there is equality in the condition in part f)?
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2.6.0.5 Another model

Exercise 2.5. Consider the discrete time model

𝑁𝑡+1 = 𝑟𝑁𝑡
1 + (𝑁𝑡/𝐾)𝑏 (2.22)

where 𝑟, 𝑏 and 𝐾 are positive parameters with 𝑏 > 1. Show that the model has two steady
states. Investigate the stability of the extinction steady state. Show that the non-trivial (non-
zero) steady state can lose stability through a period doubling bifurcation at 𝑏 = 2𝑟/(𝑟 − 1),
or a tangent bifurcation at 𝑟 = 1.

29



3 Sex-structured population models

Up to this point we have completely ignored that there are differences between the individuals
making up a population. So we ignored all structure within a population. We will now start
to remedy this. In this chapter we will start with the simplest possible structure by splitting
the population into males and females. Keeping track of both the abundance of males and of
females separately makes sense because

• birth and death rates depend on the sex

• both a male and a female are needed to produce offspring

So in this chapter instead of just looking at a single function 𝑁(𝑡) giving the total population
number, we will look at two functions 𝑀(𝑡) and 𝐹(𝑡) giving the number of males and females
respectively. We again describe them by differential equations that capture that the numbers
can decrease due to deaths and increase due to births.

𝑑𝐹
𝑑𝑡 = −𝜇𝐹𝐹 + 𝑏𝐹 𝜑(𝐹 ,𝑀)

𝑑𝑀
𝑑𝑡 = −𝜇𝑀𝑀 + 𝑏𝑀 𝜑(𝐹 ,𝑀).

(3.1)

Here 𝜇𝐹 and 𝜇𝑀 are the death rates of females and males respectively. The rate of births
now depends both on the number of females and the number of males, because both males
and females are needed to produce offspring. We formulate that dependence on the number
of females and the number of males as a function 𝜑(𝐹 ,𝑀). The functional dependence of the
rate on 𝐹 and 𝑀 is the same for births of females and for births of males, but the extra factors
𝑏𝐹 and 𝑏𝑀 account for the differences between female and male birth rates.

3.1 Symmetric model

We first consider the simpler situation where birth and mortality rates are the same for males
and females:

𝜇𝐹 = 𝜇𝑀 = 𝜇, 𝑏𝐹 = 𝑏𝑀 = 𝑏. (3.2)

In this case we can get a simple ODE for the difference 𝐹 −𝑀 between the number of females
and males:

𝑑(𝐹 −𝑀)
𝑑𝑡 = −𝜇(𝐹 −𝑀). (3.3)
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This equation has the solution

𝐹(𝑡) −𝑀(𝑡) = (𝐹(0) −𝑀(0))𝑒−𝜇𝑡. (3.4)

This means that the difference decreases exponentially over time. In particular, if we start
with equal number females and males then the they will stay equal for all times.

To make further progress we need to make a concrete choice for the function 𝜑(𝐹 ,𝑀). We
will consider the simplest possible choice

𝜑(𝐹 ,𝑀) = 𝐹 𝑀. (3.5)

This choice is motivated by the fact that both a male and a female is needed to produce
offspring. So the rate of births should increase if there are more females but also when there
are more males. The simplest way to capture this is to multiply 𝐹 and 𝑀 .

A simple thing to note is that if 𝑀(0) = 0 then 𝑀(𝑡) = 0 for all times. Then the number of
females satisfies 𝑑𝐹

𝑑𝑡 = −𝜇𝐹. (3.6)

This has the solution
𝐹(𝑡) = 𝐹(0)𝑒−𝜇𝑡. (3.7)

So if there are no males, the females have to die out as well.

We noted above that if initially 𝐹(0) = 𝑀(0) then 𝐹(𝑡) = 𝑀(𝑡) for all times. In that case the
number of females satisfies 𝑑𝐹

𝑑𝑡 = −𝜇𝐹 + 𝑏𝐹 2. (3.8)

This is illustrated in Figure 3.1.

F

dF
/d

t

b
0

F + bF2

Figure 3.1: Quadratically increasing growth rate.

Note that the non-zero fixed point at 𝐹 = 𝜇/𝑏 is unstable. If 𝐹(0) < 𝜇/𝑏 then the females and
hence the males go extinct. If 𝐹(0) > 𝜇/𝑏 then the females and hence the males grow rapidly.
In fact, they grow so rapidly that the population size becomes infinite in finite time, as we can
see when we solve the ODE.
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We can solve Eq. 3.8 by separation of variables:

∫ 𝑑𝐹
−𝜇𝐹 + 𝑏𝐹 2 = ∫𝑑𝑡.

We could do the integral on the left hand side by partial fractions. But to see the problem
of the population size becoming infinite in finite time it is sufficient to consider the case of
𝐹 >> 1 where we can neglect the term −𝜇𝐹 in the denominator. Then we get

∫
𝐹(𝑡)

𝐹(0)

𝑑𝐹
𝐹 2 = 1

𝐹(0) − 1
𝐹(𝑡) = ∫

𝑡

0
𝑏 𝑑 ̃𝑡 = 𝑏𝑡.

and hence
𝐹(𝑡) = 1

1/𝐹(0) − 𝑏𝑡 . (3.9)

So the population size becomes infinite at time 𝑡 = 1/(𝑏𝐹(0)). So clearly this model is not
ecologically sensible.

3.2 Female-limited reproduction

We will now consider a model where the birth rate depends only on the number of females:

𝜑(𝐹 ,𝑀) = 𝐹. (3.10)

This is clearly a strong simplification but is reasonable for populations where there are always
more than enough males to fertilize all females.

With this simplification, the ODE for F becomes

𝑑𝐹
𝑑𝑡 = −𝜇𝐹𝐹 + 𝑏𝐹𝐹 = (−𝜇𝐹 + 𝑏𝐹 )𝐹 . (3.11)

This has the solution
𝐹(𝑡) = 𝐹(0)𝑒(−𝜇𝐹+𝑏𝐹 )𝑡. (3.12)

We can now use this in the equation for M:

𝑑𝑀
𝑑𝑡 = −𝜇𝑀𝑀 + 𝑏𝑀𝐹 = −𝜇𝑀𝑀 + 𝑏𝑀𝐹0 𝑒(−𝜇𝐹+𝑏𝐹 )𝑡. (3.13)

(We have used 𝐹(0) = 𝐹0 to make the equation more readable.) This is a first-order linear
ODE with time-dependent inhomogeneity. We can solve it by the method of integrating factors.
We first rewrite it in the form

𝑑𝑀
𝑑𝑡 + 𝜇𝑀𝑀 = 𝑏𝑀𝐹0 𝑒(−𝜇𝐹+𝑏𝐹 )𝑡 (3.14)
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and then observe that the left-hand side is proportional to a total derivative:

𝑑𝑀
𝑑𝑡 + 𝜇𝑀𝑀 = 𝑑

𝑑𝑡(𝑒
𝜇𝑀𝑡𝑀)𝑒−𝜇𝑀𝑡 (3.15)

Thus after multiplying both sides by 𝑒𝜇𝑀𝑡 we get

𝑑
𝑑𝑡(𝑒

𝜇𝑀𝑡𝑀) = 𝑏𝑀𝐹0 𝑒(𝜇𝑀−𝜇𝐹+𝑏𝐹 )𝑡. (3.16)

We can now integrate both sides to get

𝑒𝜇𝑀𝑡𝑀(𝑡) − 𝑒𝜇𝑀𝑡𝑀0 = 𝑏𝑀𝐹0
𝜇𝑀 − 𝜇𝐹 + 𝑏𝐹

(𝑒(𝜇𝑀−𝜇𝐹+𝑏𝐹 )𝑡 − 1) . (3.17)

This can be solved for 𝑀(𝑡):

𝑀(𝑡) = 𝑀0𝑒−𝜇𝑀𝑡 + 𝑏𝑀𝐹0
𝜇𝑀 − 𝜇𝐹 + 𝑏𝐹

(𝑒(−𝜇𝐹+𝑏𝐹 )𝑡 − 𝑒−𝜇𝑀𝑡) . (3.18)

We have been able to fully solve this model. At this stage it is worth checking that the
dependence of the solution on the parameters and on the initial conditions is reasonable.

Next let us take a look at the sex ratio as 𝑡 → ∞. We find

𝑠 = lim
𝑡→∞

𝑀(𝑡)
𝐹(𝑡) = lim

𝑡→∞

𝑀0𝑒−𝜇𝑀𝑡 + 𝑏𝑀𝐹0
𝜇𝑀−𝜇𝐹+𝑏𝐹 (𝑒(−𝜇𝐹+𝑏𝐹 )𝑡 − 𝑒−𝜇𝑀𝑡)

𝐹0𝑒(−𝜇𝐹+𝑏𝐹 )𝑡

= 𝑏𝑀
𝑏𝐹 − 𝜇𝐹 + 𝜇𝑀

.
(3.19)

Just for fun let us check what this model would predict for the sex ratio in the population of
the US, using data about births and deaths from 1992.

𝜇𝐹 = 807/100, 000/year, 𝜇𝑀 = 902/100, 000/year,
𝑏𝐹 = 1480/100, 000/year, 𝑏𝑀 = 1550/100, 000/year. (3.20)

Substituting these values into Eq. 3.19 we get 𝑠 ≈ 0.9841. The actual ratio in the US in 1992
was 0.953. Of course this is not to be taken seriously. To start with, human populations are
not solely female-limited. But there are many other criticisms that can be made of this model
when applied to human populations.

3.3 Harmonic mean model

We will now consider a model where the birth rate depends on both the number of males and
the number of females. We choose to set 𝜑(𝐹 ,𝑀) to a weighted average of 𝐹 and 𝑀 :

𝜑(𝐹 ,𝑀) = 𝐷𝑀 + (1 −𝐷)𝐹 (3.21)
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with some suitably chosen weighting factor 𝐷. We want to keep the feature that when there
is an overabundance of males, then the birth rate is limited mostly by the number of females
and vice versa. So we choose 𝐷 = 𝑀/(𝐹 +𝑀), which is the relative abundance of males. This
makes 1 − 𝐷 = 𝐹/(𝐹 +𝑀), which is the relative abundance of females. This gives

𝜑(𝐹 ,𝑀) = 𝑀
𝐹 +𝑀𝐹 + 𝐹

𝐹 +𝑀𝑀 = 2𝐹𝑀
𝐹 +𝑀 . (3.22)

We can now use this in the ODEs for 𝐹 and 𝑀 :
𝑑𝐹
𝑑𝑡 = −𝜇𝐹𝐹 + 𝑏𝐹

2𝐹𝑀
𝐹 +𝑀 ,

𝑑𝑀
𝑑𝑡 = −𝜇𝑀𝑀 + 𝑏𝑀

2𝐹𝑀
𝐹 +𝑀 .

(3.23)

We will not try to solve this coupled system of nonlinear ODEs. Instead we will directly look
at the long-term sex ratio. We can derive an ODE for the sex ration 𝑀/𝐹 :

𝑑
𝑑𝑡

𝑀
𝐹 =

𝑑𝑀
𝑑𝑡 𝐹 −𝑀 𝑑𝐹

𝑑𝑡
𝐹 2 . (3.24)

Because we are only interested in the long-term behavior we look at the fixed point of this
equation, hence we set the left-hand side to zero. We then get

𝑑𝑀
𝑑𝑡 𝐹 −𝑀 𝑑𝐹

𝑑𝑡 = 0. (3.25)

We can now use the ODEs for 𝐹 and 𝑀 to get
𝑑𝑀
𝑑𝑡 𝐹 −𝑀 𝑑𝐹

𝑑𝑡 = (−𝜇𝑀𝑀 + 𝑏𝑀
2𝐹𝑀
𝐹 +𝑀)𝐹 −𝑀 (−𝜇𝐹𝐹 + 𝑏𝐹

2𝐹𝑀
𝐹 +𝑀) = 0. (3.26)

We multiply by 𝐹 +𝑀 and divide by 𝐹𝑀 to get

−𝜇𝑀(𝐹 +𝑀) + 2𝑏𝑀𝐹 + 𝜇𝐹 (𝐹 +𝑀) − 2𝑏𝐹𝑀 = 0. (3.27)

Collecting terms proportional to 𝐹 and 𝑀 we get

(−𝜇𝑀 + 2𝑏𝑀 + 𝜇𝐹 )𝐹 = (𝜇𝑀 − 𝜇𝐹 + 2𝑏𝐹 )𝑀. (3.28)

We can now solve this equation for the asymptotic sex ratio

𝑠 = lim
𝑡→∞

𝑀(𝑡)
𝐹(𝑡) = 𝜇𝑀 − 𝜇𝐹 + 2𝑏𝐹

−𝜇𝑀 + 2𝑏𝑀 + 𝜇𝐹
. (3.29)

Even though the sex ratio approaches a fixed point as 𝑡 → ∞, the population numbers them-
selves do not. Once the sex ratio has settled to the value 𝑠, we have 𝑀 = 𝑠𝐹 and we can use
this to get a single ODE for 𝐹 :

𝑑𝐹
𝑑𝑡 = −𝜇𝐹𝐹 + 𝑏𝐹

2𝑀𝐹
𝐹 +𝑀

= −𝜇𝐹𝐹 + 2𝑠
𝑠 + 1𝑏𝐹𝐹.

(3.30)
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This is a linear equation and has the solution

𝐹(𝑡) = 𝐹0𝑒(−𝜇𝐹+ 2𝑠
𝑠+1 𝑏𝐹 )𝑡. (3.31)

Similarly we obtain
𝑀(𝑡) = 𝑀0𝑒(−𝜇𝑀+ 2

𝑠+1 𝑏𝑀)𝑡. (3.32)

So we have an exponential growth model for both 𝐹 and 𝑀 , but the exponent has a modified
birth rate that takes the sex ratio into account.

To arrive at more realistic models we should introduce a carrying capacity into the model.

3.4 Exercises

3.4.0.1 * Geometric mean sex-structured model

Exercise 3.1. Consider the sex-structured population model

𝑑𝐹
𝑑𝑡 = −𝜇𝐹𝐹 + 𝑏𝐹𝜙(𝐹 ,𝑀), 𝑑𝑀

𝑑𝑡 = −𝜇𝑀𝑀 + 𝑏𝑀𝜙(𝐹 ,𝑀),

where 𝐹(𝑡) denotes the number of females and 𝑀(𝑡) the number of males and 𝜇𝐹 , 𝜇𝑀 , 𝑏𝐹 , 𝑏𝑀
are positive constants. Make the choice

𝜙(𝐹 ,𝑁) =
√
𝐹𝑀.

Determine the asymptotic sex ratio

𝑠 = lim
𝑡→∞

𝑀(𝑡)
𝐹(𝑡) ?

What is the numerical value of s when 𝜇𝐹 = 2, 𝜇𝑀 = 1, 𝑏𝐹 = 1/2, 𝑏𝑀 = 3/2 per year?

3.4.0.2 Dominance structure

Exercise 3.2. We consider a population of primates and split this into three components:

𝑀 : dominant (alpha) males,

𝐹 : dominant (alpha) females,

𝑄: subordinate males or females.
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Only alpha males and alpha females mate to reproduce offspring. The subordinate individuals
are prevented from mating. The alpha females are too engaged with looking after their young
to gather food and instead rely on the food gathered by the subordinate individuals. We
propose to model this with the equations

𝑑𝐹
𝑑𝑡 = 𝑏𝐹𝐹 − 𝜇𝐹𝐹

𝑄 𝐹,
𝑑𝑀
𝑑𝑡 = 𝑏𝑀𝐹 − 𝜇𝑀𝑀,
𝑑𝑄
𝑑𝑡 = 𝑏𝑄𝐹 − 𝜇𝑄𝑄,

where 𝑏𝐹 > 𝜇𝐹 , 𝑏𝑀 > 𝜇𝑀 and 𝑏𝑄 > 𝜇𝑄 are all positive constants.

(a) One of the terms incorporates a ratio of different components. Describe what this might
be intended to model.

(b) Derive an ODE for the ratio 𝐹/𝑄. Either by recognising the ODE for 𝐹/𝑄 as equivalent
to one for which the solution was given in the lecture notes, or by integrating the ODE,
give the solution for 𝐹/𝑄 as a function of time, with initial condition 𝐹(0) = 𝐹0, 𝑄(0) =
𝑄0.

(c) By using your solution from the previous part or by other means, show that as 𝑡 → ∞
the ratio between alpha females and subordinate individuals goes to

𝑏𝐹 + 𝜇𝑄
𝑏𝑄 + 𝜇𝐹

.

(d) Derive an expression for the long-term alpha female to alpha male ratio𝑅 = lim𝑡→∞ 𝐹/𝑀
in terms of the model parameters and show that it is positive.

(e) Describe a limitation of the birth terms in the model and suggest improved expressions.
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4 Age-structured population model

4.1 Continuous time model

In the previous chapter we structured the population by a discrete variable, the sex of the indi-
viduals. This gave rise to a system of coupled ODEs, one ODE for each class of individuals. In
this section we will structure the population by a continuous variable, the age of the individuals.
This will give rise to a partial differential equation (PDE) for the age-dependent population
density. We will solve this PDE and study the long-term behaviour of the population and its
age distribution.

So instead of describing the population just by the total number of individuals 𝑁(𝑡), we will
describe it by the density 𝑛(𝑡, 𝑎) of individuals at age 𝑎. The total number 𝑁(𝑡) of individuals
in the population is then given by the integral of 𝑛(𝑡, 𝑎) over all ages. More generally, the
total number of individuals in the population that are between age 𝑎1 and 𝑎2 is given by the
integral of 𝑛(𝑡, 𝑎) over the interval [𝑎1, 𝑎2]. You are familiar with the concept of density from
probability theory, where continuous random variables are described by a probability density
rather than a probability. You may also be familiar with the concept from physics, where
the density of a material describes how the mass is distributed over space. Here, the density
𝑛(𝑡, 𝑎) describes how the individuals are distributed over ages.

To derive the PDE for the age-structured population density, we consider how the density
changes over an infinitesimal time interval 𝛿𝑡 due to deaths:

𝑛(𝑡 + 𝛿𝑡, 𝑎 + 𝛿𝑡) = 𝑛(𝑡, 𝑎) − 𝜇(𝑎)𝑛(𝑡, 𝑎)𝛿𝑡. (4.1)

Note how we had to take into account that over the time interval 𝛿𝑡 the age of the individuals
has increased by 𝛿𝑡. We now Taylor-expand the left-hand side around 𝑡 and 𝑎:

𝑛(𝑡 + 𝛿𝑡, 𝑎 + 𝛿𝑡) = 𝑛(𝑡, 𝑎) + 𝜕𝑛
𝜕𝑡 𝛿𝑡 +

𝜕𝑛
𝜕𝑎𝛿𝑡 + 𝒪(𝛿𝑡2). (4.2)

Cancelling the 𝑛(𝑡, 𝑎) terms on both sides and dividing by 𝛿𝑡 gives us the PDE for the age-
structured population density:

𝜕𝑛
𝜕𝑡 + 𝜕𝑛

𝜕𝑎 = −𝜇(𝑎)𝑛. (4.3)

This equation captures the effect of individuals aging and dying, but it does not capture how
they are born. Individuals are born with age 0. These offspring can be produced by parents
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of any ages, but with an age-dependent rate 𝑏(𝑎). This gives

𝑛(𝑡, 0) = ∫
∞

0
𝑏(𝑎)𝑛(𝑡, 𝑎) 𝑑𝑎. (4.4)

This is a boundary condition for the PDE. It says that the density of individuals at age 0 is
given by the total number of offspring produced by the individuals of all ages.

We will now solve the PDE for the age-structured population density by the method of sepa-
ration of variables. We will make the Ansatz 𝑛(𝑡, 𝑎) = 𝑓(𝑡)𝑟(𝑎). You have seen this trick for
finding solutions of linear, homogeneous PDEs in other modules, like Waves and Fluids for
example. Substituting this Ansatz into the PDE gives

𝑓 ′(𝑡)𝑟(𝑎) + 𝑓(𝑡)𝑟′(𝑎) = −𝜇(𝑎)𝑓(𝑡)𝑟(𝑎). (4.5)

Dividing by 𝑓(𝑡)𝑟(𝑎) gives
𝑓 ′(𝑡)
𝑓(𝑡) + 𝑟′(𝑎)

𝑟(𝑎) = −𝜇(𝑎). (4.6)

We now collect all terms that depend on 𝑡 on the left-hand side and all terms that depend on
𝑎 on the right-hand side:

𝑓 ′(𝑡)
𝑓(𝑡) = −𝑟′(𝑎)

𝑟(𝑎) − 𝜇(𝑎). (4.7)

Because the left-hand side is independent of 𝑎 and the right-hand side is independent of 𝑡,
both sides must be equal to a constant. We introduce the separation constant 𝛾 and write

𝑓 ′(𝑡)
𝑓(𝑡) = 𝛾, 𝑟′(𝑎)

𝑟(𝑎) = −𝛾 − 𝜇(𝑎). (4.8)

These are now linear ODEs and hence easy to solve. The first ODE has the solution

𝑓(𝑡) = 𝑓(0)𝑒𝛾𝑡 (4.9)

and the second ODE has the solution

𝑟(𝑎) = 𝑟(0) exp(−∫
𝑎

0
𝜇(𝑎′) 𝑑𝑎′ − 𝛾𝑎) . (4.10)

So altogether we have the population density

𝑛(𝑡, 𝑎) = 𝑛(0, 0)𝑒𝛾𝑡 exp(−∫
𝑎

0
𝜇(𝑎′) 𝑑𝑎′ − 𝛾𝑎) , (4.11)

where 𝑛(0, 0) = 𝑓(0)𝑟(0) is the initial density of individuals at age 0.
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So far we don’t yet know the value of the separation constant 𝛾. This will be determined by
the boundary condition. If we substitute the solution Eq. 4.11 into the boundary condition
Eq. 4.4, we get

𝑛(0, 0)𝑒𝛾𝑡 = ∫
∞

0
𝑏(𝑎)𝑛(0, 0)𝑒𝛾𝑡 exp(−∫

𝑎

0
𝜇(𝑎′) 𝑑𝑎′ − 𝛾𝑎) 𝑑𝑎. (4.12)

We can cancel the common factor 𝑛(0, 0)𝑒𝛾𝑡 on both sides to get the condition

1 = ∫
∞

0
𝑏(𝑎) exp(−∫

𝑎

0
𝜇(𝑎′) 𝑑𝑎′ − 𝛾𝑎) 𝑑𝑎 = 𝜙(𝛾). (4.13)

We have introduced the shorthand notation 𝜙(𝛾) for the integral on the right-hand side. The
condition Eq. 4.12 is a transcendental equation for 𝛾. We cannot solve it analytically for 𝛾. But
we observe that 𝜙 is a monotonically decreasing function of 𝛾. This observation alone allows
us to make a statement about the sign of 𝛾. According to Eq. 4.9 the sign of 𝛾 determines
whether the total population grows expnentially or goes extinct.

If 𝛾 is positive, then the monotonicity of 𝜙 tells us that 𝜙(0) > 𝜙(𝛾) = 1 and vice versa.
Conversely, if 𝛾 is negative, then 𝜙(0) < 𝜙(𝛾) = 1 and vice versa. So to determine the sign of
𝛾 we only have to look at the value of

𝜙(0) = ∫
∞

0
𝑏(𝑎) exp(−∫

𝑎

0
𝜇(𝑎′) 𝑑𝑎′) 𝑑𝑎. (4.14)

• If 𝜙(0) > 1, then 𝛾 > 0 and the population grows exponentially.

• If 𝜙(0) < 1, then 𝛾 < 0 and the population goes extinct.

This result actually has a very intuitive explanation. The factor

exp(−∫
𝑎

0
𝜇(𝑎′) 𝑑𝑎′) =∶ 𝑙(𝑎) (4.15)

is the probability that an individual survives up to age 𝑎. Therefore 𝜙(0) is the expected
number of offspring produced by an individual during its lifetime. If this number is greater
than 1, then the population grows exponentially. If it is less than 1, then the population goes
extinct.

4.2 Discrete time model

In the continuous-time age-structured population model discussed in the previous section we
had assumed that births take place continuously through time. If however reproduction is an
annual event, taking place in a short breeding season for example, then it is more natural to
model the population in discrete time. We will now derive the discrete-time version of the
age-structured population model and then study the long-term behaviour of the population
and its age distribution.
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4.2.1 Model description

Both time and age will be discrete variables. We will take them to be integers counting years.
We will describe the population by the numbers 𝑁𝑎,𝑡 of individuals of age 𝑎 at time 𝑡. The
total number 𝑁𝑡 of individuals in the population at time 𝑡 is then given by the sum of 𝑁𝑎,𝑡
over all ages.

The parameters of our model will be the probabilities 𝑆𝑎 of surviving from age 𝑎 − 1 to age 𝑎
and the number of offspring 𝑏𝑎 produced by an individual when they reach age 𝑎. Because the
number of individuals at age 𝑎 at time 𝑡 + 1 is the number of individuals that a year earlier
were at age 𝑎 − 1 and have survived to age 𝑎, we have

𝑁𝑎,𝑡+1 = 𝑆𝑎𝑁𝑎−1,𝑡. (4.16)

When individuals reach age 𝑎, they each produce 𝑏𝑎 offspring. The total number of offspring
produced at time 𝑡 is therefore given by

𝑁0,𝑡 =
∞
∑
𝑎=1

𝑏𝑎𝑁𝑎,𝑡. (4.17)

This is a boundary condition for the discrete-time model. It says that the number of individuals
at age 0 at time 𝑡 is given by the total number of offspring produced by the individuals of all
ages at time 𝑡. This is the discrete-time analogue of the boundary condition Eq. 4.4 for the
continuous-time model.

Note that in Eq. 4.17 both sides of the equation are at time 𝑡. That is because reproduction
is taken to happen instantaneously at time 𝑡. It is conventional to use Eq. 4.16 to rewrite the
boundary condition Eq. 4.17 as an equation for 𝑁0,𝑡+1:

𝑁0,𝑡+1 =
∞
∑
𝑎=1

𝑏𝑎𝑁𝑎,𝑡+1 =
∞
∑
𝑎=1

𝑏𝑎𝑆𝑎𝑁𝑎−1,𝑡 =
∞
∑
𝑎=1

𝐹𝑎−1𝑁𝑎−1,𝑡, (4.18)

where we have introduced the fecundity 𝐹𝑎 ∶= 𝑏𝑎+1𝑆𝑎+1.

Eq. 4.16 and Eq. 4.18 are the equations for the discrete-time age-structured population model.
They are a system of coupled difference equations, one equation for each age class. We would
like to solve them to determine the numbers 𝑁𝑎,𝑡 of individuals at each age at each time.
Notice that Eq. 4.16 looks very simple and we could use it to determine 𝑁𝑎,𝑡 for 𝑎 = 1, 2, 3,…
in terms of 𝑁0,𝑡,

𝑁𝑎,𝑡 = 𝑆𝑎𝑁𝑎−1,𝑡 = 𝑆𝑎𝑆𝑎−1𝑁𝑎−2,𝑡 = ⋯
= 𝑆𝑎𝑆𝑎−1 ⋯𝑆1𝑁0,𝑡 = 𝑙𝑎𝑁0,𝑡,

(4.19)

where we used that the product 𝑆𝑎𝑆𝑎−1 ⋯𝑆1 is the probability of surviving from age 0 to age 𝑎,
which we denote by 𝑙𝑎. However Eq. 4.18 spoils the game because it tells us that we won’t know
𝑁0,𝑡 until we know 𝑁𝑎,𝑡 for all ages 𝑎. This is a typical feature of age-structured population
models. The number of individuals at age 0 at time 𝑡 depends on the number of individuals at
all other ages at time 𝑡. Solving both Eq. 4.16 and Eq. 4.18 together is a non-trivial task.
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4.2.2 Stable age distribution

In analogy to the continuous-time model, we will now look for a solution of the form

𝑁𝑎,𝑡 = 𝜆𝑡𝑟(𝑎) (4.20)

This is a solution in which the age distribution 𝑟(𝑎) remains stable from one year to the next,
but the total population grows or shrinks by a factor 𝜆 each year. This means in particular
that for this solution 𝑁𝑎,𝑡+1 = 𝜆𝑁𝑎,𝑡 for all ages 𝑎. For 𝑎 = 1 this gives

𝑁1,𝑡+1 = 𝜆𝑁1,𝑡 = 𝑆1𝑁0,𝑡 (4.21)

and hence
𝑁1,𝑡 =

𝑆1
𝜆 𝑁0,𝑡. (4.22)

Similarly we can express 𝑁2,𝑡 in terms of 𝑁0,𝑡:

𝑁2,𝑡 =
𝑆2
𝜆 𝑁1,𝑡 =

𝑆1𝑆2
𝜆2 𝑁0,𝑡. (4.23)

We can continue this process to express 𝑁𝑎,𝑡 in terms of 𝑁0,𝑡:

𝑁𝑎,𝑡 =
𝑆1𝑆2 ⋯𝑆𝑎

𝜆𝑎 𝑁0,𝑡 =
𝑙𝑎
𝜆𝑎𝑁0,𝑡. (4.24)

Finally, for the newborns we have

𝑁0,𝑡+1 = 𝜆𝑁0,𝑡 =
𝑀
∑
𝑎=1

𝐹𝑎−1𝑁𝑎−1,𝑡 =
𝑀
∑
𝑎=1

𝐹𝑎−1
𝑙𝑎−1
𝜆𝑎−1𝑁0,𝑡. (4.25)

Dividing the equation by 𝜆𝑁0,𝑡 gives

1 =
𝑀
∑
𝑎=1

𝐹𝑎−1
𝑙𝑎−1
𝜆𝑎 . (4.26)

Using that 𝐹𝑎−1 = 𝑏𝑎𝑆𝑎 and 𝑆𝑎𝑙𝑎−1 = 𝑙𝑎 we can rewrite this equation as

1 =
𝑀
∑
𝑎=1

𝑏𝑎 𝑙𝑎 𝜆−𝑎 =∶ 𝜓(𝜆). (4.27)

This is the Euler-Lotka equation for the stable age distribution. Compare it to the correspond-
ing equation for the continuous-time model Eq. 4.13 with 𝑒𝛾 = 𝜆. The only difference is that
the continuous-time model has an integral over age, while the discrete-time model has a sum
over age.

By the same argument as in the continuous case we can see that if the expected number of
offspring produced by an individual during its lifetime, ∑𝑀

𝑎=1 𝑏𝑎 𝑙𝑎 = 𝜓(1), is greater than 1
then the population grows exponentially. If it is less than 1, then the population goes extinct.

We will now determine the stable age distribution for a specific example.
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Example 4.1. For the spotted owl the age-dependent reproduction numbers are

𝑏𝑎 = {0 if 𝑎 < 2,
𝑏 if 𝑎 ≥ 2 (4.28)

for some constant 𝑏. The age-dependent survival probabilities are

𝑆𝑎 =
⎧{
⎨{⎩

1 if 𝑎 = 1,
𝑙 if 𝑎 = 2,
𝑝 if 𝑎 > 2

(4.29)

for some constants 𝑙 and 𝑝. Those values of the survival probabilities from year to year lead
to the following values of the survival probabilities from birth to age 𝑎:

𝑙𝑎 = {1 if 𝑎 = 1,
𝑙 𝑝𝑎−2 if 𝑎 ≥ 2. (4.30)

Substituting these values into the expression for 𝜓(𝜆) in Eq. 4.44 gives

𝜓(𝜆) = 𝑏𝑙
∞
∑
𝑎=2

𝑝𝑎−2𝜆−𝑎 = 𝑙𝑏𝜆−2
∞
∑
𝑛=0

𝑝
𝜆

= 𝑙𝑏𝜆−2 1
1 − 𝑝

𝜆
= 𝑙𝑏

𝜆(𝜆 − 𝑝),
(4.31)

where we made use of the formula for a geometric series, valid if |𝑝/𝜆| < 1 1. In particular,
the expected number of offspring produced by an individual in their lifetime is

𝜓(1) = 𝑙𝑏/(1 − 𝑝).
If this is greater than 1, then the population grows exponentially. If it is less than 1, then the
population goes extinct.

In this case the Euler-Lotka equation 𝜓(𝜆) = 1 becomes the quadratic equation for 𝜆:

𝜓(𝜆) = 𝑙𝑏
𝜆(𝜆 − 𝑝) = 1 ⇔ 𝜆2 − 𝜆𝑝 − 𝑙𝑏 = 0. (4.32)

The solutions are
𝜆± = 𝑝 ±√𝑝2 + 4𝑙𝑏

2 . (4.33)

We are interested in the positive solution 𝜆+. Substituting this value for 𝜆 back into Eq. 4.42
and Eq. 4.20 we see that we have found the solution

𝑁𝑎,𝑡 = (𝑝 +√𝑝2 + 4𝑙𝑏
2 )

𝑡−𝑎

𝑙𝑎𝑁0,0 (4.34)

for any choice of 𝑁0,0.
1If 𝜆 ≥ 𝑝, then 𝜓(𝜆) diverges and does not satisfy the Euler-Lotka equation 𝜓(𝜆) = 1.
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4.2.3 Leslie matrix

In the case where there is a maximal age 𝑚 beyond which there is no reproduction, either
because 𝑏𝑎 = 0 for 𝑎 > 𝑚 or because there are not older individuals because 𝑆𝑚+1 = 0, we
can then collect the equations for 𝑁𝑎,𝑡+1 for 𝑎 = 0, 1, 2,… ,𝑚− 1 (Eq. 4.16 and Eq. 4.18) into
a matrix equation:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑁0
𝑁1
𝑁2
⋮

𝑁𝑚−1

⎞⎟⎟⎟⎟⎟⎟
⎠𝑡+1

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐹0 𝐹1 ⋯ 𝐹𝑚−2 𝐹𝑚−1
𝑆1 0 ⋯ 0 0
0 𝑆2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑆𝑚−1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑁0
𝑁1
𝑁2
⋮

𝑁𝑚−1

⎞⎟⎟⎟⎟⎟⎟
⎠𝑡

. (4.35)

Note that we did not need to include the equation for 𝑁𝑚,𝑡+1 in the matrix equation because
𝑁𝑚,𝑡+1 is not needed to calculate the reproduction. Once the matrix equation Eq. 4.35 is
solved, we can determine 𝑁𝑚,𝑡+1 separately from Eq. 4.16 if we are interested, and similarly
for all older age classes that do not reproduce, if any.

The matrix on the right-hand side of Eq. 4.35 is a so-called Leslie matrix. Let us denote it by
𝐿. The equation Eq. 4.35 is a matrix equation of the form

N𝑡+1 = 𝐿N𝑡, (4.36)

where N𝑡 is the column vector of the numbers 𝑁𝑎,𝑡 and 𝐿 is the Leslie matrix.

We now have the task of solving the homogeneous linear difference equation Eq. 4.36 with
constant coefficients (the Leslie matrix 𝐿 does not depend on time). You know from earlier
modules that when confronted with a homogeneous linear differential equation with constant
coefficients you can solve it with an exponential Ansatz. The same works for linear difference
equations. We make the Ansatz

N𝑡 = 𝜆𝑡v (4.37)

and substitute it into Eq. 4.36. This gives

𝜆𝑡+1v = 𝐿𝜆𝑡v. (4.38)

Dividing by 𝜆𝑡 gives
𝜆v = 𝐿v. (4.39)

This means that our Ansatz works if we choose 𝜆 to be an eigenvalue of the Leslie matrix 𝐿
and v to be the corresponding eigenvector.
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In the case where all eigenvalues of the Leslie matrix are distinct2, the general solution is the
linear combination of the solutions for each eigenvalue.

N𝑡 = 𝑐1𝜆𝑡
1v1 + 𝑐2𝜆𝑡

2v2 +⋯+ 𝑐𝑚𝜆𝑡
𝑚v𝑚, (4.40)

where 𝜆1, 𝜆2,… , 𝜆𝑚 are the eigenvalues of the Leslie matrix and v1,v2,… ,v𝑚 are the corre-
sponding eigenvectors. The constants 𝑐1, 𝑐2,… , 𝑐𝑚 are determined by the initial conditions.

Example 4.2. Consider a population with the reproduction numbers 𝑏𝑎 and the survival
probabilities 𝑆𝑎 given in the following table:

𝑎 𝑏𝑎 𝑆𝑎 𝐹𝑎

0 0 — 0
1 0 1 1/2
2 1 1/2 1
3 2 1/2 0
4 0 1/2 0

The final column in that table is calculated from the previous ones using 𝐹𝑎 ∶= 𝑏𝑎+1𝑆𝑎+1. In
this example the maximum age 𝑚 beyond which there is no reproduction is 𝑚 = 3. Hence the
corresponding Leslie matrix is a 3 × 3 matrix. It is given by

𝐿 = ⎛⎜
⎝

𝐹0 𝐹1 𝐹2
𝑆1 0 0
0 𝑆2 0

⎞⎟
⎠

= ⎛⎜
⎝

0 1/2 1
1 0 0
0 1/2 0

⎞⎟
⎠

. (4.41)

Assume that the at time 𝑡 = 0 we only have 10 individuals all of age 0, i.e.,

N0 = ⎛⎜
⎝

10
0
0
⎞⎟
⎠

. (4.42)

We can then calculate the numbers at the following times 𝑡 = 1, 2, 3,… by repeated multipli-
cation by the Leslie matrix 𝐿:

N1 = 𝐿N0 = ⎛⎜
⎝

0 1/2 1
1 0 0
0 1/2 0

⎞⎟
⎠

⎛⎜
⎝

10
0
0
⎞⎟
⎠

= ⎛⎜
⎝

0
10
0
⎞⎟
⎠

,

2In the case where there are repeated eigenvalues, the general solution is just a bit more complicated. Luckily
in ecology, we are rarely interested in that case, because the probability that a real ecosystem is exactly so
that this special case arises is zero.
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N2 = 𝐿N1 = ⎛⎜
⎝

5
0
5
⎞⎟
⎠

, N3 = 𝐿N2 = ⎛⎜
⎝

5
5
0
⎞⎟
⎠

,⋯ .

Continuing like this (using a computer) we observe that the population converges to a stable
age distribution.

lim
𝑡→∞

N𝑡 = ⎛⎜
⎝

4
4
2
⎞⎟
⎠

. (4.43)

To understand this phenomenon we look for the eigenvalues and eigenvectors of the Leslie
matrix. The eigenvalues are the solutions of the characteristic equation

0 = det(𝐿 − 𝜆𝐼) = ∣
−𝜆 1/2 1
1 −𝜆 0
0 1/2 −𝜆

∣ = −𝜆3 + 1
2𝜆 + 1

2

= (1 − 𝜆)(𝜆2 + 𝜆 + 1
2)

(4.44)

We can read off that the solutions are

𝜆) = 1, 𝜆± = −1
2 ± 1

2𝑖. (4.45)

Because the magnitude of the eigenvalues 𝜆± is less than 1, we have that lim𝑡→∞ 𝜆𝑡
± = 0.

This means that the stable age distribution is given by the eigenvector corresponding to the
eigenvalue 𝜆0 = 1:

lim
𝑡→∞

N𝑡 = lim
𝑡→∞

(𝑐0𝜆𝑡
0v0 + 𝑐+𝜆𝑡

+v+ + 𝑐−𝜆𝑡
−v−) = 𝑐0v0.

In general, if the Leslie matrix has a unique dominatn eigenvalue 𝜆0 with a corresponding
eigenvector v0, then

lim
𝑡→∞

N𝑡
𝜆𝑡
0
= 𝑐0v0,

where 𝑐0 is a constant that depends on the initial conditions. This means that the population
converges to a stable age distribution. The stable age distribution is given by the eigenvector
corresponding to the dominant eigenvalue of the Leslie matrix.

Luckily, there is a theorem about the eigenvalues and eigenvectors of non-negative matrices
that we can use to determine whether a Leslie matrix has a unique dominant eigenvalue. We
start by associating the Leslie matrix with a directed graph. The graph has 𝑚 vertices and a
directed edge from vertex 𝑖 to vertex 𝑗 if and only if the Leslie matrix has a non-zero entry in
column 𝑖 and row 𝑗. The graph is called the Leslie graph. We call the Leslie matrix irreducible
if its Leslie graph is strongly connected, which means that there is a directed path between any
two nodes. We call the Leslie matrix primitive if the greatest common divisor of the lengths
of all circuits in the Leslie graph is 1. The following theorem is then true:
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Theorem 4.1. If the Leslie matrix is irreducible and primitive, then it has a unique dominant
eigenvalue that is real and positive. The corresponding right eigenvector is real and strictly
positive.

This is a special case of the Perron-Frobenius theorem, which is a general theorem about non-
negative matrices, and is used extensively in the theory of Markov chains. The above theorem
is exactly what we need, because it tells us when the Leslie matrix has a unique dominant
eigenvalue and a corresponding eigenvector that gives the stable age distribution.

4.3 Exercises

4.3.1 Continuous time

4.3.1.1 * Age-independent rates

Exercise 4.1. In the continuous-time age-structured population model consider the case where
𝑏(𝑎) = 𝑏 and 𝜇(𝑎) = 𝜇 are both constant. Repeat all steps of the analysis but simplifying the
expressions at each step by using the constant values for birth and death rates.

1. Solve the partial differential equation of the age-structured model by making the Ansatz
𝑛(𝑡, 𝑎) = 𝑓(𝑡)𝑟(𝑎) and introducing the separation constant 𝛾.

2. Use the boundary condition at 𝑎 = 0 to determine the value of 𝛾.
3. Give the condition under which the population goes extinct and compare it to the con-

dition in the exponential model from chapter 1.

4.3.1.2 o Harvestings an age-structured population

Exercise 4.2. Consider an age-structured fish population in which all individuals above the
maturity age 𝑎𝑚 are reproducing, at a fixed rate, so that

𝑏(𝑎) = {0 if 𝑎 < 𝑎𝑚,
𝑏 if 𝑎 ≥ 𝑎𝑚. (4.46)

All fish at all ages experience a natural death rate 𝜇0. In addition, fish above the maturity
size are harvested at a constant rate 𝜇𝐹 , so that

𝜇(𝑎) = {𝜇0 if 𝑎 < 𝑎𝑚,
𝜇0 + 𝜇𝐹 if 𝑎 ≥ 𝑎𝑚. (4.47)

By calculating the expected number of offspring per individual, determine the limit on the
harvesting rate 𝜇𝐹 that allows the population to be sustainable.
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4.3.1.3 Seasonal mortality

Exercise 4.3. Consider an age-structured population model in which, in addition to an age-
dependent mortality, there is also a seasonal mortality. The population is described by a
function 𝑛(𝑡, 𝑎) giving the density of individuals of age 𝑎 at time 𝑡 which satisfies the equations

𝜕𝑡𝑛(𝑡, 𝑎) + 𝜕𝑎𝑛(𝑡, 𝑎) = −(𝜇(𝑎) +𝑚(𝑡)) 𝑛(𝑡, 𝑎), (4.48)

𝑛(𝑡, 0) = ∫
∞

0
𝑏(𝑎)𝑛(𝑡, 𝑎)𝑑𝑎. (4.49)

The birth rate 𝑏(𝑎) and the mortality rates 𝜇(𝑎) and 𝑚(𝑡) are all positive.

(a) By substituting the ansatz 𝑛(𝑡, 𝑎) = 𝑝(𝑡)𝑟(𝑎) into equation Eq. 4.48 and separating
variables with a separation constant 𝛾, derive solutions for 𝑝(𝑡) and 𝑟(𝑎) and hence for
𝑛(𝑡, 𝑎), involving 𝛾.

(b) By substituting your solution from part (a) into equation Eq. 4.49, derive an equation for
𝛾. Write this in the form 𝜙(𝛾) = 1 for some function 𝜙. Show that this 𝜙 is a monotonic
function.

(c) Assume that the seasonal mortality rate 𝑚(𝑡) is periodic with period 1 and denote by
𝐹 the averaged seasonal mortality. By considering the population at the end of each
season, show that the population will go extinct if 𝛾 < 𝐹 .

(d) Explain how you can use a property of the function 𝜙 to eliminate 𝛾 from the condition
for extinction. Thus finally give the condition for extinction in terms of 𝑏(𝑎), 𝜇(𝑎) and
𝐹 .

4.3.2 Discrete time

4.3.2.1 * Fibonacci population

Exercise 4.4. Consider a population in which individuals on average produce one offspring
when they turn 1 year old and another offspring when they turn 2 years old. After that they
die. Assume that there is no mortality before they turn 2 year old.

1. Formulate the above information in terms of values for the reproduction numbers 𝑏𝑎 and
the survival probabilities 𝑆𝑎.

2. Write down the Leslie matrix for this population.
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3. Assume that at 𝑡 = 0 we start with 1 individual of age 0. By hand, calculate the numbers
of individuals at each age at time 𝑡 = 1, 2, 3, 4 and 5.

4. Using the Leslie matrix, calculate the stable age distribution and the long-term growth
factor (the factor by which the total population changes from one year to the next).

4.3.2.2 Semelparous population

Exercise 4.5. Consider a population in which individuals die after having given birth for the
first time at age 3. The life history parameters are given by the following table:

𝑎 𝑏𝑎 𝑆𝑎

1 0 1
2 0 1/2
3 6 1/3

1. Calculate the Leslie matrix for this population.

2. Assume that at 𝑡 = 0 we start with 10 individual, all of age 0. Use the Leslie matrix to
calculate the numbers of individuals of ages 0, 1, 2 at times 𝑡 = 1, 2, 3. What will happen
in the long run? Will the population evolve towards a stable age distribution?

3. Draw the graph associated with the Leslie matrix and determine whether the Leslie
matrix is irreducible and primitive.

4.3.2.3 Eastern Screech Owl

Exercise 4.6. This exercise is most suitable for you if you are willing to use a computer to
find eigenvalues and eigenvectors of matrices.

The Eastern Screech Owl is a small owl that is found in the eastern United States and Canada.
It is a cavity-nesting bird, which means that it nests in holes in trees. It is able to adapt to
diverse habitats, including wooded residential neighbourhoods and parks in suburban areas.
In suburban areas, these owls find a variety of nesting opportunities, such as tree cavities,
nest boxes, and even abandoned buildings, which may be less available in intensively farmed
rural areas or dense forests. Additionally, the suburban settings can offer a rich supply of
prey, including insects, small mammals, and other small creatures, partly due to the lower
prevalence of large predators.
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Below is a life table collected for two different habitats, suburban and rural, in Texas.

Age Suburban Rural
𝑎 𝑙𝑎 𝑏𝑎 𝑙𝑎 𝑏𝑎
0 1.00 0.0 1.00 0.0
1 0.49 0.8 0.30 0.8
2 0.18 1.3 0.11 1.1
3 0.10 1.5 0.06 1.6
4 0.06 1.6 0.04 1.0
5 0.04 1.3 0.02 1.0
6 0.03 1.3
7 0.02 1.3
8 0.02 1.3
9 0.01 1.3
10 0.01 1.3

For each of the two populations do the following:

1. Calculate the reproductive number, i.e., the expected number of offspring produced by
a single individual during its lifetime.

2. Calculate the Leslie matrix. Note that the table gives the survival probabilities 𝑙𝑎 from
birth to age 𝑎 instead of the yearly survival probabilities 𝑆𝑎. The yearly survival proba-
bilities can be calculated from the life table by 𝑆𝑎 = 𝑙𝑎/𝑙𝑎−1.

3. Use the Leslie matrix to calculate the stable age distribution and the long-term growth
factor (the factor by which the total population changes from one year to the next).

4. Calculate the average age in the stable age distribution as well as the average age of
parents of newborns.
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5 Interacting populations

Ecological systems are complex networks of interactions involving multiple species, which can
be categorized into different trophic levels based on their roles in the ecosystem. Understand-
ing these interactions is crucial for studying ecosystem dynamics, population control, and
biodiversity. While the study of multiple interacting species can become quite intricate, an-
alyzing the interactions between two species offers a more manageable framework while still
providing significant insights into the dynamics of ecological relationships. This chapter fo-
cuses on two-species interactions, offering a foundational understanding that can be applied
or extended to more complex scenarios.

Mathematical Framework for Two-Species Interactions

To model the interactions between two species, we employ a system of two autonomous coupled
ordinary differential equations (ODEs). These equations describe the rate of change of the
population sizes over time, capturing the essence of their interaction. The general form of
these equations is given by:

𝑑𝑋
𝑑𝑡 = 𝑓(𝑋, 𝑌 ), 𝑑𝑌

𝑑𝑡 = 𝑔(𝑋, 𝑌 ). (5.1)

where 𝑋 and 𝑌 represent the population sizes of the two species, and 𝑓(𝑋, 𝑌 ) and 𝑔(𝑋, 𝑌 ) are
functions that describe how the populations influence each other. These functions are crafted
based on the nature of the interaction between the species, reflecting the underlying biological
processes.

Types of Two-Species Interactions

The dynamics of two interacting species are generally categorized into three primary types,
each with its unique characteristics and implications for the populations involved:

• Predator-Prey Interactions: In this type of interaction, one species (the predator)
feeds on the other (the prey). The population growth of the predator increases with
increased availability of the prey, while the prey population is negatively affected by
the presence of the predator. Mathematically, this interaction often leads to oscillatory
dynamics, exemplified by the classic Lotka-Volterra model.

• Competition: When two species compete for the same resources, their growth rates are
adversely affected by their interaction. This situation is characterized by negative im-
pacts on both species’ growth rates, potentially leading to the exclusion of one species or
to a stable coexistence, depending on the specific conditions and competition coefficients.
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• Mutualism: This positive interaction benefits both species, leading to an increase in
their growth rates. The mutualistic relationship is such that each species provides some
benefit to the other, which could be in the form of nutrients, shelter, or any other factor
that enhances growth or survival.

While this chapter focuses on these primary interaction types, it’s important to recognize the
spectrum of interactions in nature, including parasitism, amensalism, and others. Moreover,
the real-world ecological systems often exhibit a mix of these interactions, adding layers of
complexity. By starting with the analysis of two-species systems, we lay the groundwork for
understanding more intricate interactions and the overall dynamics of ecosystems.

5.1 Lotka-Volterra Model

The Lotka-Volterra model, developed independently by Alfred Lotka in 1925 and Vito Volterra
in 1926, serves as a foundational mathematical model for understanding the dynamic interplay
between a prey population (denoted by 𝑁) and a predator population (denoted by 𝑃 ).

Model Formulation

The model assumes that the prey population, in the absence of predators, grows exponentially
with a per capita growth rate 𝑎 > 0. However, the prey die due to being eaten by predators,
and we assume that the per-capita mortality rate grows in proportion to the abundance of
predators, with some proportionality constant 𝑏 ≥ 0. This leads to the equation

𝑑𝑁
𝑑𝑡 = 𝑁(𝑎 − 𝑏𝑃). (5.2)

Conversely, the predators benefit from the abundance of prey and we encode that by giving
them a per-capita growth 𝑐𝑁 , where 𝑐 ≥ 0. We assume that the per capita mortality rate is
a constant 𝑑. This yields the following equation for the predator dynamics:

𝑑𝑃
𝑑𝑡 = 𝑃(𝑐𝑁 − 𝑑). (5.3)

The two plots in Figure 5.1 generated from the Lotka-Volterra model provide a visual rep-
resentation of the dynamics between a predator and prey population over time. The phase
plane plot illustrates the cyclic nature of the interaction between the prey (N) and predator
(P) populations, depicting a closed trajectory that indicates the continuous oscillation of both
populations in relation to each other: as the prey population increases, it provides more food
for the predators, which then also increase in number. However, as the predator population
grows, it puts more pressure on the prey, leading to a decline in the prey population, which
eventually causes the predator population to decrease due to lack of food.
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The plot at the bottom shows the prey and predator populations over time. It highlights the
periodic rises and falls of each population, showing how the increase in the prey population
precedes the increase in the predator population, followed by a subsequent decline in the prey
and then the predator population. The time series plot complements the phase plane by
showing how the dynamics unfold over time.

Non-dimensionalization of the Model

Non-dimensionalization is a crucial step to reduce the complexity of the model by decreas-
ing the number of parameters, thereby simplifying the analysis. By introducing the non-
dimensional variables 𝑢 = 𝑐𝑁

𝑑 , 𝑣 = 𝑏𝑃
𝑎 , and the non-dimensional time 𝜏 = 𝑎𝑡, along with

the parameter 𝛼 = 𝑑
𝑎 , we can transform the Lotka-Volterra equations into a more tractable

form:

𝑑𝑢
𝑑𝜏 = 𝑢(1 − 𝑣), 𝑑𝑣

𝑑𝜏 = 𝛼𝑣(𝑢 − 1). (5.4)

Phase plane paths

To determine the phase plane paths we consider 𝑣 as a function of 𝑢 which satisfies the
equation

𝑑𝑣
𝑑𝑢 =

𝑑𝑣
𝑑𝜏
𝑑𝑢
𝑑𝜏

= 𝛼𝑣(𝑢 − 1)
𝑢(1 − 𝑣) . (5.5)

We rewrite this by separating the variable and integrate:

∫ 1− 𝑣
𝑣 𝑑𝑣 = 𝛼∫ 𝑢 − 1

𝑢 𝑑𝑢. (5.6)

This gives
log 𝑣 − 𝑣 = 𝛼(𝑢 − log𝑢) + constant. (5.7)

So even though 𝑢 and 𝑣 are changing with time, this particular combination stays constant.
This is a conserved quantity. Let us suggestively call the constant of the motion 𝐻 for Hamil-
tonian and write it in terms of new variables 𝑝 = log𝑢 and 𝑞 = log 𝑣:

𝐻(𝑞, 𝑝) = 𝑣 − log 𝑣 + 𝛼(𝑢 − log𝑢) = 𝑒𝑞 − 𝑞 + 𝛼(𝑒𝑝 − 𝑝). (5.8)

Hamilton’s equations
̇𝑞 = 𝑑𝐻

𝑑𝑝 , ̇𝑝 = −𝑑𝐻
𝑑𝑞 (5.9)

then reproduce our equations of motion.

This formulation underscores the conservative nature of the model, where the energy-like
quantity 𝐻 is conserved, leading to neutrally stable periodic orbits. This Hamiltonian nature
is a rather special feature of the Lotka-Volterra model. Any slight modification of the model
will destroy the conserved quantity and the periodic orbits. Thus we should not expect to see
such perfect periodic predator-prey cycles in nature. We will discuss more realistic predator-
prey models later.
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Figure 5.1: Solutions to the Lotka-Volterra model with parameters 𝑎 = 1.0, 𝑏 = 0.1, 𝑐 = 0.1,
and 𝑑 = 1.0 and initial conditions 𝑁0 = 10 and 𝑃0 = 5.
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5.2 Linear Stability Analysis

Before we study more realistic models, we revisit the concept of linear stability analysis, an
essential tool in understanding the dynamics near the fixed points of systems described by
autonomous coupled ordinary differential equations (ODEs) of the form

𝑑𝑋
𝑑𝑡 = 𝑓(𝑋, 𝑌 ), 𝑑𝑌

𝑑𝑡 = 𝑔(𝑋, 𝑌 ). (5.10)

Let us denote the fixed points (stable states) of the system as (𝑥∗, 𝑦∗). They satisfy 𝑓(𝑥∗, 𝑦∗) =
0 and 𝑔(𝑥∗, 𝑦∗) = 0.
Linearization around the Fixed Points

To analyze the stability of these fixed points, we introduce small perturbations 𝑥 and 𝑦 around
them, setting 𝑋 = 𝑥∗ +𝑥 and 𝑌 = 𝑦∗ +𝑦. By applying a Taylor expansion and retaining only
the linear terms, we obtain a linearized system:

𝑑
𝑑𝑡 (

𝑥
𝑦) = A(𝑥∗, 𝑦∗)(𝑥

𝑦) , (5.11)

where the Jacobian matrix A is defined as:

A = (𝑓𝑋 𝑓𝑌
𝑔𝑋 𝑔𝑌

)
(𝑥∗,𝑦∗)

. (5.12)

Eigenvalue Analysis for Stability

The solution to the linearized system takes the form (𝑥, 𝑦) = v𝑒𝜆𝑡, where v is an eigenvector
of A, and 𝜆 is the corresponding eigenvalue. By setting the determinant of A−𝜆I to zero, we
obtain the characteristic equation:

det(A − 𝜆I) = ∣𝑓𝑋 − 𝜆 𝑓𝑌
𝑔𝑋 𝑔𝑌 − 𝜆∣(𝑥∗,𝑦∗)

= 0, (5.13)

which leads to the eigenvalues:

𝜆 = TrA ±√(TrA)2 − 4 detA
2 . (5.14)

The stability of the fixed point is determined by the sign of the real parts of the eigenvalues:

• If both eigenvalues have negative real parts, the fixed point is stable (attracting).
• If both eigenvalues have positive real parts, the fixed point is unstable (repelling).
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• If the eigenvalues have real parts of opposite signs, the fixed point is a saddle point,
which is unstable.

• For a complex conjugate pair of eigenvalues, if the real part is positive, the system
exhibits an unstable spiral; if the real part is negative, the system exhibits a stable
spiral.

This analysis is pivotal for understanding how small deviations from equilibrium evolve over
time, providing insights into the system’s long-term behavior near the fixed points. For in-
stance, in the context of the predator-prey dynamics, such analysis helps elucidate under what
conditions the populations will return to equilibrium after a disturbance or potentially diverge
away from it.

We can reformulate the stability conditions of a fixed point in terms of the determinant and
trace of the Jacobian matrix. We need to recall how these two characteristics of the Jacobian
relate to the eigenvalues. For a 2x2 matrix 𝐴 with eigenvalues 𝜆1 and 𝜆2, the trace Tr(𝐴) is
the sum of the eigenvalues, and the determinant Det(𝐴) is the product of the eigenvalues:

• Tr(𝐴) = 𝜆1 + 𝜆2
• Det(𝐴) = 𝜆1𝜆2

Using these relationships, we can express the conditions for the stability of fixed points as
follows:

1. Stable (Attracting) Fixed Point: If both eigenvalues have negative real parts, their
sum (the trace) is negative, and their product (the determinant) is positive because the
product of two negative numbers is positive. Therefore, for stability, Tr(𝐴) < 0 and
Det(𝐴) > 0. Additionally, to ensure that both eigenvalues are real and negative, we
require that Tr(𝐴)2 − 4Det(𝐴) ≥ 0 to avoid complex eigenvalues.

2. Unstable (Repelling) Fixed Point: If both eigenvalues have positive real parts, the
trace is positive, and the determinant is positive (the product of two positive numbers
is positive). Thus, for instability, Tr(𝐴) > 0 and Det(𝐴) > 0.

3. Saddle Point (Unstable): If the eigenvalues have real parts of opposite signs, the
determinant (the product of the eigenvalues) is negative. So, for a saddle point, Det(𝐴) <
0, regardless of the trace.

4. Spiral Points: For a complex conjugate pair of eigenvalues, the determinant will be
positive (since the product of complex conjugates is positive), but the stability depends
on the sign of the real part of the eigenvalues, which is represented by the trace. Here,
we also need to ensure that Tr(𝐴)2 − 4Det(𝐴) < 0 to confirm that the eigenvalues are
complex.

• Unstable Spiral: If the real part is positive, Tr(𝐴) > 0 and Det(𝐴) > 0.
• Stable Spiral: If the real part is negative, Tr(𝐴) < 0 and Det(𝐴) > 0.
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These conditions provide a concise way to determine the stability of fixed points using only the
determinant and trace of the Jacobian matrix, without explicitly computing the eigenvalues.

Example 5.1 (Linear Stability Analysis of the Lotka-Volterra Model). To explore the stability
of steady states in the Lotka-Volterra model, we analyze the system near its fixed points using
the Jacobian matrix A. For the non-dimensionalized Lotka-Volterra system, the Jacobian
matrix is given by

A = (1 − 𝑣 −𝑢
𝛼𝑣 𝛼(𝑢 − 1)) . (5.15)

Steady State at (𝑢, 𝑣) = (0, 0)
For the fixed point (𝑢, 𝑣) = (0, 0), we substitute these values into the Jacobian matrix and find
the eigenvalues:

A = (1 0
0 −𝛼) . (5.16)

The eigenvalues are 𝜆1 = 1 and 𝜆2 = −𝛼, indicating that this fixed point is a saddle point
due to the eigenvalues having opposite signs. This configuration is inherently unstable as
trajectories near the point will diverge away along the direction associated with the positive
eigenvalue.

Steady State at (𝑢, 𝑣) = (1, 1)
At the fixed point (𝑢, 𝑣) = (1, 1), the Jacobian matrix becomes:

A = (0 −1
𝛼 0 ) . (5.17)

The characteristic equation for the eigenvalues 𝜆 is 𝜆2+𝛼 = 0, leading to complex eigenvalues
𝜆 = ±𝑖√𝛼. The real part of these eigenvalues is zero, indicating that this fixed point is a center.
Trajectories around this point are closed loops, implying that the system exhibits neutrally
stable periodic behavior around the (1, 1) steady state.

The period 𝑇 of the oscillations can be determined from the imaginary part of the eigenvalues,
which is

√𝛼, so the period 𝑇 = 2𝜋√𝛼 .

5.3 More Realistic Predator-Prey Models

While the basic Lotka-Volterra model provides a fundamental understanding of predator-prey
interactions, more nuanced models incorporate additional biological realism. These models
may account for factors like limited resources, satiation, prey switching, predator avoidance,
and many others.
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5.3.1 Generalized Predator-Prey Model

The generalized model introduces a function 𝐹(𝑁,𝑃) representing the prey population’s per-
capita growth and a function 𝐺(𝑁,𝑃) for the predator’s per-capita growth rate, so that the
dynamics are:

𝑑𝑁
𝑑𝑡 = 𝑁𝐹(𝑁,𝑃), 𝑑𝑃

𝑑𝑡 = 𝑃𝐺(𝑁,𝑃). (5.18)

The prey might exhibit logistic growth in the absence of predators. To model this we could
choose

𝐹(𝑁, 𝑃) = 𝑟(1 − 𝑁
𝐾)−𝑅(𝑁)𝑃 , (5.19)

where 𝑟 is the intrinsic growth rate, 𝐾 is the carrying capacity, and 𝑅(𝑁) models how the
predation rate of a predator changes with the prey population size. 𝑁𝑅(𝑁) is the rate at
which each individual predator consumes prey. The dependence of this rate on the prey
population size 𝑁 is often referred to as “functional response” in the ecological literature.
Holling introduced three types of functional responses, which are widely used in predator-prey
models:

5.3.1.1 Holling Type functional responses

1. Type I 𝑁𝑅(𝑁) = 𝑏𝑁 , which corresponds to the standard Lotka-Volterra model. This
simplification lacks realism as it assumes an unlimited predator appetite regardless of
prey population size.

2. Type II 𝑁𝑅(𝑁) = 𝐴𝑁
𝑁+𝐵 , with 𝐴 and 𝐵 being positive constants. In this model, the rate

approaches a saturation level 𝐴 for large 𝑁 , reflecting a limit to the predator’s consump-
tion rate. This model is more realistic as it accounts for the predator’s limited appetite,
which might be because there is a minimum handling time, the time the predator needs
to consume a prey item.

3. Type III 𝑁𝑅(𝑁) = 𝐴𝑁2
𝑁2+𝐵2 . This response includes a saturation effect like the previous

example but also models that if the prey is rare the predator may not be able to find
it. This model is more complex and captures the idea that predators may switch to
alternative prey when the primary prey is scarce. It may also encode a learning effect,
where the predator’s efficiency in capturing prey increases with experience so that initially
the predator’s consumption rate increases with prey density.
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5.3.2 Example

Consider a model where the prey growth rate follows logistic dynamics in the absence of prey
and predation mortality is described by a Holling type II function encoding satiation effects.
The predator’s growth rate goes down as the prey population decreases. The model equations
are:

𝑑𝑁
𝑑𝑡 = 𝑁 [𝑟 (1 − 𝑁

𝐾)− 𝐴
𝑁 +𝐵𝑃] , 𝑑𝑃

𝑑𝑡 = 𝑃𝑠(1 − ℎ𝑃
𝑁 ) , (5.20)

where 𝑟, 𝐾, 𝐴, 𝐵, 𝑠, and ℎ are positive constants.

Nondimensionalization

To reduce the complexity, we nondimensionalize the system with 𝜏 = 𝑡𝑟, 𝑢 = 𝑁
𝐾 , 𝑣 = ℎ𝑃

𝐾 ,
𝑎 = 𝐴

ℎ𝑟 , 𝑏 = 𝐵
𝐾 , and 𝑐 = 𝑠

𝑟 , leading to:

𝑑𝑢
𝑑𝜏 = 𝑢(1 − 𝑢) − 𝑎 𝑢𝑣

𝑢 + 𝑏 ,
𝑑𝑣
𝑑𝜏 = 𝑐𝑣 (1 − 𝑣

𝑢) . (5.21)

Stability Analysis of Steady States

The steady states (𝑢∗, 𝑣∗) include (1, 0) and a coexistence steady state (𝑢∗
+, 𝑢∗

+), where

𝑢∗
+ = 1 − 𝑎 − 𝑏 +√(1 − 𝑎 − 𝑏)2 + 4𝑏

2 . (5.22)

The community matrix A(𝑢, 𝑣) at these points helps determine their stability. For the fixed
point (1, 0), where the prey population is at carrying capacity and there are no predators, we
have find

A(1, 0) = (−1 − 𝑎
1+𝑏

0 𝑐 ) . (5.23)

The eigenvalues −1 and 𝑐 have opposite sign, indicating that the fixed point is a saddle point.

At the coexistence fixed point (𝑢∗
+, 𝑢∗

+) the Jacobian is more complex and we will skip the
analysis here.

5.4 Competition Models

In ecological systems, species often compete for limited resources, such as food or territory.
This competition influences their growth rates and can determine their survival and domi-
nance within an ecosystem. The Lotka-Volterra competition model provides a framework to
study these dynamics, extending the principles of logistic growth to account for interspecies
interactions.
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5.4.1 Lotka-Volterra Competition Dynamics

The model is formulated as follows for two competing species 𝑁1 and 𝑁2:

𝑑𝑁1
𝑑𝑡 = 𝑟1𝑁1 (1 − 𝑁1 + 𝑏12𝑁2

𝐾1
) ,

𝑑𝑁2
𝑑𝑡 = 𝑟2𝑁2 (1 − 𝑁2 + 𝑏21𝑁1

𝐾2
) ,

(5.24)

where 𝑟𝑖 is the intrinsic growth rate and𝐾𝑖 is the carrying capacity of species 𝑖. The coefficients
𝑏𝑖𝑗 represent the competitive effect of species 𝑗 on species 𝑖, effectively reducing the carrying
capacity for species 𝑖 due to the presence of species 𝑗.

5.4.2 Nondimensionalization of the Model

To simplify the analysis, we nondimensionalize the system using:

𝑢𝑖 =
𝑁𝑖
𝐾𝑖

, 𝑎𝑖𝑗 =
𝑏𝑖𝑗𝐾𝑗
𝐾𝑖

, 𝜏 = 𝑟1𝑡, 𝜌 = 𝑟2
𝑟1

, (5.25)

leading to:
𝑑𝑢1
𝑑𝜏 = 𝑢1(1 − 𝑢1 − 𝑎12𝑢2),

𝑑𝑢2
𝑑𝜏 = 𝜌𝑢2(1 − 𝑢2 − 𝑎21𝑢1). (5.26)

5.4.3 Analysis of Steady States

The system has four potential steady states: (0, 0), (0, 1), (1, 0), and a coexistence steady state
( 1−𝑎12
1−𝑎12𝑎21

, 1−𝑎21
1−𝑎12𝑎21

).
To determine the stability of these points, we evaluate the Jacobian matrix A(𝑢1, 𝑢2) at each
steady state and analyze its eigenvalues:

1. At (0, 0): The eigenvalues are 1 and 𝜌, indicating an unstable node as both are positive.

2. At (1, 0): The eigenvalues are −1 and 𝜌(1 − 𝑎21). This point is a saddle if 𝑎21 < 1 and
a stable node if 𝑎21 > 1.

3. At (0, 1): By symmetry, this point behaves like (1, 0) with roles reversed between species.

4. Coexistence point ( 1−𝑎12
1−𝑎12𝑎21

, 1−𝑎21
1−𝑎12𝑎21

): The stability is determined by the sign of
the trace and the determinant of A. The system’s behavior at this point depends on
the specific values of 𝑎12 and 𝑎21, indicating potential scenarios where both species can
coexist or one outcompetes the other.
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5.4.4 Nullclines and Phase Portraits

Nullclines, where the growth rate of one of the species are zero, are a very useful aid when
drawing phase plane diagrams, also known as phase portraits. The nullclines for the Lotka-
Volterra competition model are:

• 𝑢1 nullclines: 𝑑𝑢1/𝑑𝜏 = 0 when 𝑢1 = 0 or 𝑢2 = 1−𝑢1
𝑎12

.

• 𝑢2 nullclines: 𝑑𝑢2/𝑑𝜏 = 0 when 𝑢2 = 0 or 𝑢2 = 1 − 𝑎21𝑢1.

Along the 𝑢1 nullclines the flow is purely vertical and along the 𝑢2 nullclines the flow is purely
horizontal. The intersection of the nullclines gives the steady states of the system. We can
now draw the phase portrait to visualize the dynamics of the system. Very rough sketches are
enough to understand the dynamics.

Figure 5.2: Phase portrait of competition model when 𝑎12 < 1 and 𝑎21 < 1.

Figure 5.2 shows the phase portrait of the competition model when 𝑎12 < 1 and 𝑎21 < 1.
The nullclines are shown in grey and red, the flow lines in blue, with the arrows indicating
the direction of the flow. The system exhibits a stable coexistence steady state, where both
species persist in the ecosystem.
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Figure 5.3: Phase portrait of competition model when 𝑎12 > 1 and 𝑎21 > 1.
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Figure 5.3 illustrates the phase portrait of the competition model when 𝑎12 > 1 and 𝑎21 > 1.
In this scenario, the coexistence steady state is a saddle, leading to the exclusion of one species.
Which species dominates depends on the initial conditions. If the initial condition is below
the separatrix, species 1 will dominate, and if it is above, species 2 will dominate.

Figure 5.4: Phase portrait of competition model when 𝑎12 < 1 and 𝑎21 > 1.

Figure 5.4 depicts the phase portrait of the competition model when 𝑎12 < 1 and 𝑎21 > 1.
In this case, the coexistence steady state has disappeared (it has moved into a region with
negative population numbers that is not ecologically relevant). Irrespective of initial conditions,
the system will evolve towards the state where only species 1 exists. Species 2 is driven to
extinction.

We are not drawing the case 𝑎12 > 1 and 𝑎21 < 1 as it is similar to the case 𝑎12 < 1 and
𝑎21 > 1 just with the role of species 1 and 2 reversed. In this case species 2 will dominate and
species 1 will go extinct.
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5.4.5 Competitive Exclusion Principle

The competitive exclusion principle, proposed by Gause in the 1930s, states that two species
competing for the same resources cannot coexist indefinitely, with one species eventually out-
competing the other.

In the model we studied the two species shared resources but each also had its own resources,
hence we observed a weaker form of the competitive exclusion principle. The coexistence steady
state was stable when the competition was weak enough, allowing both species to persist in
the ecosystem. This highlights the delicate balance between competition and coexistence
in ecological systems, where the strength of interspecies interactions plays a crucial role in
determining the long-term dynamics of species populations.

5.5 Mutualism Models

In ecological systems, mutualism refers to interactions where all participating species benefit,
leading to increased growth rates. An example is the relationship between plants and their
seed dispersers, such as insects, where both parties gain advantages from their association.

5.5.1 Example

This model incorporates logistic growth, akin to the competition model, but with a twist to
account for the mutualistic interaction:

𝑑𝑁1
𝑑𝑡 = 𝑟1𝑁1 [1 − 𝑁1

𝐾1
+ 𝑏12

𝑁2
𝐾1

] , 𝑑𝑁2
𝑑𝑡 = 𝑟2𝑁2 [1 − 𝑁2

𝐾2
+ 𝑏21

𝑁1
𝐾2

] , (5.27)

where 𝑟𝑖, 𝐾𝑖, and 𝑏𝑖𝑗 are all positive constants, with 𝑏𝑖𝑗 representing the mutualistic benefit
to species 𝑖 from species 𝑗. Notice that we simply changed the sign of the competition terms
in the competition model to turn them into mutualistic terms

5.5.2 Nondimensionalization of the Model

Using nondimensional variables 𝑢𝑖 = 𝑁𝑖/𝐾𝑖, 𝑎𝑖𝑗 = 𝑏𝑖𝑗𝐾𝑗/𝐾𝑖, 𝜏 = 𝑟1𝑡, and 𝜌 = 𝑟2/𝑟1, the
equations transform to:

𝑑𝑢1
𝑑𝜏 = 𝑢1(1 − 𝑢1 + 𝑎12𝑢2),

𝑑𝑢2
𝑑𝜏 = 𝜌𝑢2(1 − 𝑢2 + 𝑎21𝑢1). (5.28)

This is as in the competition model but with the signs in front of 𝑎12 and 𝑎21 reversed.

63



5.5.3 Steady States and Stability

The system has the steady states (0, 0), (0, 1), (1, 0), and (1+𝑎12
𝛿 , 1+𝑎21

𝛿 ), where 𝛿 = 1−𝑎12𝑎21.
The coexistence steady state is ecologically relevant only if 𝛿 > 0.

• At (0, 0): The eigenvalues are 1 and 𝜌, indicating an unstable node.

• At (0, 1) and (1, 0): These points are saddles, with eigenvalues showing a mix of positive
and negative signs.

• At the mutualistic steady state: The trace and determinant of the community matrix
A suggest that this point is stable if 𝛿 > 0.

5.5.4 Nullclines and Phase Portraits

The equations for the nullclines for this model are similar to those in the competition model,
but now with positive slope rather than negative slope.

• 𝑢1 nullclines: 𝑑𝑢1/𝑑𝜏 = 0 when 𝑢1 = 0 or 𝑢2 = 𝑢1−1
𝑎12

.

• 𝑢2 nullclines: 𝑑𝑢2/𝑑𝜏 = 0 when 𝑢2 = 0 or 𝑢2 = 1 + 𝑎21𝑢1.

Figure 5.5: Phase portrait of mutualistic model when 𝑎12𝑎21 < 1.
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Figure 5.5 illustrates the phase portrait of the mutualism model when 𝑎12𝑎21 < 1. The
nullclines are shown in grey and red, with the flow lines in blue. The system exhibits a stable
coexistence steady state, where both species benefit from the mutualistic interaction.

5.5.5 Limitations and Unbounded Growth

A cautionary note is that if the mutualistic coefficients 𝑎12𝑎21 are too large, leading to 𝛿 < 0,
the model predicts unbounded growth, which is unrealistic. This phenomenon, known as May’s
“orgy of mutual benefaction,” highlights the need for constraints in mutualism models to avoid
predicting ecological impossibilities.

Through this mutualism model, we gain insights into how species interactions can foster in-
creased growth and stability, contrasting with competitive dynamics. It underscores the diver-
sity of ecological interactions and their varying implications for species survival and community
structure.

5.6 Exercises

5.6.0.1 Two-species model 1

Exercise 5.1.

Consider a model for the interaction of two species with populations 𝑁1 and 𝑁2

𝑑𝑁1
𝑑𝑡 = 𝑟1𝑁1 (1 − 𝑁1

𝐾1
− 𝑏12

𝑁2
𝐾1

) , (5.29)

𝑁2
𝑑𝑡 = 𝑟2𝑁2 (1 − 𝑏21

𝑁1
𝐾2

) , (5.30)

where all the parameters are positive.

a) What type of interaction exists between 𝑁1 and 𝑁2?

b) Non-dimensionalize the system by introducing 𝑢 = 𝑁1/𝐾1 and 𝑣 = 𝑁2/𝐾2 as well as
a non-dimensional time variable. What are the resulting non-dimensional parameters?
Give the equations of motion for 𝑢 and 𝑣 in terms of these parameters.

c) Determine the steady states in the non-dimensionalised system. Investigate their stability.
At what values of the parameters do bifurcations take place?

d) Determine the nullclines and use these to make rough phase-plane sketches (You will
need two sketches).
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e) Describe under what ecological circumstances 𝑁2 becomes extinct.
Do the same for 𝑁1. Show that the principle of competitive exclusion holds irrespective
of the size of the parameters.

5.6.0.2 Two-species model 2

Exercise 5.2.

A model for the interaction between two species with populations 𝑁1 and 𝑁2 is determined to
be 𝑑𝑁1

𝑑𝑡 = 𝑟𝑁1 (1 − 𝑁1
𝐾 )− 𝑎𝑁1𝑁2 (1 − exp(−𝑏𝑁1)) ,

𝑑𝑁2
𝑑𝑡 = −𝑑𝑁2 + 𝑐𝑁2 (1 − exp(−𝑏𝑁1)) ,

(5.31)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑟 and 𝐾 are positive constants.

a) Introducing the dimensionless variables and parameters

𝑢 = 𝑁1
𝐾 , 𝑣 = 𝑎𝑁2

𝑟 , 𝜏 = 𝑟𝑡, 𝛽 = 𝑏𝐾, (5.32)

show that 𝑑𝑢
𝑑𝜏 = 𝑢(1 − 𝑢) − 𝑢𝑣 (1 − 𝑒−𝛽𝑢) ,
𝑑𝑣
𝑑𝜏 = −𝛿𝑣 + 𝛼𝑣 (1 − 𝑒−𝛽𝑢) ,

(5.33)

giving the positive constants 𝛼 and 𝛿 in terms of 𝑐, 𝑑 and 𝑟.
b) Describe the relevance of each term and, hence, determine the type of interaction between

the two populations.

c) Show that the non-negative fixed points are given by (𝑢∗, 𝑣∗) = (0, 0), (1, 0) and (𝑢1, (1−
𝑢1)𝛼/𝛿), where 𝑢1 = − ln(1 − 𝛿/𝛼)/𝛽, and that the steady state where 𝑢∗ and 𝑣∗ are
both non-zero can only exist if 𝛼 > 𝛿 and 𝛽 > 𝛽𝑐 = − ln(1 − 𝛿/𝛼).

d) Show that the community matrix, 𝐴, is given by

𝐴 = (1 − 2𝑢 − 𝑣(1 − 𝑒−𝛽𝑢) − 𝛽𝑢𝑣𝑒−𝛽𝑢 −𝑢 (1 − 𝑒−𝛽𝑢)
𝛼𝑣𝛽𝑒−𝛽𝑢 −𝛿 + 𝛼(1 − 𝑒−𝛽𝑢)) . (5.34)

e) Assuming henceforth that 𝛿/𝛼 < 1, determine the linear stability of each of the fixed
points.
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f) Sketch the (𝑢, 𝑣) phase portrait to indicate the stability of each steady state for the two
cases 𝛽 > 𝛽𝑐 and 0 < 𝛽 < 𝛽𝑐 (remember 𝛼 > 𝛿).

5.6.0.3 Predator-prey model with Allee effect

Exercise 5.3.

Consider the predator-prey model with Allee effect in the prey:

𝑑𝑁
𝑑𝑇 = 𝑟𝑁 ( 𝑁

𝐾0
− 1)(1 − 𝑁

𝐾)− 𝑐𝑁𝑃,
𝑑𝑃
𝑑𝑇 = 𝑏𝑁𝑃 −𝑚𝑃,

(5.35)

where 𝑁(𝑇 ) is the number of prey and 𝑃(𝑇 ) is the number of predators at time 𝑇 , and
𝑟,𝐾, 𝑐, 𝑏,𝑚 are positive constants with 0 < 𝐾0 < 𝐾. The populations 𝑁(𝑇 ), 𝑃 (𝑇 ) are non-
negative quantities.

(a) Provide brief biological interpretations for 𝑟,𝐾,𝐾0, 𝑐, 𝑏,𝑚 for the above predator-prey
model. What is the biological role of 𝐾0 in the modified prey growth rate?

(b) Introduce the dimensionless variables 𝑁
𝐾 = 𝑥, 𝑐𝑃

𝑟 = 𝑦, 𝑟𝑇 = 𝑡 and show that the above
system can be reduced to

𝑑𝑥
𝑑𝑡 = 𝑥(𝑥

𝑦 − 1) (1 − 𝑥) − 𝑦 = 𝑥[𝑔(𝑥) − 𝑦],
𝑑𝑦
𝑑𝑡 = 𝛽(𝑥 − 𝛼𝑦).

(5.36)

How are the new dimensionless constants 𝛼, 𝛽 expressed in terms of the original parameters?

(c) For the dimensionless system:

i) Calculate the nullclines, clearly stating any conditions for their existence.

ii) Use your answer from (i) to sketch nullclines, depicting their intersections and the
vector field direction along each isocline in the phase plane.

iii) Find the fixed points.

(d) For the non-trivial fixed point, where both predators and preys may coexist:

i) Calculate the Jacobian at this point in terms of the function 𝑔(𝑥), 𝑔′(𝑥), where ′

denotes derivative in respect with 𝑥.
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ii) Evaluate the characteristic equation and study the stability of this fixed point as
the parameter � varies within the range � < � < 1, classifying the non-trivial fixed
point accordingly (i.e. node, spiral, centre or saddle point).

iii) Calculate the critical point where the Hopf bifurcation occurs and give an estimate
for the period of oscillation.
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6 Epidemics

“As a matter of fact, all epidemiology, concerned as it is with the variation of disease
from time to time or from place to place, must be considered mathematically,
however many variables are implicated, if it is to be considered scientifically at all.”
– Sir Ronald Ross

Mathematical epidemiology applies mathematical modelling and statistical analysis to under-
stand the spread of infectious diseases within populations. This is an important topic for
several reasons:

1. Control and prevention of diseases: Mathematical models can be used to predict the
spread of infectious diseases, estimate the effectiveness of control measures, and inform
public health policy. By studying mathematical epidemiology, researchers and public
health officials can develop strategies to prevent and control the spread of diseases, which
can save lives and reduce healthcare costs.

2. Improved disease surveillance: Mathematical models can also be used to estimate disease
incidence, prevalence, and mortality rates, which can help to improve disease surveillance
systems. By accurately tracking disease outbreaks, public health officials can respond
quickly to control and prevent further spread of the disease.

3. Understanding disease transmission dynamics: Mathematical models can provide insight
into the transmission dynamics of infectious diseases, such as how they spread within
populations, how they interact with different populations, and how they evolve over time.
This understanding is critical for developing effective disease control measures and for
predicting the potential impact of emerging diseases.

4. Development of vaccines and treatments: Mathematical modelling can aid in the devel-
opment of new vaccines and treatments for infectious diseases. By understanding the
transmission dynamics and the immune response to diseases, researchers can develop
more effective vaccines and treatments that can prevent or reduce the severity of infec-
tions.

Before we get started, let us explain some terms used to describe different levels of disease
prevalence and spread:
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1. Epidemic: An epidemic refers to the sudden increase in the number of cases of a disease
above what is normally expected in a given population and geographic area. The out-
break is usually limited to a specific community or region and can be caused by a new or
re-emerging infectious agent. The epidemic may last for several weeks or months before
it is brought under control.

2. Pandemic: A pandemic is an epidemic that has spread over a larger geographic area,
often spanning multiple countries or continents. A pandemic is usually caused by a new
strain of an existing virus or by a completely new virus that can spread quickly and
easily from person to person. Pandemics can have a significant impact on public health
and can cause widespread illness and death.

3. Endemic: An endemic disease is one that is regularly found in a population or geographic
area at a consistent and predictable rate. Endemic diseases may cause illness and death
but are typically well-controlled by routine public health measures, such as vaccination
and surveillance. For example, malaria is endemic in many parts of the world, and
measures such as mosquito control and antimalarial medications are used to prevent and
treat the disease.

6.1 SIR model

The SIR model is a very idealised mathematical model that is commonly used to describe
the spread of infectious diseases in a population. The acronym SIR stands for Susceptible,
Infected, and Recovered, which are the three main compartments of the model.

The SIR model was first introduced in 1927 by Kermack and McKendrick in their landmark
paper “A Contribution to the Mathematical Theory of Epidemics”. The model was developed
in response to the major epidemics of the early 20th century, such as the Spanish flu pandemic
of 1918-1919, which highlighted the need for a quantitative understanding of the spread of
infectious diseases.

The SIR model was one of the first mathematical models to be developed for the study of
infectious disease dynamics, and it remains one of the most widely used and influential models
in the field of mathematical epidemiology. The model has been used to study a wide range of
infectious diseases, including measles, tuberculosis, HIV/AIDS, and COVID-19, and has been
extended and adapted to address new challenges and incorporate new data sources.

The SIR model and its variants have played a key role in informing public health policy and
practice, by providing insights into the impact of different intervention strategies, such as
vaccination, quarantine, and social distancing. The model has also helped to guide the design
of clinical trials and the development of new drugs and vaccines, and has contributed to our
understanding of the fundamental principles of infectious disease transmission.
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6.1.1 Three-compartment model

In the SIR model, individuals in a population are divided into three groups: those who are
susceptible to the disease (𝑆), those who are infected with the disease (𝐼), and those who have
recovered from the disease and are now immune (𝑅). The model assumes that individuals can
move between these compartments over time as the disease spreads through the population.

The 𝑅 component is also sometimes referred to as the “Removed” component in case where it
also contains individuals that have been removed from being affected by the illness by other
causes. For example in the case of a fatal disease they might have died.

The SIR model is based on a set of ordinary differential equations, which describe the rate of
change of each compartment over time. The equations are

𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆/𝑁,
𝑑𝐼
𝑑𝑡 = 𝛽𝐼𝑆/𝑁 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼,

(6.1)

where:

• 𝑆 is the number of susceptible individuals in the population

• 𝐼 is the number of infected individuals in the population

• 𝑅 is the number of recovered (and immune) individuals in the population

• 𝑁 = 𝑆 + 𝐼 + 𝑅 is the total population size

• 𝛽 is the transmission rate of the disease, which describes how easily the disease is trans-
mitted from an infected individual to a susceptible individual

• 𝛾 is the recovery rate of the disease, which describes how quickly infected individuals
recover and become immune to the disease

The first equation describes the rate of change of the susceptible compartment over time. It
states that the number of susceptible individuals decreases over time as they become infected
with the disease at a rate proportional to the proportion 𝐼/𝑁 of infected individuals and the
transmission rate 𝛽. The minus sign indicates that the number of susceptible individuals is
decreasing over time.

The second equation describes the rate of change of the infected compartment over time. It
states that the number of infected individuals increases over time at the same rate at which
the susceptibles become infected, and decreases over time as infected individuals recover at a
rate 𝛾.
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The third equation describes the rate of change of the recovered compartment over time. It
states that the number of recovered individuals increases over time as infected individuals
recover and become immune at the recovery rate 𝛾.
We can represent the SIR model graphically by a directed graph with one node for each
component and directed edges between the nodes to represent the flow of individuals between
the compartments. This is illustrated in Figure 6.2. We have labeled the edges by the per-
capita rates.

Figure 6.1: Graphical representation of the SIR model.

6.1.2 Assumptions made by SIR model

Like all models, the SIR model makes a number of simplifying assumptions to make the
calculations tractable and the results interpretable. It is important to note that therefore an
SIR model will not capture all of the nuances of disease transmission in a real population. The
assumptions made by the SIR model include:

1. Fixed population: The SIR model assumes that the total population size 𝑁 = 𝑆+𝐼 +𝑅
is fixed and does not change over time. We can see that by observing that

𝑑𝑁
𝑑𝑡 = 𝑑𝑆

𝑑𝑡 + 𝑑𝐼
𝑑𝑡 + 𝑑𝑅

𝑑𝑡 = 0. (6.2)

So there is no population dynamics such as birth or natural death (death from the
illness itself can be included by viewing the 𝑅 component as the “removed” component)
or immigration or emigration. Neglecting population dynamics is fine if the spread of
the disease happens much faster than the population dynamics.

2. Well-mixed population: The SIR model assumes that the population is well-mixed, mean-
ing that all individuals have the same probability of coming into contact with one another,
regardless of their location or social network. That is why the total rate of infection is
simply proportional to both 𝑆 and 𝐼 , which is also known as the mass-action dynamics,
a concept taken over from the modelling of chemical reactions.

3. No vaccinations: The SIR model assumes that there are no vaccinations available for the
disease, and that individuals can only become immune to the disease by recovering from
the infection.
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4. No incubation period: The SIR model assumes that there is no incubation period, which
means that individuals move directly from the susceptible compartment to the infectious
compartment once they become infected. This assumption is often referred to as the
“instantaneous transmission” assumption.

However, in reality, many infectious diseases have an incubation period, during which the
person is infected but not yet infectious to others. We will later discuss an extension of
the SIR model called the SEIR model in which a new compartment is added, called the
exposed (E) compartment. The exposed compartment represents individuals who have
been infected but are not yet infectious.

5. Constant transmission and recovery rates: The SIR model assumes that the transmission
rate 𝛽 and the recovery rate 𝛾 remain constant over time. Constant 𝛽 means that the
probability of an infected individual transmitting the disease to a susceptible individual
is the same at any point during the epidemic as well as at any point during an individ-
ual’s illness. Similarly, constant 𝛾 means that the probability of and infected individual
recovering from the illness is the same at any time.

In reality, the transmission rate and recovery rate of an infectious disease can vary over
time due to factors such as changes in behavior and public health interventions, or
evolution of the virus.

6. No loss of immunity: The SIR model assumes that individuals who recover from the
disease become permanently immune to the disease and do not lose their immunity over
time. This means that individuals who have recovered from the disease cannot become
re-infected. We will however later make modifications of the model that allow for loss of
immunity.

7. No age structure: The SIR model assumes that the population is homogeneous, meaning
that all individuals have the same susceptibility, infectiousness, and recovery rates. This
means that the model does not take into account the age structure of the population,
which can affect disease transmission.

8. No spatial structure: The SIR model does not model how the disease spreads spatially.
We will however later introduce spatial structure and model the movement of infected
individuals so that we can study how the disease spreads through space.

Even though the assumptions made by the SIR model may not be true in the real world, the
model still provides a useful framework for understanding the spread of infectious diseases and
how different interventions can affect the course of an outbreak.

6.1.3 Condition for an epidemic

Let us investigate the possibility of an epidemic. So we start with initial conditions where the
number of infecteds is small and the number of susceptibles is high. There are no recovereds
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yet. We’ll write the initial conditions as

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑅(0) = 0, (6.3)

with 𝑆0 ≈ 𝑁 and 𝐼0 << 𝑁 .

In order for an epidemic to start we need a positive rate of increase in the number of infecteds.
Thus we need 𝑑𝐼

𝑑𝑡 ∣𝑡=0
= 𝛽𝐼0𝑆0/𝑁 − 𝛾𝐼0 > 0. (6.4)

This happens when
𝑅0 ∶= 𝛽𝑆0

𝛾𝑁 > 1. (6.5)

We have introduced the basic reproduction ratio 𝑅0. It is a key parameter in infectious
disease epidemiology that measures the average number of secondary infections that a single
infectious individual will produce. It is a useful metric for understanding the potential for
an infectious disease to spread through a population, because if 𝑅0 is greater than 1, then
an epidemic can occur, as each infectious individual will produce more than one secondary
infection on average, leading to a sustained increase in the number of infected individuals.
If𝑅0 is less than 1, then an epidemic can not occur, as each infectious individual will produce
less than one secondary infection on average, leading to a decline in the number of infected
individuals over time.

The basic reproduction ratio is also sometimes referred to as the basic reproductive number. Do
not call it the basic reproductive rate because it is not a rate. There is also potential confusion
due to the notation between 𝑅0 and 𝑅(0).
It is interesting to observe there are three ways an epidemic can start:

1) The infectiousness of the illness can increases until 𝛽 > 𝛾 𝑁
𝑆0
.

2) The recovery rate drops until 𝛾 < 𝛽𝑆0
𝑁

3) The number of infecteds rises until 𝑆0 > 𝛾
𝛽𝑁 .

6.2 How an epidemic unfolds

Let us think about how an epidemic unfolds, once started. The epidemic begins with an initial
number of infectious individuals, and as these individuals come into contact with susceptible
individuals, the number of infectious individuals increases, and the number of susceptible
individuals decreases. The number of individuals in the recovered compartment also increases
as more individuals recover from the infection and become immune to the disease.
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The epidemic reaches its peak when the number of infectious individuals in the population
is at its maximum. After this point, the number of infectious individuals begins to decrease,
and the number of recovered individuals continues to increase. The epidemic ends when the
number of infectious individuals reaches zero and the disease is no longer spreading in the
population.

As is usual with non-linear models, a direct solution of the set of differential equations in
Eq. 6.1 is only possible numerically. Such a numerical solution is displayed in Figure 6.2.
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Figure 6.2: Evolution of an epidemic as described by the SIR model. The graph shows the
dynamics of the susceptible 𝑆, infected 𝐼 , and recovered 𝑅 population fractions over
time. In this scenario, we start with a single infected individual in a population
of 1000, with a contact rate of 𝛽 = 0.3 and a recovery rate of 𝛾 = 0.1. The
plot demonstrates how the infection spreads through the population, peaks, and
eventually declines as individuals recover and gain immunity.

We however are interested in analytic insights. It turns out that it is easy to determine the
shape of the trajectories in the SIR phase space.

6.2.1 Trajectory in S-I plane

First we will determine how the number of infecteds changes with the number of susceptibles.
This is described by the differential equation
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𝑑𝐼
𝑑𝑆 = 𝑑𝐼/𝑑𝑡

𝑑𝑆/𝑑𝑡 = 𝛽𝐼𝑆 − 𝛾𝐼𝑁
−𝛽𝐼𝑆 = −1 + 𝛾

𝛽
𝑁
𝑆 (6.6)

We can easily integrate this equation:

∫
𝐼(𝑆)

𝐼0
𝑑 ̃𝐼 = ∫

𝑆

𝑆0

(−1 + 𝛾𝑁
𝛽 ̃𝑆

)𝑑 ̃𝑆 (6.7)

gives
𝐼(𝑆) − 𝐼0 = −𝑆 + 𝑆0 +

𝛾𝑁
𝛽 log( 𝑆

𝑆0
) , (6.8)

which we can rewrite as
𝐼(𝑆) = 𝑁 − 𝑆 + 𝛾𝑁

𝛽 log 𝑆
𝑆0

, (6.9)

where we used that 𝑁 = 𝑆0 + 𝐼0.
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Figure 6.3: Shape of epidemic in S-I plane

This is depicted in Figure 6.3. It agrees with our earlier intuitive description of how an epidemic
unfolds. The number of infecteds increases with the number of susceptibles until the number of
susceptibles is low enough that the number of infecteds reaches its maximum. After this point,
the number of infecteds begins to decrease as the number of susceptibles decreases further.
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We can use this result to determine the number 𝐼𝑚𝑎𝑥 of infected individuals at the peak of the
epidemic.

6.2.2 Peak of an epidemic

Knowing the maximum number of infected individuals can help public health officials plan
for the allocation of resources such as hospital beds, medical staff, and equipment. This
information can be used to anticipate the surge in demand for healthcare services and to
prepare for the management of large numbers of patients. It can also be used to guide the
planning of interventions such as vaccinations in order to avoid overstretching the health system
at the peak of the epidemic. We will discuss that in Section 6.3.

The peak is where 𝑑𝐼/𝑑𝑆 = 0, which according to Eq. 6.6 happens at 𝑆 = 𝛾𝑁/𝛽. Thus
according to Eq. 6.9

𝐼𝑚𝑎𝑥 = 𝐼 (𝛾
𝛽𝑁) = 𝑁 − 𝛾

𝛽𝑁 (1 − log 𝛾𝑁
𝛽𝑆0

) (6.10)

We can express this in terms of the basic reproduction ratio 𝑅0 as

𝐼𝑚𝑎𝑥 = 𝑁 − 𝑆0
𝑅0

(1 + log𝑅0) (6.11)

6.2.3 Trajectory in R-S plane

Next we will determine the relationship between the number of susceptibles and the number
of recovereds, by using

𝑑𝑆
𝑑𝑅 = 𝑑𝑆/𝑑𝑡

𝑑𝑅/𝑑𝑡 = −𝛽
𝛾
𝑆
𝑁 . (6.12)

This is solved by
𝑆(𝑅) = 𝑆0 exp(−𝛽

𝛾
𝑅
𝑁 ) (6.13)

This is depicted in Figure 6.4. We see in particular that the number of susceptibles decreases
exponentially with the number of recovereds but never reaches zero. This means that at
the time where the last infected individual recovers and the epidemic ends, there are still
individuals that never caught the disease.

6.2.4 Size of an epidemic

By the size of an epidemic we mean the total number of individuals that catches the disease
in the course of the epidemic. As we saw above, this will be less than the total population
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number. Let us denote the numbers at the end of the epidemic by a subscript ∞. We have
that 𝐼(∞) = 0 and 𝑆(∞) is the solution to the equation

𝑆∞ = 𝑆(𝑅∞) = 𝑆0 exp(− 𝛽
𝛾𝑁𝑅∞)

= 𝑆0 exp(− 𝛽
𝛾𝑁 (𝑁 − 𝑆∞))

= 𝑆0 exp(−𝛽
𝛾) exp( 𝛽

𝛾𝑁 𝑆∞) .

(6.14)

This equation can be solved numerically. We can also get an approximate analytic solution
in the case where the epidemic is large so that the fraction of the population that never gets
infected is small compared to 𝛾/𝛽, 𝑆∞/𝑁 << 𝛾/𝛽. In this case we can expand the last
exponential in the equation above to first order in 𝑆∞/𝑁 to get the approximate equation

𝑆∞ ≈ 𝑆0 exp(−𝛽
𝛾)(1 + 𝛽

𝛾𝑁 𝑆∞) (6.15)

This we can now easily solve for 𝑆∞ to get

𝑆∞ ≈ 𝑆0𝑒−𝛽/𝛾

1 − 𝛽
𝛾

𝑆0
𝑁 𝑒−𝛽/𝛾

. (6.16)

We can express this in terms of the basic reproduction ratio 𝑅0 as

𝑆∞
𝑆0

≈ 1
𝑒𝛽/𝛾 −𝑅0

. (6.17)

6.2.5 Initial exponential growth

At the start of the epidemic when the number of infecteds is small and hence the number of
susceptibles is close to 𝑁 , we can approximate

𝑑𝐼
𝑑𝑡 = 𝛽𝐼 𝑆

𝑁 − 𝛾𝐼 ≈ (𝛽 − 𝛾)𝐼 (6.18)

and hence
𝐼(𝑡) ≈ 𝐼0𝑒(𝛽−𝛾)𝑡. (6.19)

We can also get an equation for 𝑅(𝑡) by using the equation for 𝑆(𝑅) as follows:

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 = 𝛾 (𝑁 − 𝑅 − 𝑆)

= 𝛾 (𝑁 −𝑅 − 𝑆0 exp(−𝛽
𝛾
𝑅
𝑁 ))

(6.20)
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At the initial stages of the epidemic while the number of recovereds is small we can expand
the exponential and keep only the first-order term to get

𝑑𝑅
𝑑𝑡 ≈ 𝛾 (𝑁 −𝑅 − 𝑆0 (1 − 𝛽

𝛾
𝑅
𝑁 ))

= 𝛾𝐼0 − 𝛾(1 + 𝑅0)𝑅
(6.21)

where we used that 𝑁 − 𝑆0 = 𝐼0. Again we must not be confused by the notation: 𝑅0 is
the basic reproduction number, not the number of recovered at time 0. We have a linear
differential equation for 𝑅(𝑡) that can be solved to give

𝑅(𝑡) = 𝐼0
1 + 𝑅0

(1 − 𝑒−(1+𝑅0)𝛾𝑡) . (6.22)
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Figure 6.5: Exponential approximation of initial growth of an epidemic. The solid lines are
the numeric solutions and the dotted lines are the exponential approximations.

Figure 6.5 compares the approximate expressions Eq. 6.19 and Eq. 6.22 that we have derived
above with the numerical solution of the SIR model for the choice of parameters from Figure 6.2.
We see that the exponential approximation is very good for the initial stages of the epidemic.

6.2.6 Doubling time

The doubling time of an epidemic is the time it takes for the number of infected individuals
to double. It is an important metric for understanding the rate of spread of an infectious
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disease and can help public health officials anticipate the growth of an epidemic and plan for
the allocation of resources such as hospital beds, medical staff, and equipment.

From our initial exponential approximation for 𝐼(𝑡) in Eq. 6.19, we see that the number of
infecteds doubles in a time 𝑡𝑑 when

2𝐼0 = 𝐼0𝑒(𝛽−𝛾)𝑡𝑑 , (6.23)

which gives the doubling time
𝑡𝑑 = log 2

𝛽 − 𝛾 . (6.24)

6.3 Effect of vaccination

Vaccination is a way to move individuals directly from the S component to the R component.
This is illustrated in Figure 6.6 .

Figure 6.6: Graphical representation of the SIR model with vaccination.

The extra flow from S to R adds a negative term to the equation for 𝑑𝑆/𝑑𝑡 and a positive term
to the equation for 𝑑𝑅/𝑑𝑡. The equations become

𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆/𝑁 − 𝜈𝑆,
𝑑𝐼
𝑑𝑡 = 𝛽𝐼𝑆/𝑁 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 + 𝜈𝑆,

(6.25)

where 𝜈 is the per-capita vaccination rate.

The modified model still has the feature that the total population size is constant, 𝑑𝑁/𝑑𝑡 = 0.
This is because the vaccinated individuals simply move from the S compartment to the R
compartment and stay part of the total population.
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Also the expression for the basic reproduction number 𝑅0 is the same as before: 𝑅0 = 𝛽𝑆0/𝛾𝑁 .
The condition for an epidemic to start is also the same: 𝑅0 > 1. However, if a vaccination
program has already been in place before the start of an epidemic, the number 𝑆0 of suscep-
tibles is reduced and hence the basic reproduction number is reduced. If the proportion of
unvaccinated individuals in the population 𝑆0/𝑁 is less than 𝛾/𝛽, then the basic reproduction
number is below 1 and the epidemic will not start. Said differently, one needs to only vaccinate
a proportion 1 − 𝛾/𝛽 of the population to prevent an epidemic from starting.

But even a vaccination program that does not prevent an epidemic from starting can have a
large effect on the size of the epidemic. This is because the number of susceptibles is reduced
and hence the number of infecteds at the peak of the epidemic is reduced. To understand this
in detail we will repeat the analysis from sections Section 6.2.1 and Section 6.2.2 but with the
modified equations Eq. 6.25.

We now have
𝑑𝐼
𝑑𝑆 = 𝛽𝐼𝑆 − 𝛾𝐼𝑁

−𝛽𝐼𝑆 − 𝜈𝑆 = 𝛽 − 𝛾𝑁/𝑆
−𝛽 − 𝜈𝑁/𝐼 . (6.26)

This is easily solved by separation of variables:

∫
𝐼(𝑆)

𝐼0
(−𝛽 − 𝜈𝑁

̃𝐼
) 𝑑 ̃𝐼 = ∫

𝑆

𝑆0

(𝛽 − 𝛾𝑁
̃𝑆
)𝑑 ̃𝑆. (6.27)

These integrals are easy to perform, and we get

𝐼(𝑆) + 𝜈𝑁
𝛽 log 𝐼(𝑆)

𝐼0
= 𝑁 − 𝑆 + 𝛾𝑁

𝛽 log 𝑆
𝑆0

. (6.28)

As before, the peak of the epidemic is where 𝑑𝐼/𝑑𝑆 = 0, which still happens at 𝑆 = 𝛾𝑁/𝛽,
as in the case without vaccination, because vaccination did not affect the equation for 𝑑𝐼/𝑑𝑡.
Thus we again get the number of infecteds at the peak of the epidemic as 𝐼(𝛾𝑁/𝛽). Thus

𝐼𝑚𝑎𝑥 + 𝜈𝑁
𝛽 log 𝐼𝑚𝑎𝑥

𝐼0
= 𝑁 − 𝛾𝑁

𝛽 (1 − log 𝛾𝑁
𝛽𝑆0

) = 𝐼𝑚𝑎𝑥(𝜈 = 0), (6.29)

where we have recognised the right-hand side as the expression for the peak of the epdidemic
in the absence of vaccinations. We can see that the number of infecteds at the peak of the
epidemic is reduced by the vaccination rate 𝜈.

6.4 Effect of loss of immunity

Unfortunately, immunity to many infectious diseases is not permanent, and individuals who
have recovered from the disease can lose their immunity over time. This means that individuals
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Figure 6.7: Graphical representation of the SIR model with loss of immunity.

who have recovered from the disease can become susceptible to the disease again and can be re-
infected. This is illustrated in Figure 6.7 where we have added a flow from the R compartment
back to the S compartment with a per-capita rate of 𝜇.
The equations for the SIR model with loss of immunity are

𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆/𝑁 + 𝜇𝑅,
𝑑𝐼
𝑑𝑡 = 𝛽𝐼𝑆/𝑁 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝜇𝑅.

(6.30)

We will now look at the steady states of the SIR model with loss of immunity. There is of
course the disease-free state where the number of infecteds is 𝐼∗ = 0 and everyone has lost
their immunity, so 𝑅∗ = 0 and 𝑆∗ = 𝑁 . But now there is also a new steady state where the
number of infecteds is non-zero and the number of recovereds is non-zero. We can find this
steady state by setting the time derivatives in Eq. 6.30 to zero. From 𝑑𝑅/𝑑𝑡 = 0 we get

𝑅∗ = 𝛾
𝜇𝐼∗. (6.31)

From 𝑑𝐼/𝑑𝑡 = 0 we get
𝑆∗ = 𝛾

𝛽𝑁. (6.32)

From 𝑁 = 𝑆∗ + 𝐼∗ +𝑅∗ we get

𝐼∗ = 𝑁
1 − 𝛾

𝛽
1 + 𝛾

𝜇
. (6.33)
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This is the endemic steady state of the SIR model with loss of immunity. We see that the
number of infecteds at the endemic steady state is reduced by the loss of immunity rate 𝜇.
We now want to determine whether this endemic state is stable or not. We will do this by
linearising the equations Eq. 6.30 around the endemic steady state. We will then determine
the eigenvalues of the Jacobian matrix at the endemic steady state. If all eigenvalues have
negative real parts, the endemic steady state is stable. If at least one eigenvalue has a positive
real part, the endemic steady state is unstable.

We choose to view the SIR model with loss of immunity as a two-dimensional model for the
variables 𝐼 and 𝑅. We can then write the equations Eq. 6.30 as

𝑑𝐼
𝑑𝑡 = 𝛽𝐼(𝑁 − 𝐼 − 𝑅)

𝑁 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝜇𝑅.

(6.34)

We now write 𝐼(𝑡) = 𝐼∗+𝑖(𝑡) and 𝑅(𝑡) = 𝑅∗+𝑟(𝑡) where 𝑖(𝑡) and 𝑟(𝑡) are small perturbations
around the endemic steady state. We then linearise the equations Eq. 6.34 around the endemic
steady state by keeping only terms linear in 𝑖(𝑡) and 𝑟(𝑡). We get

𝑑𝑖(𝑡)
𝑑𝑡 = 𝛽

𝑁 (𝑁 − 2𝐼∗ −𝑅∗) 𝑖(𝑡) − 𝛾 𝑖(𝑡) − 𝛽𝐼∗
𝑁 𝑟(𝑡),

𝑑𝑟(𝑡)
𝑑𝑡 = 𝛾 𝑖(𝑡) − 𝜇 𝑟(𝑡).

(6.35)

We solve this by making the Ansatz 𝑖(𝑡) = 𝑣1𝑒𝜆𝑡 and 𝑟(𝑡) = 𝑣2𝑒𝜆𝑡. Substituting this into
Eq. 6.35 and dividing by 𝑒𝜆𝑡 gives

𝜆𝑣1 = 𝛽
𝑁 (𝑁 − 2𝐼∗ −𝑅∗) 𝑣1 − 𝛾𝑣1 −

𝛽𝐼∗
𝑁 𝑣2,

𝜆𝑣2 = 𝛾𝑣1 − 𝜇𝑣2.
(6.36)

We can write this as a matrix equation

𝜆(𝑣1
𝑣2
) = 𝐴(𝑣1

𝑣2
) , (6.37)

where
𝐴 = (

𝛽
𝑁 (𝑁 − 2𝐼∗ −𝑅∗) − 𝛾 −𝛽𝐼∗

𝑁
𝛾 −𝜇 ) . (6.38)

When we evaluate this Jacobian matrix 𝐴 at the disease-free state we get

𝐴(0, 0) = (𝛽 − 𝛾 0
𝛾 −𝜇) . (6.39)
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The eigenvalues of this matrix are 𝜆1 = 𝛽−𝛾 and 𝜆2 = −𝜇. If 𝛽 > 𝛾 then one of the eigenvalues
is positive and one negative, meaning that the disease-free steady state is unstable. If 𝛽 < 𝛾
then both eigenvalues are negative, meaning that the disease-free steady state is stable.

When we evaluate the Jacobian matrix 𝐴 at the endemic steady state we can use the relation
𝛽(𝑁 − 𝐼∗ −𝑅∗)/𝑁 − 𝛾 = 0 to get

𝐴(𝐼∗, 𝑅∗) = (−𝛽𝐼∗

𝑁 −𝛽𝐼∗

𝑁
𝛾 −𝜇 ) . (6.40)

This time we can not easily read off the eigenvalues, so we calculate the trace and the deter-
minant:

Tr(𝐴) = −𝛽𝐼∗
𝑁 − 𝜇,

Det(𝐴) = 𝛽𝐼∗
𝑁 (𝜇 + 𝛾).

(6.41)

We see that the trace is negative and the determinant is positive, meaning that both eigenvalues
have negative real parts and the endemic steady state is stable.

6.5 Exercises

6.5.0.1 * SIR with vaccination and loss of immunity

Exercise 6.1.

In the lectures we studied the SIR model with vaccination rate 𝜈 and the SIR model with
loss of immunity at a rate 𝜇. Now consider the SIR model with both vaccination and loss of
immunity. For simplicity assume that the minimum immunity time is 𝑇 = 0.

1. Write down the differential equations for the numbers of susceptibles 𝑆, infecteds 𝐼 and
recovereds 𝑅.

2. Find the disease-free steady state.

3. Find the endemic steady state and give the condition on the parameters needed for its
existence.

4. Now view this model as a two-dimensional model for the variables 𝐼 and 𝑅. Determine
the Jacobian matrix 𝐴 for this model.

5. Evaluate 𝐴 at the disease-free steady state and use this to classify this fixed point.

6. Evaluate 𝐴 at the endemic steady state and use this to classify this fixed point.

You will want to compare your results to the results from the lecture and make sure that they
make sense.
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6.5.0.2 SIR with recrudescence

Exercise 6.2. Imagine a disease that, even after an individual has recovered from it, stays in
the body in a dormant state and can be reactivated. Model this as a modification of the SIR
model where recovereds can become infected again at a per-capita rate 𝛿.

1. Determine the number of infecteds in the endemic state.

2. Is the endemic state stable for all positive values of the parameters?

6.5.0.3 SIR model with reinfections

Exercise 6.3. In Section 6.4 we studied the SIR model where recovered individuals lose their
immunity at a per-capita rate 𝜇 so that they can then become infected again at a per-capita
rate 𝛽𝐼/𝑁 . The question was raised whether the same effect could be achieved by direct
reinfections, i.e., a flow from the 𝑅 component directly into the 𝐼 component at a per-capita
rate 𝜇𝛽𝐼/𝑁 . Settle this question by determining the number of infecteds in the steady state
for the SIR model with direct reinfections and compare it to the corresponding result from
Eq. 6.33.

6.5.0.4 Sex-structured SIR model

Exercise 6.4.

In a mathematical model for a certain venereal disease the male population is divided into
susceptibles 𝑆, infectives 𝐼 and removeds 𝑅. The female population is similarly divided; the
three groups being denoted 𝑆′, 𝐼′ and 𝑅′ (note that we use the prime to distinguish between
male and female, not to indicate differentiation). The equations are

𝑑𝑆
𝑑𝑡 = −𝑟𝑆𝐼 ′, 𝑑𝐼

𝑑𝑡 = 𝑟𝑆𝐼 ′ − 𝑎𝐼, 𝑑𝑅
𝑑𝑡 = 𝑎𝐼,

𝑑𝑆′

𝑑𝑡 = −𝑟′𝑆′𝐼, 𝑑𝐼 ′
𝑑𝑡 = 𝑟′𝑆′𝐼 − 𝑎′𝐼′, 𝑑𝑅′

𝑑𝑡 = 𝑎′𝐼′
(6.42)

where 𝑟, 𝑟′ and 𝑎, 𝑎′ are positive constants. The equations are with initial conditions 𝑆(0) =
𝑆0, 𝐼(0) = 𝐼0, 𝑆′(0) = 𝑆′

0, 𝐼′(0) = 𝐼 ′0, 𝑅(0) = 𝑅′(0) = 0. The total male population is
𝑁 = 𝑆 + 𝐼 + 𝑅 and the total female population 𝑁 ′ = 𝑆′ + 𝐼′ +𝑅′.
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a) Show that 𝑁 and 𝑁 ′ are both constant.

b) Show that 𝑆(𝑡) = 𝑆0 exp (− 𝑟
𝑎′𝑅′(𝑡)) and obtain another similar equation for 𝑆′.

c) Assuming that 𝐼(∞) = 𝐼 ′(∞) = 0 show that 𝑆(∞) and 𝑆′(∞) are found by solving
simultaneously the equations

𝑆(∞) = 𝑆0 exp(− 𝑟
𝑎′ (𝑁

′ − 𝑆′(∞))) ,

𝑆′(∞) = 𝑆′
0 exp(−𝑟′

𝑎 (𝑁 − 𝑆(∞))) .
(6.43)
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7 Spatially-structured populations

We now want to keep track of how individuals are distributed over space. So instead of
describing a population by its total number of individuals 𝑁(𝑡) we describe it by a population
density 𝑢(𝑥, 𝑡), where 𝑢(𝑥, 𝑡)𝑑𝑥 is the number of individuals in the interval [𝑥, 𝑥 + 𝑑𝑥] at time
𝑡. We can recover the total number of individuals by integrating the density over the entire
spatial domain.

7.1 Derivation of PDE

In the non-spatial case we described the time evolution of the population by the equation

𝑑𝑁
𝑑𝑡 = 𝑓(𝑁), (7.1)

where 𝑓(𝑁) is the net growth rate that encodes the difference between birth and death rates
for the population as a whole. In the spatial case we have to consider the net growth rate of
the population in a small interval [𝑥, 𝑥+𝑑𝑥]. This is again given by a function 𝑓 that encodes
the births and deaths, but now we also have movement of individuals into or out of the interval.
We write the rate of change of the number of individuals in the interval as

𝜕
𝜕𝑡 ∫

𝑥0+Δ𝑥

𝑥0

𝑢(𝑥, 𝑡)𝑑𝑥 = ∫
𝑥0+Δ𝑥

𝑥0

𝑓(𝑢(𝑥, 𝑡), 𝑥)𝑑𝑥 + 𝐽(𝑥0) − 𝐽(𝑥0 +Δ𝑥). (7.2)

The flux 𝐽(𝑥) is defined as the net rate at which individuals move through point 𝑥 from left to
right. If more individuals move from right to left than from left to right, the flux is negative.
We have indicated explicitly that 𝑓 can depend on both the population density 𝑢 at 𝑥 as well
as the position 𝑥 itself. This is because the birth and death rates can depend on the local
environment, for example the availability of resources or the presence of predators. The flux
𝐽 can also depend on the local population density and the position. We did not indicate this
explicitly to simplify the notation.

We now use the integral mean value theorem that states that for a continuous function 𝑔(𝑥)
the integral over 𝑔(𝑥) over an interval [𝑎, 𝑏] is equal to 𝑔(𝜉)(𝑏−𝑎) for some 𝜉 ∈ [𝑎, 𝑏]. We apply
this to the integrals in Eq. 7.2 to get

𝜕𝑡𝑢(𝜉1, 𝑡)Δ𝑥 = 𝑓(𝑢(𝜉2, 𝑡), 𝜉2)Δ𝑥 + 𝐽(𝑥0) − 𝐽(𝑥0 +Δ𝑥) (7.3)
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for some 𝜉1, 𝜉2 ∈ [𝑥0, 𝑥0 +Δ𝑥]. We now divide both sides by Δ𝑥,

𝜕𝑡𝑢(𝜉1, 𝑡) = 𝑓(𝑢(𝜉2, 𝑡), 𝜉2)𝑥 + 𝐽(𝑥0) − 𝐽(𝑥0 +Δ𝑥)
Δ𝑥 (7.4)

and take the limit Δ𝑥 → 0, where 𝜉1 → 𝑥 and 𝜉2 → 𝑥 and the difference quotient becomes the
derivative, to get

𝜕𝑡𝑢(𝑥, 𝑡) = 𝑓(𝑢(𝑥, 𝑡), 𝑥) − 𝜕𝑥𝐽(𝑥). (7.5)

As discussed above, the flux 𝐽 can depend on 𝑥 both directly and through the population
density 𝑢(𝑥, 𝑡). An important example is the case where the flux is proportional to the gradient
of the population density,

𝐽(𝑥) = −𝐷𝜕𝑥𝑢(𝑥), (7.6)

where 𝐷 is the diffusion coefficient. This models random motion of the individuals. Each
individual is equally likely to move right or left, but if there are more individuals on the left
and less on the right, then the result is a net movement to the right. That is why the flux has
the opposite sign of the gradient of the density.

This random motion gives us the reaction-diffusion equation

𝜕𝑡𝑢 = 𝑓(𝑢) + 𝐷𝜕2
𝑥𝑢. (7.7)

If there is no local population dynamics, the equation simplifies to the diffusion equation,
also known as the heat equation. The diffusion term has the effect of smoothing out spatial
inhomogeneities in the population density. Therefore the heat equation by itself is rather
boring. However, as we will see later, the reaction term in combination with the diffusion term
can lead to the formation of spatial patterns, such as travelling waves or stationary patterns.

7.2 Fishing model with diffusion

We now consider a model for a population of fish that is subject to fishing and that moves
around randomly. We want to model a marine protected area where fishing is limited to
avoid a collapse of the fish population. Figure 7.1 shows the spatial setup. The 𝑥-axis runs
perpendicular to the shore, which is at 𝑥 = 0. A marine protected area runs out upto a
distance 𝐿 from the shore. We assume that the marine protected area has infinite extension
in the 𝑦-direction, so that we can ignore the 𝑦-coordinate and model the fish population as a
function of 𝑥 only.

Beyond 𝑥 = 𝐿 there is no management of the fishing activity. We assume that the fishers are so
efficient that they catch all fish that venture outside the protected area. So we set 𝑢(𝑥, 𝑡) = 0
for 𝑥 ≥ 𝐿. This is of course an idealisation, but it allows us to focus on the dynamics within
the protected area.

89



Shore Marine
protected

area

Maximum 
fishing

Figure 7.1: Sketch of the marine protected area

We assume that in the absence of fishing the population has a logistic growth rate. The
population density 𝑢(𝑥, 𝑡) satisfies the equation

𝜕𝑡𝑢 = 𝑟𝑢(1 − 𝑢
𝐾) − 𝐸𝑢 +𝐷𝜕2

𝑥𝑢, (7.8)

where 𝑟 is the intrinsic growth rate, 𝐾 is the carrying capacity, 𝐸 is the fishing rate and 𝐷
is the diffusion coefficient. The first term on the right-hand side describes the logistic growth,
the second term the fishing and the third term the random motion of the fish.

In the protected area, the fishing rate 𝐸 must certainly be below the intrinsic growth rate 𝑟,
otherwise the population is guaranteed to die out. However we must also take into account
that some fish will be lost when they randomly move out of the protected area and are then
fished immediately. We expect this extra loss to be proportionally larger when the protected
area is smaller. So when the marine protected area is planned, there will be a trade-off between
the width 𝐿 of the protected area and the allowed rate of fishing 𝐸. Our aim is to describe
this trade-off precisely by finding the condition on 𝐸 and 𝐿 such that the population does not
collapse.

To achieve our aim, we will need to solve the PDE. But before solving a PDE we always need
to be clear about the boundary conditions on the solution. We have already discussed that
we assume that 𝑢(𝑥, 𝑡) = 0 for 𝑥 ≥ 𝐿, i.e., we have a Dirichlet boundary condition at 𝑥 = 𝐿.
At 𝑥 = 0 we impose a no-flux boundary condition, which means that there are no fish moving
from the sea onto the shore or the other way around. The no-flux boundary condition is the
Neumann boundary condition 𝜕𝑥𝑢(0, 𝑡) = 0.
The PDE in Eq. 7.81 is a nonlinear PDE, so we cannot solve it analytically in general. However,
we can still make progress by realising that before the population goes extinct, it will get small.
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We can then linearise the PDE around the extinction state 𝑢 = 0 and solve the linearised
equation. If the extinction steady state is linearly unstable, then the population will not go
extinct.

Linearising the PDE Eq. 7.81 around the extinction state 𝑢 = 0 means that we neglect the
term 𝑢2 in the logistic growth term. We then have the linearised equation

𝜕𝑡𝑢 = (𝑟 − 𝐸)𝑢 +𝐷𝜕2
𝑥𝑢. (7.9)

We can now solve this linear PDE with the method of separation of variables. We make the
Ansatz 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) and plug this into Eq. 7.9. We get

𝑋𝑇 ′ = (𝑟 − 𝐸)𝑋𝑇 +𝐷𝑋″𝑇 (7.10)

and after dividing by 𝑋𝑇 we get

𝑇 ′

𝑇 = 𝑟 − 𝐸 +𝐷𝑋″

𝑋 . (7.11)

The left-hand side depends only on 𝑡 and the right-hand side only on 𝑥. Therefore both sides
must be equal to a constant, which we call 𝛾. We then have the two ODEs

𝑇 ′ = 𝛾𝑇 , 𝑋″ = 𝛾 − 𝑟 + 𝐸
𝐷 𝑋 = −𝜌2𝑋, (7.12)

where, in order to save writing, we have introduced

𝜌2 = (𝑟 − 𝐸 − 𝛾)/𝐷. (7.13)

The solution of the time ODE is
𝑇 (𝑡) = 𝑇 (0)𝑒𝛾𝑡 (7.14)

and the solution of the spatial ODE is

𝑋(𝑥) = 𝐴 cos(𝜌𝑥) + 𝐵 sin(𝜌𝑥), (7.15)

where 𝐴 and 𝐵 are constants to be determined by the boundary conditions.

Imposing the no-flux boundary condition 𝜕𝑥𝑢(0, 𝑡) gives

𝑋′(0) = −𝐴𝜌 sin(𝜌0) + 𝐵𝜌 cos(𝜌0) = 𝐵𝜌 = 0. (7.16)

So either 𝜌 = 0 or 𝐵 = 0. The case 𝜌 = 0 gives the trivial solution 𝑋(𝑥) = 𝐴, which is not
interesting. So we take 𝐵 = 0 and get 𝑋(𝑥) = 𝐴 cos(𝜌𝑥).
The Dirichlet boundary condition at 𝑥 = 𝐿 gives 𝑋(𝐿) = 𝐴 cos(𝜌𝐿) = 0. So either 𝐴 = 0 or
cos(𝜌𝐿) = 0. The former gives rise to the zero solution, so we want the latter, which requires
𝜌𝐿 to be an odd multiple of 𝜋/2, i.e.,

𝜌 = 𝜌𝑛 = (2𝑛 + 1)𝜋
2𝐿 (7.17)
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for 𝑛 = 0, 1, 2, .... To each of these 𝜌𝑛 there corresponds, according to Eq. 7.13, a

𝛾𝑛 = 𝑟 − 𝐸 −𝐷𝜌2𝑛 (7.18)

and a solution
𝑢𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = 𝐴𝑛𝑒𝛾𝑛𝑡 cos(𝜌𝑛𝑥) (7.19)

The general solution is then a linear combination of these solutions,

𝑢(𝑥, 𝑡) =
∞
∑
𝑛=0

𝐴𝑛𝑒𝛾𝑛𝑡 cos(𝜌𝑛𝑥). (7.20)

The condition for the population not to go extinct is that the extinction steady state is linearly
unstable. This means that there is at least one 𝛾𝑛 with positive real part. We see from Eq. 7.18
that 𝛾𝑛 increases with 𝑛. So the condition for the population not to go extinct is that 𝛾0 is
positive. This gives the condition

𝛾0 = 𝑟 − 𝐸 −𝐷𝜌20 = 𝑟 − 𝐸 − 𝐷𝜋2

4𝐿2 > 0. (7.21)

We can now solve this inequality for 𝐿 to get the condition on the width of the marine protected
area that ensures the population does not collapse.

𝐿 > 𝜋
2
√ 𝐷

𝑟 − 𝐸 . (7.22)

Alternatively we can solve the inequality for 𝐸 to get the condition on the fishing rate that
ensures the population does not collapse.

𝐸 < 𝑟 − 𝐷𝜋2

4𝐿2 . (7.23)

This can now be used to inform policy decisions on the width of the marine protected area
and the allowed fishing rate.

7.3 Invasion waves in SIR model

We now want to use our spatial modelling skills to study the spread of an infectious disease
through space. For concreteness, think of a situation where rabies has infected foxes in Dover
and we want to get an idea of how soon we will have rabid foxes in York. We model the
fox population by the SIR model, where 𝑆(𝑥, 𝑡) is the density of susceptible foxes, 𝐼(𝑥, 𝑡)
is the density of infected foxes and 𝑅(𝑥, 𝑡) is the density of removed foxes (which for rabies
unfortunately means dead foxes). So where in Section 6.1 we had ordinary differential equations
for the total number of susceptible, infected and removed foxes, we now have partial differential
equations for the densities of susceptible, infected and removed foxes in space.
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While foxes are usually very territorial and stay in their own territory, infected foxes become
a bit insane and move around randomly. This is modelled by a diffusion term in the equation
for the infected foxes. The equations are

𝜕𝑡𝑆 = −𝛽𝑆𝐼
𝑁 ,

𝜕𝑡𝐼 = 𝛽𝑆𝐼
𝑁 − 𝛾𝐼 +𝐷𝜕2

𝑥𝐼,
𝜕𝑡𝑅 = 𝛾𝐼,

(7.24)

where 𝑁 = 𝑆 + 𝐼 + 𝑅 is the total fox population density, 𝛽 is the infection rate, 𝛾 is the
recovery rate and 𝐷 is the diffusion coefficient. For simplicity we study the movement in the
𝑥 direction only. The above equations are valid for all 𝑥. We will later concentrate on the
equations for 𝐼 and 𝑆 only, as 𝑅 can then be calculated from 𝑁 = 𝑆 + 𝐼 + 𝑅.

Before analysing these equations further, let us think about what we expect to happen. The
infected foxes in Dover will infect more and more susceptible foxes. The infected foxes will
then move around and infect susceptible foxes in neighbouring territories. This will lead to a
wave of infection spreading out from Dover. The wave will move at a speed that depends on
the infection rate, the recovery rate and the diffusion coefficient. The wave will have a front
where the infected foxes are and a tail where the epidemic has died out.

To make the further analysis easier, we will non-dimensionalise the equations. We introduce
the non-dimensional variables

𝑢 = 𝑆/𝑁, 𝑣 = 𝐼/𝑁, ̃𝑡 = 𝛽𝑡, (7.25)

Then the equations become
𝜕 ̃𝑡𝑢 = −𝑢𝑣

𝜕 ̃𝑡𝑣 = 𝑢𝑣 − 𝛾
𝛽𝑣 + 𝐷

𝛽 𝜕2
𝑥𝑣.

(7.26)

We now also introduce the non-dimensional spatial variable ̃𝑥 = √ 𝛽
𝐷𝑥 and the non-dimensional

parameter 𝑟 = 𝛾
𝛽 . We now drop the tildes to avoid clutter and write the equations as

𝜕𝑡𝑢 = −𝑢𝑣
𝜕𝑡𝑣 = 𝑢𝑣 − 𝑟𝑣 + 𝜕2

𝑥𝑣.
(7.27)

7.3.1 Travelling wave Ansatz and boundary conditions

We are looking for a solution describing the spread of the infection from Dover to York. We
make the Ansatz that the solution is a travelling wave, i.e., that it is of the form

𝑢(𝑥, 𝑡) = 𝑈(𝑧), 𝑣(𝑥, 𝑡) = 𝑉 (𝑧) (7.28)
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with 𝑧 = 𝑥 − 𝑐𝑡 for some 𝑐 > 0. This means that the wave is a right-moving wave. We plug
this into Eq. 7.27 and get the system of ODEs

−𝑐𝑈 ′ = −𝑈𝑉 ,
−𝑐𝑉 ′ = 𝑈𝑉 − 𝑟𝑉 + 𝑉 ″. (7.29)

Next let us think about the boundary conditions. We expect that ahead of the wave all the
individuals are still susceptible and there are no infecteds yet. So to the far right at 𝑧 = 𝑖𝑛𝑓𝑡𝑦
we have 𝑢(∞) = 1 (corresponding to S=N) and 𝑣(∞) = 0. Behind the wave the epidemic
will have run its course and so 𝑢(−∞) = 𝑆∞/𝑁 =∶ 𝑎 and 𝑣(−∞) = 0. In other words, the
travelling wave interpolates between the state before an epidemic (at 𝑧 = ∞) and the state
after an epidemic (at 𝑧 = −∞). We also have that the solution becomes flat as 𝑧 → ±∞, so
in particular 𝑉 ′(±∞) = 0.
We now massage the equations a bit to get them into a form that we can integrate more easily.
From the first equation we see that 𝑈𝑉 = 𝑐𝑈 ′ and also that 𝑉 = 𝑐𝑈 ′/𝑈 = 𝑐(log𝑈)′. We plug
this into the second equation and get

−𝑐𝑉 ′ = 𝑐𝑈 ′ − 𝑟𝑐(log𝑈)′ + 𝑉 ″. (7.30)

Now that each term in the equation is a total derivative, we can integrate it by just removing
the differentiations:

−𝑐𝑉 = 𝑐𝑈 − 𝑟𝑐 log𝑈 + 𝑉 ′ +𝐴, (7.31)

where 𝐴 is a constant of integration. We use the boundary condition at 𝑧 → ∞ to determine
𝐴:

0 = 𝑐 − 𝑟𝑐 log 1 + 0 + 𝐴 ⇒ 𝐴 = −𝑐. (7.32)

At 𝑧 → −∞ we get
0 = 𝑐𝑎 − 𝑟𝑐 log 𝑎 + 0 − 𝑐 ⇒ 𝑎 − 1 = 𝑟 log 𝑎. (7.33)

This equation is equivalent to Eq. 6.14 for 𝑆∞ in the case where 𝑆0 = 𝑁 . Again this transcen-
dental equation can only be solved numerically.

7.3.2 Wave speed

Next we want to learn about the wave speed 𝑐. We do this by linearising the equation around
the leading edge of the wave, where 𝑉 is very small and 𝑈 is close to 1, i.e, 𝑈 = 1−𝜖 for small
𝜖. Substituting this into the second equation in 7.29 we get

−𝑐𝑉 ′ = (1 − 𝜖)𝑉 − 𝑟𝑉 + 𝑉 ″. (7.34)

Because both 𝜖 and 𝑉 are small, we can neglect the product 𝜖𝑉 and get

−𝑐𝑉 ′ = (1 − 𝑟)𝑉 + 𝑉 ″. (7.35)

94



This is a linear ODE with constant coefficients and can thus be solved with the Ansatz 𝑉 (𝑧) =
𝑒−𝜆𝑧. Substituting this into the ODE and dividing by 𝑒−𝜆𝑧 gives

𝜆2 − 𝑐𝜆 + 1 − 𝑟 = 0. (7.36)
The solution of this quadratic equation is

𝜆 = 𝑐 ±√𝑐2 − 4(1 − 𝑟)
2 . (7.37)

We need 𝜆 to be real so that our solution correctly describes the exponential growth at the
start of an epidemic, so we need the discriminant to be non-negative, i.e.,

𝑐2 − 4(1 − 𝑟) ≥ 0 (7.38)
and thus we get a lower bound on the wave speed:

𝑐 ≥ 2
√
1 − 𝑟. (7.39)

7.4 Turing instabilities

We now come to a very intriguing question: how can the complicated spatial patterns arise
that one can observe in nature. One might have thought that to explain complicated patterns
one would need complicated models that encode all that complexity. However, it turns out
that patterns can arise from very simple, translation-invariant models. The key idea is that
the spatially uniform steady state in a translation-invariant model can be unstable to small
perturbations, which then grow and form spatial patterns. This is called a Turing instability.

We consider a system of two species, described by densities 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), that interact
with each other locally but also move around randomly. The system is described by the
reaction-diffusion equations

𝜕𝑢
𝜕𝑡 = 𝑓(𝑢, 𝑣) + 𝐷1

𝜕2𝑢
𝜕𝑥2 ,

𝜕𝑣
𝜕𝑡 = 𝑔(𝑢, 𝑣) + 𝐷2

𝜕2𝑣
𝜕𝑥2 ,

(7.40)

where 𝑓 and 𝑔 are functions that describe the local dynamics of the two species. The diffusion
terms model random motion of the individuals.

For values (𝑢∗, 𝑣∗) of the densities that satisfy 𝑓(𝑢∗, 𝑣∗) = 𝑔(𝑢∗, 𝑣∗) = 0, the spatially homoge-
neous steady state 𝑢(𝑥, 𝑡) = 𝑢∗, 𝑣(𝑥, 𝑡) = 𝑣∗ is a solution of the system. Assume that in the
absence of diffusion, this steady state is stable. Thus without diffusion, any perturbations to
the spatially homogeneous steady state will decay. One would then expect that the spatially
homogeneous steady state is stable also in the presence of diffusion, given that diffusion has
the tendency to spread individuals out away from regions of higher concentration. The result
would be the absence of any spatial structure in the solution. However, we will now see that
this is not always the case. Rather counter-intuitively, the random motion of the individuals
can destabilise the spatially homogeneous steady state and give rise to spatial patterns.
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7.4.1 Deriving conditions for Turing instabilities

Mathematics is a great tool for dealing with counter-intuitive phenomena. We just have to
do the maths and see what it tells us. So we now derive the equations that describe the
time-evolution of small perturbations and solve them and see whether the perturbations grow
or not. So we set

𝑢(𝑥, 𝑡) = 𝑢∗ + 𝜉(𝑥, 𝑡), 𝑣(𝑥, 𝑡) = 𝑣∗ + 𝜂(𝑥, 𝑡) (7.41)

where 𝜉(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) are small perturbations. If we plug this into Eq. 7.40 we get equations
for the time evolution of the small perturbations:

𝜕𝜉
𝜕𝑡 = 𝑓(𝑢∗ + 𝜉(𝑥, 𝑡), 𝑣∗ + 𝜂(𝑥, 𝑡))𝜉 + 𝐷1

𝜕2𝜉
𝜕𝑥2 ,

𝜕𝜂
𝜕𝑡 = 𝑔(𝑢∗ + 𝜉(𝑥, 𝑡), 𝑣∗ + 𝜂(𝑥, 𝑡))𝜉 + 𝐷2

𝜕2𝜂
𝜕𝑥2 .

(7.42)

We now use Taylor expansions to linearise the equations. We expand 𝑓 and 𝑔 around (𝑢∗, 𝑣∗)
to first order and drop all terms that are higher order in 𝜉 and/or 𝜂. This gives the linear
PDEs

𝜕𝜉
𝜕𝑡 = 𝜕𝑓

𝜕𝑢(𝑢
∗, 𝑣∗)𝜉 + 𝜕𝑓

𝜕𝑣 (𝑢
∗, 𝑣∗)𝜂 + 𝐷1

𝜕2𝜉
𝜕𝑥2

= 𝑎11𝜉 + 𝑎12𝜂 + 𝐷1
𝜕2𝜉
𝜕𝑥2 ,

𝜕𝜂
𝜕𝑡 = 𝜕𝑔

𝜕𝑢(𝑢
∗, 𝑣∗)𝜉 + 𝜕𝑔

𝜕𝑣(𝑢
∗, 𝑣∗)𝜂 + 𝐷2

𝜕2𝜂
𝜕𝑥2

= 𝑎21𝜉 + 𝑎22𝜂 + 𝐷1
𝜕2𝜉
𝜕𝑥2 .

(7.43)

Those partial derivatives of 𝑓 and 𝑔 with respect to 𝑢 and 𝑣 are familiar to us from the stability
analysis in non-spatial models as the entries of the Jacobian matrix and we are using the same
shorthand notation for them here.

We now make the harmonic wave Ansatz

𝜉(𝑥, 𝑡) = 𝐵1𝑒𝜎𝑘𝑡 sin(𝑘𝑥 + 𝛼),
𝜂(𝑥, 𝑡) = 𝐵2𝑒𝜎𝑘𝑡 sin(𝑘𝑥 + 𝛼). (7.44)

During your studies you will have seen this easy way to solve linear PDEs with constant coeffi-
cients already several times. Plugging this Ansatz into Eq. 7.43 and dividing by 𝑒𝜎𝑘𝑡 sin(𝑘𝑥+𝛼)
we get

𝜎𝑘𝐵1 = 𝑎11𝐵1 + 𝑎12𝐵2 − 𝑘2𝐷1𝐵1
𝜎𝑘𝐵2 = 𝑎21𝐵1 + 𝑎22𝐵2𝑘2𝐷2𝐵2.

(7.45)

We can write this in matrix form as

𝜎𝑘 (
𝐵1
𝐵2

) = 𝐴(𝑘)(𝐵1
𝐵2

) . (7.46)
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where
𝐴(𝑘) = (𝑎11 −𝐷1𝑘2 𝑎12

𝑎21 𝑎22 −𝐷2𝑘2) . (7.47)

This looks very similar to what we get when we do the stability analysis of a non-spatial model,
except that now we have a whole family of matrices 𝐴(𝑘), one for each 𝑘. The condition for
the spatially homogeneous steady state to be stable is that all the eigenvalues 𝜎𝑘 of all the
matrices 𝐴(𝑘) are negative. The spatially homogeneous steady state to be unstable is that
there is at least one 𝑘 for which the real part of 𝜎𝑘 is positive.

As we know from studying the stability of non-spatial models of two interacting species, an
easy way to determine the stability is to look at the signs of the trace and the determinant of
the matrix 𝐴(𝑘). For the trace we find

tr(𝐴(𝑘)) = 𝑎11 − 𝑘2𝐷1 + 𝑎22 − 𝑘2𝐷2 = tr(𝐴(0)) − 𝑘2(𝐷1 +𝐷2). (7.48)

We are interested in the case where the steady state is stable in the absence of diffusion and
is destabilised by the diffusion. Stability in the absence of diffusion requires tr(𝐴(0)) < 0. We
see that in that case also tr(𝐴(𝑘)) < 0 for all 𝑘 because the 𝑘-dependent term −𝑘2(𝐷1 +𝐷2)
is negative. So the trace is not yet giving us a hint that there might be an instability. So next
we look at the determinant.

For the determinant we find
det(𝐴(𝑘)) = (𝑎11 −𝐷1𝑘2)(𝑎22 −𝐷2𝑘2) − 𝑎12𝑎21

= 𝐷1𝐷2𝑘4 − (𝐷1𝑎22 +𝐷2𝑎11)𝑘2 + det(𝐴(0)) (7.49)

Stability in the absence of diffusion tells us that det(𝐴(0)) > 0. We see that det(𝐴(𝑘)) is a
quadratic polynomial in 𝑘2 with positive leading coefficient. Its graph is a parabola. This
means that the determinant is positive for small 𝑘 and for large 𝑘 but there may be an
intermediate region where the parabola dips below the axis and the determinant is negative in
that region. Perturbations with wave numbers in that region would grow over time, making
the homogeneous steady state unstable and leading to spatial structure. If that region exists,
it is bounded by the values 𝑘± for which the determinant is zero. Using the quadratic formula
we find that

𝑘2
± = 𝐷1𝑎22 +𝐷2𝑎11 ±√(𝐷1𝑎22 +𝐷2𝑎11)2 − 4𝐷1𝐷2 det(𝐴(0))

2𝐷1𝐷2
. (7.50)

The unstable interval exists if 𝑘2
± are real and positive. They are real if the discriminant under

the square root is non-negative. This gives the condition

(𝐷1𝑎22 +𝐷2𝑎11)2 > 4𝐷1𝐷2 det(𝐴(0)). (7.51)

They are positive if the numerator is positive. This gives the condition

𝐷1𝑎22 +𝐷2𝑎11 > 0. (7.52)

The condition for the spatially homogeneous steady state to be unstable is that both Eq. 7.51
and Eq. 7.52 are satisfied.
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7.4.2 Understanding the conditions for Turing instabilities

We have now derived the conditions for Turing instabilities in terms of the entries of the Jaco-
bian matrix 𝐴 = 𝐴(0) of the local dynamics of the two species and the diffusion coefficients:

𝑎) 𝑎11 + 𝑎22 < 0,
𝑏) 𝑎11𝑎22 − 𝑎12𝑎21 > 0,
𝑐) 𝐷1𝑎22 +𝐷2𝑎11 > 0,
𝑑) (𝑎11 + 𝑎22)2 > 4(𝑎11𝑎22 − 𝑎12𝑎21).

(7.53)

Conditions a) and b) are the conditions for the spatially homogeneous steady state to be stable
in the absence of diffusion. Condition c) and d) are the condition for the spatially homogeneous
steady state to be unstable in the presence of diffusion.

We will first look at what these conditions tell us about the sign structure of the Jacobian, which
will introduce the concept of activator and inhibitor species. We make three observations:

1. We observe that condition a) implies that at least one of 𝑎11 and 𝑎22 is negative. We are
free to choose the numbering of our species, so, without loss of generality, let’s say that
𝑎22 < 0. This means that species 2 inhibits its own growth above the steady state. We
call species 2 an inhibitor species.

2. From condition c) we see that if 𝑎22 < 0 then 𝑎11 > 0. This means that species 1
activates its own growth above the steady state. We call species 1 an activator species.

3. From condition b) we now observe that, because 𝑎11𝑎22 < 0, we must have that 𝑎12𝑎21 <
0.

Taking these three observations together tells us that there are only two possibilities for the
sign structure of the Jacobian matrix:

sign(𝐴) = (+ −
+ −) or sign(𝐴) = (+ +

− −) . (7.54)

If the signs in the Jacobian are different from both of these possibilites you can immediately
rule out a Turing instability.

Next we look at what our conditions a) to d) tell us about the magnitude of the diffusion
coefficients. From condition a) we know that 𝑎11 < −𝑎22 and hence −𝑎11/𝑎22 < 1. From
condition c) we see that 𝐷1/𝐷2 < −𝑎11/𝑎22. Putting these together gives 𝐷1/𝐷2 < 1 and
hence 𝐷1 < 𝐷2: The inhibitor must diffuse faster than the activator. This is a
necessary condition for a Turing instability.

Exactly how much faster the inhibitor must diffuse than the activator depends on the details
of the local interactions and we will next study this in a concrete example.
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7.4.3 Example

Let’s consider the following concrete reaction-diffusion system:

𝜕𝑡𝑢 = −𝑢 + 𝑢2𝑣 + 𝐷1𝜕2
𝑥𝑢 = 𝑓(𝑢, 𝑣) + 𝐷1𝜕2

𝑥𝑢,
𝜕𝑡𝑣 = 𝑏 − 𝑢2𝑣 + 𝐷2𝜕2

𝑥𝑣 = 𝑔(𝑢, 𝑣) + 𝐷2𝜕2
𝑥𝑣.

(7.55)

The Jacobian matrix of the local dynamics is

𝐴 = (
𝜕𝑓
𝜕𝑢

𝜕𝑓
𝜕𝑣𝜕𝑔

𝜕𝑢
𝜕𝑔
𝜕𝑣

) = (−1 + 2𝑢𝑣 𝑢2

−2𝑢𝑣 −𝑢2) . (7.56)

We are interested in the coexistence steady state (𝑢∗, 𝑣∗) where both species coexist. Imposing
that 𝑓(𝑢∗, 𝑣∗) = 0 gives us that 𝑢∗𝑣∗ = 1 and then imposing that 𝑔(𝑢∗, 𝑣∗) = 0 gives us that
𝑢∗ = 𝑏 and hence 𝑣∗ = 1/𝑏. So the coexistence steady state is

(𝑢∗, 𝑣∗) = (𝑏, 1𝑏) . (7.57)

The Jacobian matrix evaluated at the coexistence steady state is

𝐴 = ( 1 𝑏2
−2 −𝑏2) . (7.58)

We see that the sign structure of this matrix is one of those in Eq. 7.54 that can give rise to a
Turing instability. Species 𝑢 is the activator and species 𝑣 is the inhibitor.

Now let us check each of the conditions a) to d) from Eq. 7.53. Condition a) becomes 1−𝑏2 < 0
and hence 𝑏2 > 1. Condition b) becomes −𝑏2 + 2𝑏2 > 0 which is automatically satisfied.
Condition c) becomes 𝐷2 − 𝑏2𝐷1 > 0 which implies 𝐷1𝑏2 < 𝐷2, which means that the ratio
𝑑 = 𝐷2/𝐷1 > 𝑏2. Condition d) becomes (𝐷2−𝑏2𝐷1)2 > 4𝐷1𝐷2𝑏2. Multiplying out the square
and bringing everything to one side gives 𝑏4𝐷2

1 − 6𝐷1𝐷2 + 𝐷2
2 > 0. We can rewrite this in

terms of the ratio 𝑑 = 𝐷2/𝐷1 as
𝑏4 − 6𝑑𝑏2 + 𝑑2 > 0. (7.59)

The graph of the left-hand side against 𝑑 is a parabola that opens upwards and has roots at

𝑑± = 3𝑏2 ±
√
9𝑏4 − 𝑏4 = 𝑏2(3 ±

√
8). (7.60)

The condition in Eq. 7.59 tells us that 𝑑 is outside the interval (𝑑−, 𝑑+). We have also already
derived that 𝑑 > 𝑏2 > 𝑑−. So the final condition on the ratio of the diffusion rates is

𝑑 = 𝐷2
𝐷1

> 𝑏2(3 +
√
8). (7.61)
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7.4.4 Finite domain

We now restrict space to a finite interval [0, 𝐿] and impose no-flux boundary conditions at the
boundaries:

𝜕𝑥𝑢(0, 𝑡) = 𝜕𝑥𝑢(𝐿, 𝑡) = 0, 𝜕𝑥𝑣(0, 𝑡) = 𝜕𝑥𝑣(𝐿, 𝑡) = 0. (7.62)

This implies that also the perturbations away from the homogeneous steady state must satisfy
these boundary conditions:

𝜕𝑥𝜉(0, 𝑡) = 𝜕𝑥𝜉(𝐿, 𝑡) = 0, 𝜕𝑥𝜂(0, 𝑡) = 𝜕𝑥𝜂(𝐿, 𝑡) = 0. (7.63)

Substituting our harmonic wave Ansatz Eq. 7.44 into the boundary condition 𝜕𝑥𝜉(0, 𝑡) = 0
gives 𝑘 cos(𝛼) = 0 and hence 𝛼 = 𝜋/2. Substituting it into the boundary condition 𝜕𝑥𝜉(𝐿, 𝑡) =
0 gives 𝑘 cos(𝑘𝐿 + 𝜋/2) = 0. This means that 𝑘𝐿 must be a multiple of 𝜋 and hence 𝑘 must
be an integer multiple of 𝜋/𝐿. We can write this as

𝑘 = 𝑘𝑛 = 𝑛𝜋
𝐿 , 𝑛 = 1, 2, ... (7.64)

The boundary conditions for 𝜂 are satisfied for the same set of wave numbers 𝑘𝑛.
We had seen that only perturbations with wave numbers in the interval [𝑘−, 𝑘+] can grow,
with 𝑘± given by Eq. 7.50. So the condition for a Turing instability in our bounded domain
is that there is at least one 𝑛 for which 𝑘𝑛 is in the interval [𝑘−, 𝑘+]. This gives the condition
𝑘1 = 𝜋/𝐿 < 𝑘+ or equivalently 𝐿 > 𝜋/𝑘+. Turing instabilities can only occur in domains that
are large enough.

7.5 Directed motion

So far we have only discussed random motion. We now want to consider directed motion. There
are many reasons for individuals to move in a directed way. For example, they might move
towards a food source or away from a predator. This kind of movement is referred to as taxis:
the movement towards (or away from) a higher concentration of something (prey, predator,
light, nutrient). If the something is a chemical this is called chemotaxis. Chemotaxis is a very
important mechanism in biology. For example, immune cells move towards sites of infection,
sperm cells move towards the egg, and bacteria move towards nutrients.

To model this, we introduce the density 𝑛(x, 𝑡) of individuals and the density 𝑎(x, 𝑡) of the
chemical, which we will assume is an attractant, i.e., individuals move towards higher concen-
trations of the chemical. The individuals move in response to the gradient of the chemical, so
the chemotactic movement is described by a flux

J𝑐 = 𝜒𝑛�𝑎, (7.65)
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where 𝜒 > 0 is the chemotactic sensitivity. Compare this with the diffusive flux

J𝑑 = −𝐷�𝑛. (7.66)

The equation for the density of individuals is then

𝜕𝑡𝑛 = 𝑓(𝑛) − � ⋅ J, (7.67)

where 𝑓(𝑛) describes the local population dynamics. This is just the higher-dimensional version
of Eq. 7.5. We can now plug in the expressions for the fluxes and get

𝜕𝑡𝑛 = 𝑓(𝑛) − � ⋅ (𝜒𝑛�𝑎) + � ⋅ (𝐷𝑛�𝑛). (7.68)

The attractant 𝑎 is governed by the equation

𝜕𝑡𝑎 = 𝑔(𝑎, 𝑛) + � ⋅ (𝐷𝑎�𝑛). (7.69)

The local dynamics of the attractant is described by 𝑔(𝑎, 𝑛) and the diffusion of the attractant
has diffusion coefficient 𝐷𝑎.

7.5.1 Slime mould aggregation

A fascinating example of chemotaxis is the aggregation of slime moulds. Slime moulds are
single-celled organisms that live in the soil and feed on bacteria. When the food supply runs
out, the slime moulds aggregate to form a fruiting body that releases spores. The aggregation
is guided by a chemical attractant. The slime moulds move towards higher concentrations of
the attractant. The attractant is a chemical that is released by the slime moulds themselves.

When modelling the slime mould aggregation we can neglect the population dynamics which
are not relevant for the aggregation process and thus set 𝑓(𝑛) = 0. For the local dynamics of
the attractant we use

𝑔(𝑎, 𝑛) = ℎ𝑛 − 𝑞𝑎, (7.70)
where ℎ > 0 is the rate at which the attractant is produced by the slime moulds and 𝑞 > 0
is the rate at which the attractant is degraded. We assume that the chemotactic sensitivity
𝜒 and the diffusion coefficients 𝐷𝑛 and 𝐷𝑎 are positive constants. We also restrict ourselves
again to motion in one dimension. Then the equations for the slime mould aggregation are:

𝜕𝑡𝑛 = −𝜒𝜕𝑥(𝑛𝜕𝑥𝑎) + 𝐷𝑛𝜕2
𝑥𝑛,

𝜕𝑡𝑎 = ℎ𝑛 − 𝑞𝑎 +𝐷𝑎𝜕2
𝑥𝑎.

(7.71)

The homogeneous steady state where 𝑛(𝑥, 𝑡) = 𝑛∗ and 𝑎(𝑥, 𝑡) = 𝑎∗ has to satisfies ℎ𝑛∗ = 𝑞𝑎∗.
We can now linearise the equations around the homogeneous steady state by setting 𝑛(𝑥, 𝑡) =
𝑛∗ + 𝜉(𝑥, 𝑡) and 𝑎(𝑥, 𝑡) = 𝑎∗ + 𝜂(𝑥, 𝑡) with 𝜉 and 𝜂 small. We get

𝜕𝑡𝜉 = −𝜒𝑛∗𝜕2
𝑥𝜂 + 𝐷𝑛𝜕2

𝑥𝜉,
𝜕𝑡𝜂 = ℎ𝜉 − 𝑞𝜂 + 𝐷𝑎𝜕2

𝑥𝜂.
(7.72)

101



We write this linear system in matrix form as

𝜕𝑡 (
𝜉
𝜂) = (𝐷𝑛𝜕2

𝑥 −𝜒𝑛∗𝜕2
𝑥

ℎ −𝑞 +𝐷𝑎𝜕2
𝑥
)(𝜉

𝜂) . (7.73)

To solve this we make the Ansatz

(𝜉
𝜂) = (𝐵1

𝐵2
)𝑒𝜎𝑘𝑡 sin(𝑘𝑥 + 𝛼). (7.74)

Plugging this into Eq. 7.73 and dividing by 𝑒𝜎𝑘𝑡 sin(𝑘𝑥 + 𝛼) gives

𝜎(𝐵1
𝐵2

) = (−𝐷𝑛𝑘2 𝜒𝑛∗𝑘2

ℎ −𝑞 −𝐷𝑎𝑘2)(𝐵1
𝐵2

) . (7.75)

We again denote the matrix above as 𝐴(𝑘). The condition for the homogeneous steady state
to be stable is that the real parts of the eigenvalues 𝜎𝑘 are all negative. The condition for the
homogeneous steady state to be unstable is that there is at least one 𝑘 for which the real part
of 𝜎𝑘 is positive.

To determine the stability we again calculate the trace and determinant of the matrix in
Eq. 7.75. The trace is

tr(𝐴(𝑘)) = −(𝐷𝑛 +𝐷𝑎)𝑘2 − 𝑞. (7.76)

This is manifestly negative for all 𝑘, so this does not yet indicate any instability. The deter-
minant is

det(𝐴(𝑘)) = 𝐷𝑛𝐷𝑎𝑘4 +𝐷𝑛𝑞𝑘2 − ℎ𝜒𝑛∗𝑘2. (7.77)

This is negative and hence gives an instability if

𝐷𝑛𝐷𝑎𝑘2 < ℎ𝜒𝑛∗ −𝐷𝑛𝑞 (7.78)

Because the left-hand side in this inequality is positive, the right-hand side must be positive
as well. This gives us the condition

𝐷𝑛 < ℎ𝜒𝑛∗

𝑞 . (7.79)

This makes sense: if the individuals diffuse too fast, the aggregation can not happen. We can
also rewrite the condition for the aggregation as

ℎ > 𝑞𝐷𝑛
𝜒𝑛∗ . (7.80)

So aggregation only happens if the rate of production of the attractant is larger enough.
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7.6 Exercises

7.6.0.1 Fishing model with diffusion

Exercise 7.1.

A population of fish 𝐹(𝑥, 𝑡) in a river of width 𝐿 with banks at 𝑥 = 0 and 𝑥 = 𝐿 can be
modelled by the partial differential equation

𝜕𝐹
𝜕𝑡 = 𝑟𝐹 (1 − 𝐹

𝐾)+𝐷𝜕2𝐹
𝜕𝑥2 , (7.81)

where 𝑟, 𝐾 and 𝐷 are positive constants. No-flux boundary conditions are applied at 𝑥 = 𝐿.
At precisely 𝑥 = 0 some shore-based fishermen catch all of the fish. We wish to find the
minimum width of the river to ensure the fish population does not collapse.

1. First determine the spatially uniform steady states and indicate their stability.

2. Linearise the system for small 𝐹 .

3. By considering a solution of the form 𝐹(𝑥, 𝑡) = 𝑒𝜆𝑡 (𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥) show that

𝜆 = 𝜆𝑛 =∶ 𝑟 − 𝑘2
𝑛𝐷, (7.82)

where
𝑘 = 𝑘𝑛 =∶ (2𝑛 + 1)𝜋

2𝐿 , 𝑛 = 0, 1, 2, ...

4. Hence, determine the condition on 𝐿 for the fish population not to collapse.

7.6.0.2 Travelling wave in 1-species reaction-diffusion model

Exercise 7.2.

A reaction-diffusion population model has the form

𝜕𝑢
𝜕𝑡 = 𝑓(𝑢) + 𝐷𝜕2𝑢

𝜕𝑥2 (7.83)

where 𝐷 > 0 and where 𝑓 satisfies 𝑓(0) = 𝑓(1) = 0 and 𝑓(𝑢) > 0 for 𝑢 ∈ (0, 1).

a) Convert this equation into travelling wave form by making the Ansatz that 𝑢(𝑥, 𝑡) = 𝑈(𝑧)
and 𝑣(𝑥, 𝑡) = 𝑉 (𝑧) with 𝑧 = 𝑥 − 𝑐𝑡.
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b) Assuming that a solution exists such that 𝑈(−∞) = 1, 𝑈(∞) = 0 show, by linearising
the equation at the leading edge, that for a biologically realistic solution the wave speed
𝑐 satisfies 𝑐 ≥ 2√𝐷𝑓 ′(0).

c) Suppose that, instead, 𝑓(𝑢) = 0. Show that the equation in travelling wave form becomes
𝐷𝑈″ + 𝑐𝑈 ′ = 0. Give the general solution of this. Does the solution look realistic for a
function that represents a population?

7.6.0.3 * Travelling wave in 2-species reaction-diffusion model

Exercise 7.3.

Consider the system
𝜕𝑢
𝜕𝑡 = −𝑢2𝑣
𝜕𝑣
𝜕𝑡 = 𝑢2𝑣 − 𝜌𝑣 + 𝜕2𝑣

𝜕𝑥2

(7.84)

where 𝜌 is a positive constant. Convert this system into travelling wave form by making the
Ansatz that 𝑢(𝑥, 𝑡) = 𝑈(𝑧) and 𝑣(𝑥, 𝑡) = 𝑉 (𝑧) with 𝑧 = 𝑥 − 𝑐𝑡, and show in particular that

−𝑐𝑑𝑉𝑑𝑧 = 𝑐𝑑𝑈𝑑𝑧 − 𝜌𝑐
𝑈2

𝑑𝑈
𝑑𝑧 + 𝑑2𝑉

𝑑𝑧2 . (7.85)

Consider a solution of the travelling wave equations such that 𝑈(∞) = 1, 𝑈(−∞) = 𝑎,
𝑉 (±∞) = 0 for some 𝑎 < 1. By integrating the above equation from −∞ to ∞ and im-
posing the boundary conditions, determine the value of 𝑎. Also determine a lower bound on
the wave velocity 𝑐 by linearising around the leading edge of the wave.

7.6.0.4 SIR model with logistic growth

Exercise 7.4.

Assume that in the absence of rabies, the fox population is described by a logistic model with
intrinsic growth rate 𝑟 and carrying capacity 𝐾. Adding this population dynamics to the SIR
model gives the equations

𝜕𝑡𝑆 = 𝑟𝑆 (1 − 𝑆
𝐾)− 𝛽𝑆𝐼

𝜕𝑡𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼.
(7.86)

We ignore the removed component 𝑅, which in this case would correspond to dead foxes.
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a) Show that this model can be written in non-dimensionalised form as

𝜕 ̃𝑡𝑢 = 𝑏𝑢(1 − 𝑢) − 𝑢𝑣
𝜕 ̃𝑡𝑣 = 𝑢𝑣 −𝑚𝑣. (7.87)

b) Determine the steady state solutions (fixed points). Under what condition on the pa-
rameters is there an endemic state?

Now assume that both susceptible and infected foxes move around randomly, but at different
rates. This adds diffusion terms to the SIR model, where now 𝑆 = 𝑆(𝑥, 𝑡) and 𝐼 = 𝐼(𝑥, 𝑡)
denote densities in space.

𝜕𝑡𝑆 = 𝑟𝑆 (1 − 𝑆
𝐾)− 𝛽𝑆𝐼 +𝐷1𝜕2

𝑥𝑆

𝜕𝑡𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼 + 𝐷2𝜕2
𝑥𝐼.

(7.88)

c) Give expressions for ̃𝑥 and 𝑑 such that this model can be written in non-dimensionalised
form as

𝜕 ̃𝑡𝑢 = 𝑏𝑢(1 − 𝑢) − 𝑢𝑣 + 𝜕2
�̃�𝑢

𝜕 ̃𝑡𝑣 = 𝑢𝑣 −𝑚𝑣 + 𝑑 𝜕2
�̃�𝑣

(7.89)

We will now work with these non-dimensional equations but drop the tildes to avoid clutter.

d) Make the travelling wave Ansatz

𝑢(𝑥, 𝑡) = 𝐴(𝑧), 𝑣(𝑥, 𝑡) = 𝐵(𝑧) (7.90)

with 𝑧 = 𝑥 − 𝑐𝑡 for some 𝑐 > 0 and derive the system of ODEs describing the functions
𝐴 and 𝐵.

e) If 𝐴(∞) = 1, what are 𝐴(−∞),𝐵(∞) and 𝐵(−∞)? Make a sketch of 𝐴(𝑧) and 𝐵(𝑧)
and indicate the direction of travel with an arrow.

f) By linearising about the leading edge of the wave where 𝐵 is very small, determine a
lower limit on the wave speed 𝑐.
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7.6.0.5 Derive Turing instability

Exercise 7.5. Consider the reaction-diffusion model

𝜕𝑢
𝜕𝑡 = 𝑎 − 𝑢 + 𝑢2𝑣 + 𝐷1

𝜕2𝑢
𝜕𝑥2

𝜕𝑣
𝜕𝑡 = 𝑏 − 𝑢2𝑣 + 𝐷2

𝜕2𝑣
𝜕𝑥2

(7.91)

where 𝑏 > 0 and 𝑎 + 𝑏 > 0.
Show that a spatially uniform steady state solution (𝑢∗, 𝑣∗) exists for this model and is given
by (𝑢∗, 𝑣∗) = (𝑎 + 𝑏 , 𝑏/(𝑎 + 𝑏)2). Show that the conditions for this steady state to be driven
unstable by diffusion are that the three inequalities

𝑏 − 𝑎 < (𝑎 + 𝑏)3

[𝐷2 (
𝑏 − 𝑎
𝑎 + 𝑏) −𝐷1(𝑎 + 𝑏)2]

2
> 4𝐷1𝐷2(𝑎 + 𝑏)2 (7.92)

𝐷2 (
𝑏 − 𝑎
𝑎 + 𝑏) −𝐷1(𝑎 + 𝑏)2 > 0 (7.93)

should all hold simultaneously.

7.6.0.6 * Conditions for Turing instability

Exercise 7.6. Consider the reaction-diffusion model

𝜕𝑐1
𝜕𝑡 = 𝛿 − 𝑘𝑐1 − 𝑐1𝑐22 +𝐷1

𝜕2𝑐1
𝜕𝑥2

𝜕𝑐2
𝜕𝑡 = 𝑘𝑐1 + 𝑐1𝑐22 − 𝑐2 +𝐷2

𝜕2𝑐2
𝜕𝑥2

(7.94)

where 𝑘 > 0 and 𝛿 > 0.
Show that a spatially uniform steady state solution (𝑐∗1, 𝑐∗2) exists for this model and give the
conditions for this steady state to be driven unstable by diffusion. You may use any results
derived in the lectures.
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7.6.0.7 Slime mould with boundary

Exercise 7.7. In the model for the aggregation of slime mould amoebae suppose that the
spatial domain is 0 ≤ 𝑥 ≤ 𝐿 rather than −∞ < 𝑥 < ∞. Show that the conditions for
aggregation to occur are 𝜒𝑎∗𝑓 > 𝑘𝜇 and

𝐿 > 𝜋√ 𝐷𝜇
𝜒𝑎∗𝑓 − 𝑘𝜇. (7.95)
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A Solutions

This appendix holds the solutions to selected exercises in the book. Please look at these
solutions only after having made a serious attempt at solving the exercises and knowing exactly
where you got stuck.

A.1 Continuous-time population models

Von Bertalanffy growth

Exercise 1.2:

i) Seeking a steady state we find 𝛼𝑤2/3 − 𝛽𝑤 = 0 ⟹ 𝑤2/3(𝛼 − 𝛽𝑤1/3) = 0 ⟹ 𝑤 = 0 or
𝑤1/3 = 𝛼/𝛽. With the graphical approach in Figure A.1 we see that the non-zero steady
state is stable. Hence,

lim
𝑡→∞

𝑤(𝑡) = (𝛼
𝛽)

3
. (A.1)

Figure A.1: 𝑑𝑤/𝑑𝑡 versus 𝑤 for the von Bertalanffy growth model.

ii) For the time derivative of 𝑢 = 𝑤1/3 we find by the chain rule that

𝑑𝑢
𝑑𝑡 = 1

3𝑤
−2/3𝑑𝑤

𝑑𝑡 = 1
3𝑢2 (𝛼𝑤2/3 − 𝛽𝑤) . (A.2)
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Hence
3𝑑𝑢𝑑𝑡 = 1

𝑢2 (𝛼𝑢2 − 𝛽𝑢3) = 𝛼 − 𝛽𝑢. (A.3)

So this change of variables has yielded a first-order ODE with linear coefficients, which
is easy for us to solve:

𝑢(𝑡) = 1
𝛽 (𝛼 − 𝐴𝑒−𝛽𝑡/3) (A.4)

for some integration constant 𝐴. If 𝑢(0) = 𝑢0 then 𝐴 = 𝛼− 𝛽𝑢0.

iii) Translating back to 𝑤 with 𝑤0 = 𝑢3
0 we finally have

𝑤(𝑡) = 𝑢(𝑡)3 = 1
𝛽3 (𝛼 − (𝛼 − 𝛽𝑤1/3

0 ) 𝑒−𝛽𝑡/3)
3
. (A.5)

Solving logistic equation

Exercise 1.3: We separate the variables by dividing both sides of the ODE by 𝑁(1 − 𝑁/𝐾)
and multiplying by 𝑑𝑡, and then integrate to get

∫
𝑁(𝑡)

𝑁0

𝑑𝑁
𝑁 (1 − 𝑁

𝐾 ) = ∫
𝑡

0
𝑟 𝑑𝑡. (A.6)

The right hand side is trivial to integrate, but for the integral on the left-hand side we need
to employ the method of partial fractions, using that

𝑑𝑁
𝑁 (1 − 𝑁

𝐾 ) = 1
𝑁 + 1

𝐾 −𝑁 . (A.7)

The left-hand side then gives

∫
𝑁(𝑡)

𝑁0

( 1
𝑁 + 1

𝐾 −𝑁(𝑡)) 𝑑𝑁

= log𝑁(𝑡) − log𝑁0 − log(𝐾 −𝑁(𝑡)) + log(𝐾 −𝑁0).
(A.8)

We exponentiate both sides to get

𝑁(𝑡)
𝑁0

𝐾 −𝑁0
𝐾 −𝑁(𝑡) = 𝑒𝑟𝑡. (A.9)

Now we just need to solve for 𝑁(𝑡):

𝑁(𝑡) = 𝑁0𝐾𝑒𝑟𝑡
𝐾 +𝑁0(𝑒𝑟𝑡 − 1). (A.10)
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Harvesting with fixed quota

**Exercise 1.5: If we harvest with a fixed quota 𝑄, the population is described by the equa-
tion 𝑑𝑁

𝑑𝑡 = 𝛼𝑁 log 𝐾
𝑁 −𝑄. (A.11)

The subtraction of 𝑄 shifts the graph of the right-hand side down by a distance 𝑄. This
brings the non-zero fixed points closer together until 𝑄 is equal to the maximum of the growth
rate of the unfished population. If 𝑄 is increased beyond this value the non-zero fixed points
disappear and the population will go extinct. is because we are removing 𝑄 individuals from
the population at a constant rate. Thus the maximum sustainable yield occurs when 𝑄 equals
the maximum replenishment rate of the unfished population. To find that maximum we first
solve

0 = 𝑑
𝑑𝑁 (𝛼𝑁 log 𝐾

𝑁) = 𝛼(log 𝐾
𝑁 − 1) . (A.12)

This tells us that the maximum is at

𝑁𝑚𝑎𝑥 = 𝐾 𝑒−1. (A.13)

Hence the value at the maximum is

𝑀𝑆𝑌 = 𝑄𝑚𝑎𝑥 = 𝛼𝑁𝑚𝑎𝑥 log
𝐾

𝑁𝑚𝑎𝑥
= 𝛼𝐾 𝑒−1. (A.14)

Fishing at this quota is not wise, as this reduces the population to the threshold level below
which the population will go extinct.

Wasp model

Exercise 1.6: For 0 ≤ 𝑡 ≤ 𝑡𝑐 the number of workers satisfies

𝑑𝑛
𝑑𝑡 = 𝑟 𝑛. (A.15)

Therefore
𝑛(𝑡) = 𝑛0𝑒𝑟 𝑡. (A.16)

For 𝑡𝑐 ≤ 𝑡 ≤ 𝑇 the number of reproducers satisfies

𝑑𝑁
𝑑𝑡 = 𝑅𝑛(𝑡𝑐) = 𝑅 𝑛0 𝑒𝑟 𝑡𝑐 , (A.17)

so that
𝑁(𝑇 ) = (𝑇 − 𝑡𝑐)𝑅 𝑒𝑟 𝑡𝑐 . (A.18)
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To find the value of 𝑡𝑐 that maximises 𝑁(𝑇 ) we set the derivative of 𝑁(𝑇 ) with respect to 𝑡𝑐
to zero:

0 = 𝑑
𝑑𝑡𝑐

𝑁(𝑇 ) = 𝑑
𝑑𝑡𝑐

(𝑇 − 𝑡𝑐)𝑅 𝑒𝑟 𝑡𝑐

= −𝑅 𝑒𝑟 𝑡𝑐 + (𝑇 − 𝑡𝑐)𝑅 𝑟 𝑒𝑟 𝑡𝑐
= 𝑅 𝑒𝑟 𝑡𝑐(𝑟 𝑇 − 𝑟 𝑡𝑐 − 1).

(A.19)

This implies that
𝑡𝑐 = 𝑇 − 1

𝑟 . (A.20)

Wasp model with death

Exercise 1.7: For 0 ≤ 𝑡 ≤ 𝑡𝑐 the number of workers satisfies

𝑑𝑛
𝑑𝑡 = (𝑟 − 𝑑)𝑛. (A.21)

Therefore
𝑛(𝑡) = 𝑒(𝑟−𝑑)𝑡. (A.22)

For 𝑡𝑐 ≤ 𝑡 ≤ 𝑇 we have
𝑑𝑛
𝑑𝑡 = −𝑑𝑛 (A.23)

so that
𝑛(𝑡) = 𝑛(𝑡𝑐)𝑒−𝑑(𝑡−𝑡𝑐) = 𝑒(𝑟−𝑑)𝑡𝑒−𝑑(𝑡−𝑡𝑐) = 𝑒𝑟 𝑡𝑐𝑒−𝑑 𝑡. (A.24)

Also for 𝑡𝑐 ≤ 𝑡 ≤ 𝑇 the number of reproducers satisfies

𝑑𝑁
𝑑𝑡 = 𝑅𝑛(𝑡) = 𝑅𝑒𝑟 𝑡𝑐𝑒−𝑑 𝑡, (A.25)

so that
𝑁(𝑇 ) = ∫

𝑇

𝑡𝑐
𝑅𝑒𝑟 𝑡𝑐𝑒−𝑑 𝑡𝑑𝑡 = 𝑅

𝑑 𝑒𝑟 𝑡𝑐 (𝑒−𝑑 𝑡𝑐 − 𝑒−𝑑𝑇 ) . (A.26)

To find the value of 𝑡𝑐 that maximises 𝑁(𝑇 ) we set the derivative of 𝑁(𝑇 ) with respect to 𝑡𝑐
to zero:

0 = 𝑑
𝑑𝑡𝑐

𝑁(𝑇 ) = 𝑑
𝑑𝑡𝑐

(𝑅
𝑑 𝑒𝑟 𝑡𝑐 (𝑒−𝑑 𝑡𝑐 − 𝑒−𝑑𝑇 ))

= 𝑅𝑒𝑟 𝑡𝑐 ((𝑟
𝑑 − 1) 𝑒−𝑑 𝑡𝑐 − 𝑟

𝑑𝑒
−𝑑𝑇) .

(A.27)

This is equivalent to
𝑒−𝑑 𝑡𝑐 = 1

1 − 𝑑/𝑟𝑒
−𝑑𝑇 (A.28)

111



and thus
𝑡𝑐 = 𝑇 + 1

𝑑 ln(1 − 𝑑
𝑟) . (A.29)

A.2 Discrete-time population models

Verhulst model

Exercise 2.1: Let’s write the equation as 𝑁𝑡+1 = 𝑓(𝑁𝑡) with

𝑓(𝑁) = 𝑟𝑁 (1 − 𝑁
𝐾) . (A.30)

Because 𝑓(𝑁) is positive for all 𝑁 < 𝐾, the only way for 𝑁𝑡+1 to be negative is for 𝑁𝑡 to
be greater than 𝐾. This in turn is only possible if 𝑓(𝑁𝑡−1) > 𝐾. So the function 𝑓 at its
maximum needs to be larger than 𝐾. Because the function describes an upside-down parabola
with zeros at 0 and 𝐾, its maximum is in the middle at 𝑁 = 𝐾/2, where 𝑓(𝐾/2) = 𝑟𝐾/4.
Thus the population can get negative iff 𝑟𝐾/4 > 𝐾, which is equivalent to 𝑟 > 4.

A.3 Sex-structured population models

Dominance structure

Exercise 3.2:

a) The ratio 𝐹/𝑄 in the negative term in the equation for the alpha females represents
the fact that if the ratio between the subordinate individuals who gather the food and
the alpha females who rely on that food is too small, then the alpha females don’t get
enough food and hence are less fit, leading to either a decreased birth rate or an increased
mortality rate.
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(b) We derive the ODE:

𝑑
𝑑𝑡

𝐹
𝑄 = 𝐹 ′𝑄− 𝐹𝑄′

𝑄2

= (𝑏𝐹 − 𝜇𝐹𝐹/𝑄)𝐹𝑄 − 𝐹(𝑏𝑄𝐹 − 𝜇𝑄𝑄)
𝑄2

= (𝑏𝐹 + 𝜇𝑄)𝐹𝑄 (1 − 𝑏𝑄 + 𝜇𝐹
𝑏𝐹 + 𝜇𝑄

𝐹
𝑄) .

(A.31)

Ideally you identify this as the logistic equation with initial growth rate 𝑟 and carrying
capacity 𝐾 given by

𝑟 = 𝑏𝐹 + 𝜇𝑄, 𝐾 = 𝑏𝐹 + 𝜇𝑄
𝑏𝑄 + 𝜇𝐹

. (A.32)

You can then look up the solution in the lecture notes:

𝐹
𝑄(𝑡) =

𝐹0
𝑄0

𝐾𝑒𝑟𝑡

𝐾 + 𝐹0
𝑄0

(𝑒𝑟𝑡 − 1)
. (A.33)

Otherwise you have to work a bit harder.

(c) Because we have identified 𝐹/𝑄(𝑡) as the solution of a logistic equation it is easy to see
that as 𝑡 → ∞, 𝐹/𝑄 → 𝐾 with 𝐾 as in Eq. A.32.

(d) We derive the ODE:

𝑑
𝑑𝑡

𝐹
𝑀 = 𝐹 ′𝑀 −𝐹𝑀 ′

𝑀2

= (𝑏𝐹 − 𝜇𝐹𝐹/𝑄)𝐹𝑀 − 𝐹(𝑏𝑀𝐹 − 𝜇𝑀𝑀)
𝑀2

= 𝐹
𝑀 (𝑏𝐹 + 𝜇𝑀 − 𝜇𝐹

𝐹
𝑄 − 𝑏𝑀

𝐹
𝑀) .

(A.34)

We are only interested in the limit of 𝐹/𝑀 as 𝑡 → ∞. Let us denote this limit by 𝑅. We
already know that the limit of 𝐹/𝑄 as 𝑡 → ∞ is 𝐾. The limit of the previous equation
gives

0 = 𝑑
𝑑𝑡𝑅 = 𝑅 (𝑏𝐹 + 𝜇𝑀 − 𝜇𝐹𝐾 − 𝑏𝑀𝑅) (A.35)

and hence
𝑅 = 𝑏𝐹 + 𝜇𝑀 − 𝜇𝐹𝐾

𝑏𝑀
. (A.36)

Substituting the expression for 𝐾 and bringing everything on a common denominator
gives

𝑅 = (𝑏𝐹 + 𝜇𝑀)(𝑏𝑄 + 𝜇𝐹 ) − 𝜇𝐹 (𝑏𝐹 + 𝜇𝑄)
𝑏𝑀(𝑏𝑄 + 𝜇𝐹 )

(A.37)
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To see that this is always positive we multiply out the numerator:

𝑅 = 𝑏𝐹 𝑏𝑄 + 𝜇𝑀𝑏𝑄 + 𝜇𝑀𝜇𝐹 − 𝜇𝐹𝜇𝑄
𝑏𝑀(𝑏𝑄 + 𝜇𝐹 )

(A.38)

This is positive because 𝑏𝐹 𝑏𝑄 > 𝜇𝐹𝜇𝑄

(e) The birth rates are linear in the number of alpha females and independent of 𝑀 and
𝑄. Independence of 𝑀 is realistic only if 𝑀 is large. Using a weighted mean might be
better, i.e., birth rates given by 𝑏𝑖𝐹𝑀/(𝐹/𝑛 +𝑀), where 𝑛 is the number of females a
male can mate with per mating season. Or we could take into account that the alpha
females will reproduce less if there are fewer subordinate individuals gathering food for
them, for example by choosing birth rates to be given by 𝑏𝑖𝐹𝑄/(𝐹/𝑛 + 𝑄), where 𝑛 is
the number of pregnant females that a subordinate monkey can keep well fed. There are
many other possible improvements.

A.4 Age-structured population models

Harvestings an age-structured population

Exercise 4.2: We can start from Eq. 4.14 that gives the expected number of offspring produced
by an individual within their lifetime:

𝜙(0) = ∫
∞

0
𝑏(𝑎) exp(−∫

𝑎

0
𝜇(𝑎′) 𝑑𝑎′) 𝑑𝑎. (A.39)

This will now simplify when we use the given expressions Eq. 4.46 and Eq. 4.47 for the rates.
Because 𝑏(𝑎) is non-zero only for 𝑎 > 𝑎𝑚, the outer integral only has to run from 𝑎𝑚 to ∞.
The inner integral from 0 to 𝑎 we need to split into two integrals because of the piece-wise
nature of 𝜇(𝑎). Hence

𝜙(0) = ∫
∞

𝑎𝑚

𝑏(𝑎) exp(−∫
𝑎𝑚

0
𝜇(𝑎′) 𝑑𝑎′ −∫

𝑎

𝑎𝑚

𝜇(𝑎′) 𝑑𝑎′) 𝑑𝑎. (A.40)
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We can now substitute the appropriate constants for the rates:

𝜙(0) = ∫
∞

𝑎𝑚

𝑏 exp(−∫
𝑎𝑚

0
𝜇0 𝑑𝑎′ −∫

𝑎

𝑎𝑚

(𝜇0 + 𝜇𝐹 ) 𝑑𝑎′) 𝑑𝑎

= ∫
∞

𝑎𝑚

𝑏 exp (−𝜇0𝑎𝑚 − (𝜇0 + 𝜇𝐹 )(𝑎 − 𝑎𝑚)) 𝑑𝑎

= 𝑏 exp(−𝜇𝐹𝑎𝑚)∫
∞

𝑎𝑚

exp (−(𝜇0 + 𝜇𝐹 )𝑎) 𝑑𝑎

= 𝑏 exp(−𝜇𝐹𝑎𝑚) [− 1
𝜇0 + 𝜇𝐹

exp (−(𝜇0 + 𝜇𝐹 )𝑎)]
∞

𝑎𝑚

= 𝑏 exp(−𝜇𝐹𝑎𝑚) 1
𝜇0 + 𝜇𝐹

exp (−(𝜇0 + 𝜇𝐹 )𝑎𝑚)

= 𝑏
𝜇0 + 𝜇𝐹

exp (−𝜇0𝑎𝑚) .

(A.41)

This expected number of offspring produced by an individual within their lifetime must be
greater or equal to 1 for the population to sustain itself. Hence the upper limit on the harvesting
rate 𝜇𝐹 is given by

𝜇𝐹 ≤ 𝑏 exp (−𝜇0𝑎𝑚) − 𝜇0. (A.42)

Seasonal mortality

Exercise 4.3:

(a) Substituting 𝑛(𝑡, 𝑎) = 𝑝(𝑡)𝑟(𝑎) into Eq. 4.3 and dividing by 𝑛(𝑡, 𝑎) gives

𝑝′(𝑡)
𝑝(𝑡) + 𝑟′(𝑎)

𝑟(𝑎) = −𝜇(𝑎) − 𝑓(𝑡). (A.43)

Separating variables gives

𝑝′(𝑡)
𝑝(𝑡) + 𝑓(𝑡) = −𝑟′(𝑎)

𝑟(𝑎) − 𝜇(𝑎). (A.44)

As the left-hand side is independent of 𝑎 and the right-hand side is independent of 𝑡,
both sides must be equal to some constant 𝛾. This gives us the two ODEs

𝑑
𝑑𝑡 log(𝑝(𝑡)) = 𝛾 − 𝑓(𝑡), 𝑑

𝑑𝑎 log(𝑟(𝑎)) = −𝛾 − 𝜇(𝑡). (A.45)
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These have the solutions

𝑝(𝑡) = 𝑝(0) exp(∫
𝑡

0
𝛾 − 𝑓(𝑠) 𝑑𝑠) ,

𝑟(𝑎) = 𝑟(0) exp(−∫
𝑎

0
𝛾 + 𝜇(𝑠) 𝑑𝑠)

(A.46)

Thus the solution for 𝑛 is

𝑛(𝑡, 𝑎) = 𝑛(0, 0) exp(∫
𝑡

0
𝛾 − 𝑓(𝑠) 𝑑𝑠) exp(−∫

𝑎

0
𝛾 + 𝜇(𝑠) 𝑑𝑠) . (A.47)

(b) Substituting the solution into Eq. 4.4 gives

𝑝(𝑡)𝑟(0) = ∫
∞

0
𝑏(𝑎)𝑝(𝑡)𝑟(𝑎) 𝑑𝑎. (A.48)

After dividing by 𝑝(𝑡)𝑟(0) and using our expression for 𝑟(𝑎) from the previous part,

1 = ∫
∞

0
𝑏(𝑎) exp(−∫

𝑎

0
𝛾 + 𝜇(𝑠)𝑑𝑠)𝑑𝑎 = 𝜙(𝛾). (A.49)

The factor exp(−𝛾𝑎) in the integrand decreases monotonically with increasing 𝛾 and
therefore so does the integral. Hence the function 𝜙(𝛾) is a monotonically decreasing
function.

(c) The end of a season occurs at any 𝑡 ∈ ℤ. At those integer times we can write the integral
in the expression for 𝑝(𝑡) as

∫
𝑡

0
𝛾 − 𝑓(𝑠) 𝑑𝑠 =

𝑡
∑
𝑖=1

∫
𝑖

𝑖−1
𝛾 − 𝑓(𝑠) 𝑑𝑠

=
𝑡

∑
𝑖=1

(𝛾 − 𝐹) = 𝑡(𝛾 − 𝐹).
(A.50)

Hence for the population at the end of the season 𝑡 we have
𝑛(𝑡, 𝑎) = 𝑛(0, 0) exp(𝑡(𝛾 − 𝐹))𝑟(𝑎). (A.51)

This will go to zero in the limit 𝑡 → ∞ if 𝛾 − 𝐹 < 0. Thus the criterion for extinction is
𝛾 < 𝐹 .

(d) Because 𝜙(𝛾) decreases with 𝛾,
𝛾 < 𝐹 ⇔ 𝜙(𝛾) > 𝜙(𝐹). (A.52)

Because 𝜙(𝛾) = 1, this is equivalent to the condition 1 > 𝜙(𝐹). Thus the condition for
extinction is

∫
∞

0
𝑏(𝑎) exp(−∫

𝑎

0
𝐹 + 𝜇(𝑠) 𝑑𝑠)𝑑𝑎 < 1. (A.53)
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A.5 Interacting populations

A.6 Epidemics

SIR with recrudescence

Exercise 6.2: The modified equations are
𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼/𝑁,
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 𝛾𝐼 + 𝛿𝑅,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝛿𝑅.

(A.54)

1. At the steady state all these derivatives have to vanish. From the first equation we find
𝑆∗ = 0 or 𝐼∗ = 0. We are not interested in 𝐼∗ = 0 because we are interested in the
endemic state which by definition has 𝐼∗ > 0, so we have 𝑆∗ = 0. The third equation
gives 𝑅∗ = 𝛾/𝛿𝐼∗. Then 𝐼∗ is found from the fact that 𝑁 = 𝑆∗ + 𝐼∗ + 𝑅∗ which gives
𝐼∗ = 𝑁 − 𝛾/𝛿𝐼∗. Soving for 𝐼∗ gives

𝐼∗ = 𝑁𝛿
𝛿 + 𝛾 . (A.55)

2. For the stability analysis we reduce the problem to a two-dimensional system by elimi-
nating 𝑆 from the last two equations. This gives

𝑑𝐼
𝑑𝑡 = 𝛽𝐼

𝑁 (𝑁 − 𝐼 − 𝑅) − 𝛾𝐼 + 𝛿𝑅,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝛿𝑅.

(A.56)

The Jacobian matrix is

𝐴 = (
𝛽
𝑁 (𝑁 − 2𝐼 − 𝑅) − 𝛾 𝛿 − 𝛽𝐼

𝑁
𝛾 −𝛿 ) . (A.57)

Evaluated at the endemic state this gives

𝐴 = (− 𝛽
𝑁 𝐼∗ − 𝛾 𝛿 − 𝛽

𝑁 𝐼∗
𝛾 −𝛿 ) . (A.58)

This has determinant and trace given by

det(𝐴) = (𝛿 + 𝛾) 𝛽𝑁 𝐼∗ > 0,

tr(𝐴) = − 𝛽
𝑁 𝐼∗ − 𝛾 − 𝛿 < 0.

(A.59)

so the endemic state is stable for all positive values of the parameters.
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SIR model with reinfections

Exercise 6.3: The modified equations are

𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼/𝑁,
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 𝛾𝐼 + 𝛽𝜇𝑅𝐼/𝑁,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝛽𝜇𝑅𝐼/𝑁.

(A.60)

At the steady state all these derivatives have to vanish. From the first equation we find 𝑆∗ = 0
or 𝐼∗ = 0. We are not interested in 𝐼∗ = 0 because we are interested in the endemic state
which by definition has 𝐼∗ > 0, so we have 𝑆∗ = 0. The third equation gives 𝑅∗ = 𝛾𝑁/(𝛽𝜇).
Then 𝐼∗ is found from the fact that 𝑁 = 𝑆∗ + 𝐼∗ +𝑅∗ which gives

𝐼∗ = 𝑁 −𝑅∗ = 𝑁 (1 − 𝛾
𝛽𝜇) . (A.61)

This is not the same as the number of infecteds in the endemic state of the model with loss of
immunity given in Eq. 6.33.

Sex-structured SIR model

Exercise 6.4:

a. As 𝑁 = 𝑆 + 𝐼 + 𝑅 we have
𝑑𝑁
𝑑𝑡 = 𝑑𝑆

𝑑𝑡 + 𝑑𝐼
𝑑𝑡 + 𝑑𝑅

𝑑𝑡 = −𝑟𝑆𝐼 ′ + 𝑟𝑆𝐼′ − 𝑎𝐼 + 𝑎𝐼 = 0. (A.62)

Hence, 𝑁 is a constant. Similarly, 𝑁 ′ is a constant.

b. We start by deriving an ODE for 𝑆 as a function of 𝑅′:

𝑑𝑆
𝑑𝑅′ = 𝑑𝑆

𝑑𝑡 /
𝑑𝑅′

𝑑𝑡 = −𝑟𝑆𝐼 ′
𝑎′𝐼′ = − 𝑟

𝑎′𝑆. (A.63)

This is easy to solve:
𝑆(𝑡) = 𝑆0𝑒−

𝑟
𝑎′ 𝑅′(𝑡). (A.64)

Similarly,
𝑆′(𝑡) = 𝑆′

0𝑒−
𝑟′
𝑎 𝑅(𝑡). (A.65)
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c. At 𝑡 = ∞ we have
𝑆(∞) = 𝑆0𝑒−

𝑟
𝑎′ 𝑅′(∞). (A.66)

But at 𝑡 = ∞, 𝐼′ = 0 and 𝑁 ′ = 𝑆′ + 𝐼′ +𝑅′ and so

𝑆(∞) = 𝑆0𝑒−
𝑟
𝑎′ (𝑁′−𝑆′(∞)). (A.67)

Similarly,
𝑆′(∞) = 𝑆′

0𝑒−
𝑟′
𝑎 (𝑁−𝑆(∞)). (A.68)

A.7 Spatially-structured population models

Fishing model with diffusion

Exercise 7.1

1. The spatially uniform steady states are 𝐹 ∗ = 0 and 𝐾. Stability can be determined
graphically or from the gradient at the steady state, with the result that 𝐹 ∗ = 0 is
unstable and 𝐹 ∗ = 𝐾 is stable.

2. If 𝐹 is small then 𝜕𝐹
𝜕𝑡 ≈ 𝑟𝐹 +𝐷𝜕2𝐹

𝜕𝑥2 .

3. Try 𝐹(𝑥, 𝑡) = 𝑒𝜆𝑡 (𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥) such that

𝜕𝐹
𝜕𝑥 = 𝑘𝑒𝜆𝑡 (−𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥) . (A.69)

The boundary conditions are 𝐹(0, 𝑡) = 0 = 𝜕𝐹
𝜕𝑥 (𝐿, 𝑡). The boundary condition at 𝑥 = 0

implies that 𝐴 = 0. The second implies that

cos 𝑘𝐿 = 0 ⟹ 𝑘 = (2𝑛 + 1)𝜋
2𝐿 =∶ 𝑘𝑛, 𝑛 = 0, 1, 2, .... (A.70)

Substituting this solution into the PDE gives

𝜆 = 𝜆𝑛 =∶ 𝑟 − 𝑘2
𝑛𝐷. (A.71)

4. A full solution is a superposition of the above solutions. For the fish population not to
collapse we need at least one 𝜆𝑛 > 0 for some 𝑛. The largest 𝜆𝑛 is for the smallest 𝑘𝑛,
which occurs when 𝑛 = 0, giving the requirement that 𝜆0 = 𝑟 −𝐷( 𝜋

2𝐿)
2 > 0. Hence, we

need
𝐿2 > 𝐷𝜋2

4𝑟 . (A.72)
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Travelling wave in 1-species reaction-diffusion model

Exercise 7.2:

a. With 𝑧 = 𝑥 − 𝑐𝑡 we have

𝜕
𝜕𝑡 = 𝜕𝑧

𝜕𝑡
𝜕
𝜕𝑧 = −𝑐 𝜕

𝜕𝑧 and 𝜕
𝜕𝑥 = 𝜕𝑧

𝜕𝑥
𝜕
𝜕𝑧 = 𝜕

𝜕𝑧 . (A.73)

Substituting this into the PDE gives the ODE

−𝑐𝑈 ′ = 𝑓(𝑈) + 𝐷𝑈″. (A.74)

b. For a travelling wave from left to right (𝑐 > 0) we expect solution at ±∞ to be at steady
state: 𝑈(−∞) = 1 and 𝑈(∞) = 0, with 𝑈 ′(±∞) = 0.
We will now use a slightly different way to approach the linearisation around the leading
edge of the travelling wave than the one we used in the lecture. The methods are
equivalent, and it is always instructional to look at different ways of doing the same
thing.

At the leading edge of the wave we have that 𝑈 is very small, so we can Taylor-expand
𝑓(𝑈) = 𝑓(0) + 𝑈𝑓 ′(0) +…. We keep only the first two terms and also use that 𝑓(0) = 0
to get the linear ODE

−𝑐𝑈 ′ = 𝑈𝑓 ′(0) + 𝐷𝑈″. (A.75)

Rather than making an Ansatz for 𝑈 as in the lecture, we convert this second order ODE
into a set of first-order ODEs by introducing a second variable 𝑉 so that 𝑈 ′ = 𝑉 and
𝑉 ′ = −𝑈

𝐷𝑓 ′(0) − 𝑐
𝐷𝑉 . In vector notation this reads

(𝑈 ′

𝑉 ′) = ( 0 1
−𝑓′(0)

𝐷 𝑈 − 𝑐
𝐷
)(𝑈

𝑉 ) . (A.76)

The eigenvalues 𝜆 of this linear matrix ODE are solutions of

det( −𝜆 1
−𝑓′(0)

𝐷 −𝜆 − 𝑐
𝐷
) = 0 ⟹ 𝜆2 + 𝑐

𝐷𝜆 + 𝑓 ′(0)
𝐷 = 0. (A.77)

Real eigenvalues and thus realistic biological solutions exist iff

𝑐2
𝐷2 − 4𝑓

′(0)
𝐷 ≥ 0, ⟹ 𝑐 ≥ 2√𝐷𝑓 ′(0). (A.78)

c. If 𝑓(𝑢) = 0 for all 𝑢 we get 𝐷𝑈″ + 𝑐𝑈 ′ = 0. Setting 𝑈(𝑧) = 𝑒𝜇𝑧 ⟹ 𝐷𝜇2 + 𝑐𝜇 ⟹
𝜇 = 0 or −𝑐/𝐷. The general solution is 𝑈 = 𝐴𝑒− 𝑐

𝐷𝑧 +𝐵. Clearly |𝑈| → ∞ as 𝑧 → −∞.
This is not a biologically realistic solution.
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SIR model with logistic growth

Exercise 7.4:

a. One can either approach this systematically or one can just try to guess the necessary
change of variables. We will use a blended approach: we guess the expressions for 𝑢 and
𝑣 by inspecting the equations, and we make a general Ansatz for ̃𝑡.
By comparing the (1 − 𝑆/𝐾) factor in the equation for 𝑆 to the factor (1 − 𝑢) in the
equation for 𝑢 we see that 𝑢 = 𝑆/𝐾. It is natural to also choose 𝑣 = 𝐼/𝐾. We write
̃𝑡 = 𝑡/𝜏 , where 𝜏 is still to be determined. With these we have

𝜕 ̃𝑡𝑢 = 𝜏/𝐾𝜕𝑡𝑆 = 𝜏/𝐾 (𝑟𝐾𝑢(1 − 𝑢) − 𝛽𝐾2𝑢𝑣)
= 𝜏𝑟𝑢(1 − 𝑢) − 𝜏𝛽𝐾𝑢𝑣 (A.79)

By comparing this with equation for 𝑢 in the problem statement, we can read off that

𝜏 = 1
𝛽𝐾 , 𝑏 = 𝑟

𝛽𝐾 . (A.80)

Then
𝜕 ̃𝑡𝑣 = 𝜏/𝐾𝜕𝑡𝐼 = 𝜏/𝐾 (𝛽𝐾2𝑢𝑣 − 𝛾𝐾𝑣)

= 𝑢𝑣 − 𝛾
𝛽𝐾𝑣. (A.81)

By comparing this with the equation for 𝑣 in the problem statement we read off that

𝑚 = 𝛾
𝛽𝐾 . (A.82)

b. By inspection we see that one steady state is (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (0, 0) and that another
is

(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (1, 0). (A.83)

The first describes a situation where the foxes are extinct, the second the situation where
in the absence of the disease the fox population sits at its carrying capacity. We look
for another steady state (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (𝑢∗, 𝑣∗) with 𝑣∗ ≠ 0. From the equation for 𝑣
we read off that 𝑢∗ = 𝑚 and then from the equation for 𝑢 we get 𝑣∗ = 𝑏(1 −𝑚). This is
the endemic state because the number of infecteds is nonzero. It exists as long as 𝑚 < 1.
This tells us that the existence of the endemic state is independent of the intrinsic growth
rate 𝑟 of the fox population but does depend on its carrying capacity.

c. We want 𝐷1𝜕2
𝑥𝑆 = 𝜕2

�̃�𝑢, where 𝑢 = 𝑆/𝐾. Hence

̃𝑥 = √𝐾𝛽
𝐷1

𝑥. (A.84)
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Then 𝑑 𝜕2
�̃�𝑣 = 𝑑𝐷1𝜕2

𝑥𝐼 but we want 𝐷2𝜕2
𝑥𝐼 so we need

𝑑 = 𝐷2
𝐷1

. (A.85)

d. Substituting the wave Ansatz into the PDEs for 𝑢 and 𝑣 gives

−𝑐𝐴′ = 𝑏𝐴(1 − 𝐴) − 𝐴𝐵 +𝐴″, − 𝑐𝐵′ = 𝐴𝐵 −𝑚𝐵 + 𝑑𝐵″. (A.86)

e. If 𝐴(∞) = 1 (which corresponds to 𝑆 = 𝐾) then that means that at 𝑥 = ∞ the system
is in the disease-free state and thus 𝐵(∞) = 0. At 𝑥 = −∞ the system must thus be in
the endemic state, so 𝐴(−∞) = 𝑢∗ = 𝑚 and 𝐵(−∞) = 𝑣∗ = 𝑏(1 − 𝑚). So the key to
this question was the observation that the travelling wave will always have to interpolate
between two steady states.

f. At the leading edge where 𝐵 is very small, 𝐴 is very close to 1, so 𝐴 = 1 − 𝜖 for a small
𝜖 > 0. The equations Eq. A.86 can thus be approximated by the linear equations

𝑐𝜖′ = 𝑏𝜖 − 𝐵 − 𝜖″, − 𝑐𝐵′ = 𝐵 −𝑚𝐵 + 𝑑𝐵″. (A.87)

We obtained this by dropping all terms involving 𝜖2 or 𝜖𝐵 because they are negligible
when 𝜖 and 𝐵 are both small.

We concentrate on the second equation, which we solve with the Ansatz 𝐵(𝑥) = exp(𝜆𝑥).
Substituting this Ansatz into the equation gives the characteristic equation for 𝜆:

𝑑𝜆2 + 𝑐𝜆 + 1 −𝑚 = 0, (A.88)

and thus
𝜆 = −𝑐 ±√𝑐2 − 4𝑑(1 −𝑚)

2𝑑 . (A.89)

We do not want the solution to oscillate, so we want 𝜆 to be real, hence

𝑐 ≥ 2√𝑑(1 −𝑚). (A.90)

Derive Turing instability

Exercise 7.5:

Here,
𝑓(𝑢, 𝑣) = 𝑎 − 𝑢 + 𝑢2𝑣, 𝑔(𝑢, 𝑣) = 𝑏 − 𝑢2𝑣. (A.91)

Step 1. Uniform steady state

𝑎 − 𝑢∗ + 𝑢∗2𝑣∗ = 0 and 𝑏 − 𝑢∗2𝑣∗ = 0 (A.92)
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implies
(𝑢∗, 𝑣∗) = (𝑎 + 𝑏, 𝑏/(𝑎 + 𝑏)2). (A.93)

Step 2. Linearize

Set 𝑢 = 𝑢∗ + 𝜉 and 𝑣 = 𝑣∗ + 𝜂 with 𝜉 and 𝜂 small. Substitute and Taylor expand to get

(
𝜕𝜉
𝜕𝑡𝜕𝜂
𝜕𝑡
) = (𝑎11 𝑎12

𝑎21 𝑎22
)(𝜉

𝜂) +(𝐷1
𝜕2𝜉
𝜕𝑥2

𝐷2
𝜕2𝜂
𝜕𝑥2

), (A.94)

where
𝑎11 = 𝜕𝑓

𝜕𝑢(𝑢
∗, 𝑣∗) = −1 + 2𝑢∗𝑣∗

= −1 + 2(𝑎 + 𝑏)𝑏/(𝑎 + 𝑏)2
= (𝑏 − 𝑎)/(𝑎 + 𝑏)

𝑎12 = 𝜕𝑓
𝜕𝑣 (𝑢

∗, 𝑣∗) = 𝑢∗2 = (𝑎 + 𝑏)2

𝑎21 = 𝜕𝑔
𝜕𝑢(𝑢

∗, 𝑣∗) = −2𝑢∗𝑣∗ = −2𝑏/(𝑎 + 𝑏)

𝑎22 = 𝜕𝑔
𝜕𝑣(𝑢

∗, 𝑣∗) = −𝑢∗2 = −(𝑎 + 𝑏)2

(A.95)

Step 3. Solutions

Make the Ansatz 𝜉 = 𝐴1𝑒𝜎𝑡 sin(𝑘𝑥 + 𝛼) and 𝜂 = 𝐴2𝑒𝜎𝑡 sin(𝑘𝑥 + 𝛼). Substitute to get

(𝜎 − 𝑏−𝑎
𝑎+𝑏 +𝐷1𝑘2 −(𝑎 + 𝑏)2

2𝑏
𝑎+𝑏 𝜎 + (𝑎 + 𝑏)2 +𝐷2𝑘2)(𝐴1

𝐴2
) = 0 (A.96)

For a non-trivial solution we require the determinant of this matrix to be zero (otherwise we
would be able to find an inverse, etc.). Hence,

𝜎2 + [(𝑎 + 𝑏)2 − 𝑏 − 𝑎
𝑎 + 𝑏 + (𝐷1 +𝐷2)𝑘2] 𝜎 + ℎ(𝑘2) = 0, (A.97)

where
ℎ(𝑘2) = 𝐷1𝐷2𝑘4 − [𝐷2

𝑏 − 𝑎
𝑎 + 𝑏 −𝐷1(𝑎 + 𝑏)2] 𝑘2 + (𝑎 + 𝑏)2. (A.98)

Step 4. In the absence of diffusion (Put 𝐷1 = 0 = 𝐷2.)

𝜎2 + [(𝑎 + 𝑏)2 − 𝑏 − 𝑎
𝑎 + 𝑏] 𝜎 + (𝑎 + 𝑏)2 = 0. (A.99)

For 𝜎 to have roots in the left half of the complex plane (giving us a stable steady state) we
need (𝑎 + 𝑏)2 − 𝑏−𝑎

𝑎+𝑏 > 0 ⟹ 𝑏 − 𝑎 < (𝑎 + 𝑏)3 and (𝑎 + 𝑏)2 > 0 (which it is).
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Step 5. With diffusion (𝐷1 ≠ 0 ≠ 𝐷2.)

We want steady state to be unstable in this case. The coefficient of 𝜎 is

(𝑎 + 𝑏)2 − 𝑏 − 𝑎
𝑎 + 𝑏 + (𝐷1 +𝐷2)𝑘2 > (𝐷1 +𝐷2)𝑘2 > 0 from Step 4 (A.100)

Therefore, we require ℎ(𝑘2) < 0 for some 𝑘2 for there to be an instability.

As ℎ(0) > 0 we must have two positive real roots of ℎ(𝑘2) = 0 for there to be an instability.

Real distinct roots ( ⟹ 𝐵2 − 4𝐴𝐶 > 0)

⟹ [𝐷2
𝑏 − 𝑎
𝑎 + 𝑏 −𝐷1(𝑎 + 𝑏)2]

2
> 4𝐷1𝐷2(𝑎 + 𝑏)2. (A.101)

Both positive ( ⟹ 𝐵 < 0)

⟹ 𝐷2
𝑏 − 𝑎
𝑎 + 𝑏 −𝐷1(𝑎 + 𝑏)2 > 0. (A.102)

Slime mould with boundary

Exercise 7.7
𝜕𝑎
𝜕𝑡 = 𝜕

𝜕𝑥 (𝜇𝜕𝑎
𝜕𝑥 − 𝜒𝑎𝜕𝜌𝜕𝑥) , and 𝜕𝜌

𝜕𝑡 = 𝑓𝑎 − 𝑘𝜌 +𝐷𝜕2𝜌
𝜕𝑥2 . (A.103)

Steady states are 𝑓𝑎∗ = 𝑘𝜌∗.
Consider a perturbation 𝑎 = 𝑎∗ + 𝜉 and 𝜌 = 𝜌∗ + 𝜂, where 𝜉 and 𝜂 are small. Substitute and
linearize to give

𝜕𝜉
𝜕𝑡 = 𝜇𝜕2𝜉

𝜕𝑥2 − 𝜒𝑎∗ 𝜕
2𝜂

𝜕𝑥2 , and 𝜕𝜂
𝜕𝑡 = 𝑓𝜉 − 𝑘𝜂 +𝐷𝜕2𝜂

𝜕𝑥2 . (A.104)

Put 𝜉 = 𝐴1𝑒𝜎𝑡+𝑖𝑞𝑥 and 𝜂 = 𝐴2𝑒𝜎𝑡+𝑖𝑞𝑥. Hence,

(𝜎 + 𝜇𝑞2 −𝜒𝑎∗𝑞2
−𝑓 𝜎 + 𝑘 +𝐷𝑞2)(𝐴1

𝐴2
) = 0 (A.105)

A non-trivial solution requires the determinant of the matrix to be zero

⟹ 𝜎2 + 𝑔(𝑞2)𝜎 + ℎ(𝑞2) = 0, (A.106)

where 𝑔(𝑞2) = 𝑘 + (𝐷 + 𝜇)𝑞2 > 0 and ℎ(𝑞2) = 𝜇𝐷𝑞4 + (𝑘𝜇 − 𝜒𝑎∗𝑓)𝑞2 > 0.
We need (𝑘𝜇 − 𝜒𝑎∗𝑓) < 0 for there to be a positive root of ℎ(𝑞2) = 0 and so instability.
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If 0 ≤ 𝑥 ≤ 𝐿 we need boundary conditions. Assume no flux at 𝑥 = 0, 𝐿: 𝜕𝑎
𝜕𝑥 = 0 = 𝜕𝜌

𝜕𝑥 at
𝑥 = 0, 𝐿.
Try 𝜉 = 𝐴1𝑒𝜎𝑡 cos 𝑞𝑥 and 𝜂 = 𝐴2𝑒𝜎𝑡 cos 𝑞𝑥 to satisfy BCs at 𝑥 = 0.
At 𝑥 = 𝐿 we have sin 𝑞𝐿 = 0 for a non-trivial solution ⟹ 𝑞 = 𝑞𝑛 ∶= 𝑛𝜋/𝐿, 𝑛 = 0, 1, 2, ...
Aggregation will not occur if ℎ(𝑞21) > 0, which implies

𝐿 < 𝜋√ 𝐷𝜇
𝜒𝑎∗𝑓 − 𝑘𝜇. (A.107)

Aggregation will occur if

𝑘𝜇 < 𝜒𝑎∗𝑓 and 𝐿 > 𝜋√ 𝐷𝜇
𝜒𝑎∗𝑓 − 𝑘𝜇. (A.108)
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